library(DoE.base)
A <- c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1)
B <- c(-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1)
Obs <- c(21,22,23,28,20,26,25,26,24,25,29,27,37,39,38,38,35,36,31,34,29,33,30,35)
A <- as.factor(A)
B <- as.factor(B)
Data <- data.frame(A,B,Obs)
Model <- aov(Obs~A*B,data = Data)
summary(Model)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 590.0 590.0 115.506 9.29e-10 ***
## B 1 9.4 9.4 1.835 0.190617
## A:B 1 92.0 92.0 18.018 0.000397 ***
## Residuals 20 102.2 5.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot(A,B,Obs)
plot(Model)
library(DoE.base)
A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
Obs <- c(14.037,13.880,14.821,14.888,16.165,13.860,14.757,14.921,13.972,14.032,14.843,14.415,13.907,13.914,14.878,14.932)
A <- as.factor(A)
B <- as.factor(B)
Data <- data.frame(A,B,Obs)
One <- c(14.037,16.165,13.972,13.907)
A <- c(13.88,13.86,14.032,13.914)
B <- c(14.821,14.757,14.843,14.878)
AB <- c(14.888,14.921,14.415,14.932)
S1 <- sum(One)
SA <- sum(A)
SB <- sum(B)
SAB <- sum(AB)
EffectA <- (2*(SA+SAB-S1-SB)/(4*4))
EffectB <- (2*(SB+SAB-S1-SA)/(4*4))
EffectAB <- (2*(SA+SB-S1-SAB)/(4*4))
EffectA
## [1] -0.31725
EffectB
## [1] 0.586
EffectAB
## [1] -0.2815
Model <- aov(Obs~A*B,data = Data)
summary(Model)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 0.403 0.4026 1.262 0.2833
## B 1 1.374 1.3736 4.305 0.0602 .
## A:B 1 0.317 0.3170 0.994 0.3386
## Residuals 12 3.828 0.3190
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model <- aov(Obs~A+B,data = Data)
summary(Model)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 0.403 0.4026 1.263 0.2815
## B 1 1.374 1.3736 4.308 0.0584 .
## Residuals 13 4.145 0.3189
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model <- lm(Obs~A*B,data = Data)
coef(Model)
## (Intercept) A1 B1 A1:B1
## 14.52025 -0.59875 0.30450 0.56300
summary(Model)
##
## Call:
## lm.default(formula = Obs ~ A * B, data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.61325 -0.14431 -0.00563 0.10188 1.64475
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.5202 0.2824 51.414 1.93e-15 ***
## A1 -0.5987 0.3994 -1.499 0.160
## B1 0.3045 0.3994 0.762 0.461
## A1:B1 0.5630 0.5648 0.997 0.339
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5648 on 12 degrees of freedom
## Multiple R-squared: 0.3535, Adjusted R-squared: 0.1918
## F-statistic: 2.187 on 3 and 12 DF, p-value: 0.1425
plot(Model)
library(DoE.base)
A <- c(-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1)
B <- c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
C <- c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
D <- c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
Obs <- c(10,18,14,12.5,19,16,18.5,0,16.5,4.5,17.5,20.5,17.5,33,4,6,1,14.5,12,14,5,0,10,34,11,25.5,21.5,0,0,0,18.5,19.5,16,15,11,5,20.5,18,20,29.5,19,10,6.5,18.5,7.5,6,0,10,0,16.5,4.5,0,23.5,8,8,8,4.5,18,14.5,10,0,17.5,6,19.5,18,16,5.5,10,7,36,15,16,8.5,0,0.5,9,3,41.5,39,6.5,3.5,7,8.5,36,8,4.5,6.5,10,13,41,14,21.5,10.5,6.5,0,15.5,24,16,0,0,0,4.5,1,4,6.5,18,5,7,10,32.5,18.5,8)
A <- as.factor(A)
B <- as.factor(B)
C <- as.factor(C)
D <- as.factor(D)
Data <- data.frame(A,B,C,D,Obs)
Model <- aov(Obs~A*B*C*D,data = Data)
summary(Model)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 917 917.1 10.588 0.00157 **
## B 1 388 388.1 4.481 0.03686 *
## C 1 145 145.1 1.676 0.19862
## D 1 1 1.4 0.016 0.89928
## A:B 1 219 218.7 2.525 0.11538
## A:C 1 12 11.9 0.137 0.71178
## B:C 1 115 115.0 1.328 0.25205
## A:D 1 94 93.8 1.083 0.30066
## B:D 1 56 56.4 0.651 0.42159
## C:D 1 2 1.6 0.019 0.89127
## A:B:C 1 7 7.3 0.084 0.77294
## A:B:D 1 113 113.0 1.305 0.25623
## A:C:D 1 39 39.5 0.456 0.50121
## B:C:D 1 34 33.8 0.390 0.53386
## A:B:C:D 1 96 95.6 1.104 0.29599
## Residuals 96 8316 86.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(Model)
library(DoE.base)
