Model Equation for two factor interaction:
\(Y_{ijk} = \mu_i + \alpha_i + \beta_j + \alpha\beta_{ij} + \epsilon_{ijk}\)
Where
\(\alpha_i\) is Main Effects of Factor A (Time)
\(\beta_j\) is Main Effects of Factor B (Culture medium)
\(\alpha\beta_{ij}\) is Interaction effects of Factors A and Factors B
library(DoE.base)
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
## method from
## factorize.factor conf.design
##
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
##
## aov, lm
## The following object is masked from 'package:graphics':
##
## plot.design
## The following object is masked from 'package:base':
##
## lengths
library(GAD)
## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.
time<-c(rep(12,12),rep(18,12))
culture<-c(rep(1,2),rep(2,2),rep(1,2),rep(2,2),rep(1,2),rep(2,2),rep(1,2),rep(2,2),rep(1,2),rep(2,2),rep(1,2),rep(2,2))
observation<-c(21,22,25,26,23,28,24,25,20,26,29,27,37,39,31,34,38,38,29,33,35,36,30,35)
time<-as.fixed(time)
culture<-as.fixed(culture)
dat<-data.frame(observation,time,culture)
model<-aov(observation~time+culture+time*culture)
GAD::gad(model)
## Analysis of Variance Table
##
## Response: observation
## Df Sum Sq Mean Sq F value Pr(>F)
## time 1 590.04 590.04 115.5057 9.291e-10 ***
## culture 1 9.38 9.38 1.8352 0.1906172
## time:culture 1 92.04 92.04 18.0179 0.0003969 ***
## Residual 20 102.17 5.11
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot(time,culture,observation)
plot(model)
factorlevel<-c(rep(55,8),rep(58,8))
times<-c(rep(10,4),rep(15,4),rep(10,4),rep(15,4))
observation1<-c(14.037,16.165,13.972,13.907,14.821,14.757,14.843,14.878,13.880,13.860,14.032,13.914,14.888,14.921,14.415,14.932)
factorlevel<-as.fixed(factorlevel)
times<-as.fixed(times)
dat2<-data.frame(observation1,factorlevel,times)
model2<-aov(observation1~factorlevel+times+factorlevel*times)
GAD::gad(model2)
## Analysis of Variance Table
##
## Response: observation1
## Df Sum Sq Mean Sq F value Pr(>F)
## factorlevel 1 0.4026 0.40259 1.2619 0.28327
## times 1 1.3736 1.37358 4.3054 0.06016 .
## factorlevel:times 1 0.3170 0.31697 0.9935 0.33856
## Residual 12 3.8285 0.31904
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model3<-lm(observation1~factorlevel+times+factorlevel*times)
coef(model3)
## (Intercept) factorlevel58 times15
## 14.52025 -0.59875 0.30450
## factorlevel58:times15
## 0.56300
plot(model2)
### D)From the above graphs we can see that the normality plot is not up to the mark hence the model is not adequate. ### hence the residuals causes concerns
FactorA<-rep(rep(c(-1,1),8),7)
FactorB<-rep(rep(c(1,1,-1,-1),4),7)
FactorC<-rep(rep(c(rep(1,4),rep(-1,4)),2),7)
FactorD<-rep(c(rep(1,8),rep(-1,8)),7)
Observation3<-c(10.0,0.0,4.0,0.0,0.0,5.0,6.5,16.5,4.5,19.5,15.0,41.5,8.0,21.5,0.0,18.0,18.0,16.5,6.0,10.0,0.0,20.5,18.5,4.5,18.0,18.0,16.0,39.0,4.5,10.5,0.0,5.0,14.0,4.5,1.0,34.0,18.5,18.0,7.5,0.0,14.5,16.0,8.5,6.5,6.5,6.5,0.0,7.0,12.5,17.5,14.5,11.0,19.5,20.0,6.0,23.5,10.0,5.5,0.0,3.5,10.0,0.0,4.5,10.0,19.0,20.5,12.0,25.5,16.0,29.5,0.0,8.0,0.0,10.0,0.5,7.0,13.0,15.5,1.0,32.5,16.0,17.5,14.0,21.5,15.0,19.0,10.0,8.0,17.5,7.0,9.0,8.5,41.0,24.0,4.0,18.5,18.5,33.0,5.0,0.0,11.0,10.0,0.0,8.0,6.0,36.0,3.0,36.0,14.0,16.0,6.5,8.0)
dat3<-data.frame(FactorA,FactorB,FactorC,FactorD,Observation3)
model4<-lm(Observation3~FactorA*FactorB*FactorC*FactorD,data=dat3)
halfnormal(model4)
## Warning in halfnormal.lm(model4): halfnormal not recommended for models with
## more residual df than model df
##
## Significant effects (alpha=0.05, Lenth method):
## [1] FactorA e74 e92 FactorB e53
### A)From the above graph we can see that factorA and Factor B are significant. Hence FactorA and FactorB affects the performance(i.e Length of putt and type of putt)
model5<-aov(Observation3~FactorA*FactorB,data=dat3)
summary(model5)
## Df Sum