A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
C <- c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
D <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
Obs <- c(1.92,11.28,1.09,5.75,2.13,9.53,1.03,5.35,1.6,11.73,1.16,4.68,2.16,9.11,1.07,5.3)
Data <- data.frame(A,B,C,D,Obs)
Model <- lm(Obs~A*B*C*D,data = Data)
coef(Model)
## (Intercept) A B C D A:B
## 4.680625 3.160625 -1.501875 -0.220625 -0.079375 -1.069375
## A:C B:C A:D B:D C:D A:B:C
## -0.298125 0.229375 -0.056875 -0.046875 0.029375 0.344375
## A:B:D A:C:D B:C:D A:B:C:D
## -0.096875 -0.010625 0.094375 0.141875
halfnormal(Model)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A B A:B A:B:C
summary(Model)
##
## Call:
## lm.default(formula = Obs ~ A * B * C * D, data = Data)
##
## Residuals:
## ALL 16 residuals are 0: no residual degrees of freedom!
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.68062 NaN NaN NaN
## A 3.16062 NaN NaN NaN
## B -1.50187 NaN NaN NaN
## C -0.22062 NaN NaN NaN
## D -0.07937 NaN NaN NaN
## A:B -1.06938 NaN NaN NaN
## A:C -0.29812 NaN NaN NaN
## B:C 0.22937 NaN NaN NaN
## A:D -0.05687 NaN NaN NaN
## B:D -0.04688 NaN NaN NaN
## C:D 0.02937 NaN NaN NaN
## A:B:C 0.34437 NaN NaN NaN
## A:B:D -0.09688 NaN NaN NaN
## A:C:D -0.01063 NaN NaN NaN
## B:C:D 0.09438 NaN NaN NaN
## A:B:C:D 0.14188 NaN NaN NaN
##
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: NaN
## F-statistic: NaN on 15 and 0 DF, p-value: NA
Model2 <- aov(Obs~A+B+C+A*B+A*B*C,data = Data)
summary(Model2)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 159.83 159.83 1563.061 1.84e-10 ***
## B 1 36.09 36.09 352.937 6.66e-08 ***
## C 1 0.78 0.78 7.616 0.02468 *
## A:B 1 18.30 18.30 178.933 9.33e-07 ***
## A:C 1 1.42 1.42 13.907 0.00579 **
## B:C 1 0.84 0.84 8.232 0.02085 *
## A:B:C 1 1.90 1.90 18.556 0.00259 **
## Residuals 8 0.82 0.10
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(Model2)
## hat values (leverages) are all = 0.5
## and there are no factor predictors; no plot no. 5
logobs <- log(Obs)
Data2 <- data.frame(A,B,C,D,logobs)
Model3 <- lm(logobs~A*B*C*D,data = Data2)
coef(Model3)
## (Intercept) A B C D A:B
## 1.185417116 0.812870345 -0.314277554 -0.006408558 -0.018077390 -0.024684570
## A:C B:C A:D B:D C:D A:B:C
## -0.039723700 -0.004225796 -0.009578245 0.003708723 0.017780432 0.063434408
## A:B:D A:C:D B:C:D A:B:C:D
## -0.029875960 -0.003740235 0.003765760 0.031322043
halfnormal(Model3)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A B A:B:C
summary(Model3)
##
## Call:
## lm.default(formula = logobs ~ A * B * C * D, data = Data2)
##
## Residuals:
## ALL 16 residuals are 0: no residual degrees of freedom!
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.185417 NaN NaN NaN
## A 0.812870 NaN NaN NaN
## B -0.314278 NaN NaN NaN
## C -0.006409 NaN NaN NaN
## D -0.018077 NaN NaN NaN
## A:B -0.024685 NaN NaN NaN
## A:C -0.039724 NaN NaN NaN
## B:C -0.004226 NaN NaN NaN
## A:D -0.009578 NaN NaN NaN
## B:D 0.003709 NaN NaN NaN
## C:D 0.017780 NaN NaN NaN
## A:B:C 0.063434 NaN NaN NaN
## A:B:D -0.029876 NaN NaN NaN
## A:C:D -0.003740 NaN NaN NaN
## B:C:D 0.003766 NaN NaN NaN
## A:B:C:D 0.031322 NaN NaN NaN
##
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: NaN
## F-statistic: NaN on 15 and 0 DF, p-value: NA
Model4 <- aov(logobs~A+B+C+A*B*C,data = Data2)
summary(Model4)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 10.572 10.572 1994.556 6.98e-11 ***
## B 1 1.580 1.580 298.147 1.29e-07 ***
## C 1 0.001 0.001 0.124 0.73386
## A:B 1 0.010 0.010 1.839 0.21207
## A:C 1 0.025 0.025 4.763 0.06063 .
## B:C 1 0.000 0.000 0.054 0.82223
## A:B:C 1 0.064 0.064 12.147 0.00826 **
## Residuals 8 0.042 0.005
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(Model4)
## hat values (leverages) are all = 0.5
## and there are no factor predictors; no plot no. 5
library(DoE.base)
A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
C <- c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
D <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
E <- c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
Obs <- c(8.11,5.56,5.77,5.82,9.17,7.8,3.23,5.69,8.82,14.23,9.2,8.94,8.68,11.49,6.25,9.12,7.93,5,7.47,12,9.86,3.65,6.4,11.61,12.43,17.55,8.87,25.38,13.06,18.85,11.78,26.05)
Data <- data.frame(A,B,C,D,E,Obs)
Model <- lm(Obs~A*B*C*D*E,data = Data)
coef(Model)
## (Intercept) A B C D E
## 10.1803125 1.6159375 0.0434375 -0.0121875 2.9884375 2.1878125
## A:B A:C B:C A:D B:D C:D
## 1.2365625 -0.0015625 -0.1953125 1.6665625 -0.0134375 0.0034375
## A:E B:E C:E D:E A:B:C A:B:D
## 1.0271875 1.2834375 0.3015625 1.3896875 0.2503125 -0.3453125
## A:C:D B:C:D A:B:E A:C:E B:C:E A:D:E
## -0.0634375 0.3053125 1.1853125 -0.2590625 0.1709375 0.9015625
## B:D:E C:D:E A:B:C:D A:B:C:E A:B:D:E A:C:D:E
## -0.0396875 0.3959375 -0.0740625 -0.1846875 0.4071875 0.1278125
## B:C:D:E A:B:C:D:E
## -0.0746875 -0.3553125
halfnormal(Model)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] D E A:D A D:E B:E A:B A:B:E A:E A:D:E
summary(Model)
##
## Call:
## lm.default(formula = Obs ~ A * B * C * D * E, data = Data)
##
## Residuals:
## ALL 32 residuals are 0: no residual degrees of freedom!
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.180312 NaN NaN NaN
## A 1.615938 NaN NaN NaN
## B 0.043438 NaN NaN NaN
## C -0.012187 NaN NaN NaN
## D 2.988437 NaN NaN NaN
## E 2.187813 NaN NaN NaN
## A:B 1.236562 NaN NaN NaN
## A:C -0.001563 NaN NaN NaN
## B:C -0.195313 NaN NaN NaN
## A:D 1.666563 NaN NaN NaN
## B:D -0.013438 NaN NaN NaN
## C:D 0.003437 NaN NaN NaN
## A:E 1.027188 NaN NaN NaN
## B:E 1.283437 NaN NaN NaN
## C:E 0.301563 NaN NaN NaN
## D:E 1.389687 NaN NaN NaN
## A:B:C 0.250313 NaN NaN NaN
## A:B:D -0.345312 NaN NaN NaN
## A:C:D -0.063437 NaN NaN NaN
## B:C:D 0.305312 NaN NaN NaN
## A:B:E 1.185313 NaN NaN NaN
## A:C:E -0.259062 NaN NaN NaN
## B:C:E 0.170938 NaN NaN NaN
## A:D:E 0.901563 NaN NaN NaN
## B:D:E -0.039687 NaN NaN NaN
## C:D:E 0.395938 NaN NaN NaN
## A:B:C:D -0.074063 NaN NaN NaN
## A:B:C:E -0.184688 NaN NaN NaN
## A:B:D:E 0.407187 NaN NaN NaN
## A:C:D:E 0.127812 NaN NaN NaN
## B:C:D:E -0.074688 NaN NaN NaN
## A:B:C:D:E -0.355312 NaN NaN NaN
##
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: NaN
## F-statistic: NaN on 31 and 0 DF, p-value: NA
Model2 <- aov(Obs~A+B+D+E+A*B+A*D+A*E+B*E+D*E+A*B*E+A*D*E,data = Data)
summary(Model2)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 83.56 83.56 51.362 6.10e-07 ***
## B 1 0.06 0.06 0.037 0.849178
## D 1 285.78 285.78 175.664 2.30e-11 ***
## E 1 153.17 153.17 94.149 5.24e-09 ***
## A:B 1 48.93 48.93 30.076 2.28e-05 ***
## A:D 1 88.88 88.88 54.631 3.87e-07 ***
## A:E 1 33.76 33.76 20.754 0.000192 ***
## B:E 1 52.71 52.71 32.400 1.43e-05 ***
## D:E 1 61.80 61.80 37.986 5.07e-06 ***
## A:B:E 1 44.96 44.96 27.635 3.82e-05 ***
## A:D:E 1 26.01 26.01 15.988 0.000706 ***
## Residuals 20 32.54 1.63
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(Model2)
## hat values (leverages) are all = 0.375
## and there are no factor predictors; no plot no. 5
A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
D <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
E <- c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
Obs <- c(8.11,5.56,5.77,5.82,9.17,7.8,3.23,5.69,8.82,14.23,9.2,8.94,8.68,11.49,6.25,9.12,7.93,5,7.47,12,9.86,3.65,6.4,11.61,12.43,17.55,8.87,25.38,13.06,18.85,11.78,26.05)
Data <- data.frame(A,B,D,E,Obs)
Model <- lm(Obs~A*B*D*E,data = Data)
coef(Model)
## (Intercept) A B D E A:B
## 10.1803125 1.6159375 0.0434375 2.9884375 2.1878125 1.2365625
## A:D B:D A:E B:E D:E A:B:D
## 1.6665625 -0.0134375 1.0271875 1.2834375 1.3896875 -0.3453125
## A:B:E A:D:E B:D:E A:B:D:E
## 1.1853125 0.9015625 -0.0396875 0.4071875
halfnormal(Model)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] D E A:D A D:E B:E A:B A:B:E A:E A:D:E e10
summary(Model)
##
## Call:
## lm.default(formula = Obs ~ A * B * D * E, data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4750 -0.5637 0.0000 0.5637 1.4750
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.18031 0.21360 47.661 < 2e-16 ***
## A 1.61594 0.21360 7.565 1.14e-06 ***
## B 0.04344 0.21360 0.203 0.841418
## D 2.98844 0.21360 13.991 2.16e-10 ***
## E 2.18781 0.21360 10.243 1.97e-08 ***
## A:B 1.23656 0.21360 5.789 2.77e-05 ***
## A:D 1.66656 0.21360 7.802 7.66e-07 ***
## B:D -0.01344 0.21360 -0.063 0.950618
## A:E 1.02719 0.21360 4.809 0.000193 ***
## B:E 1.28344 0.21360 6.009 1.82e-05 ***
## D:E 1.38969 0.21360 6.506 7.24e-06 ***
## A:B:D -0.34531 0.21360 -1.617 0.125501
## A:B:E 1.18531 0.21360 5.549 4.40e-05 ***
## A:D:E 0.90156 0.21360 4.221 0.000650 ***
## B:D:E -0.03969 0.21360 -0.186 0.854935
## A:B:D:E 0.40719 0.21360 1.906 0.074735 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.208 on 16 degrees of freedom
## Multiple R-squared: 0.9744, Adjusted R-squared: 0.9504
## F-statistic: 40.58 on 15 and 16 DF, p-value: 7.07e-10
Model2 <- aov(Obs~A+B+D+E+A*B+A*D+A*E+B*E+D*E+A*B*E+A*D*E,data = Data)
summary(Model2)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 83.56 83.56 51.362 6.10e-07 ***
## B 1 0.06 0.06 0.037 0.849178
## D 1 285.78 285.78 175.664 2.30e-11 ***
## E 1 153.17 153.17 94.149 5.24e-09 ***
## A:B 1 48.93 48.93 30.076 2.28e-05 ***
## A:D 1 88.88 88.88 54.631 3.87e-07 ***
## A:E 1 33.76 33.76 20.754 0.000192 ***
## B:E 1 52.71 52.71 32.400 1.43e-05 ***
## D:E 1 61.80 61.80 37.986 5.07e-06 ***
## A:B:E 1 44.96 44.96 27.635 3.82e-05 ***
## A:D:E 1 26.01 26.01 15.988 0.000706 ***
## Residuals 20 32.54 1.63
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(Model2)
## hat values (leverages) are all = 0.375
## and there are no factor predictors; no plot no. 5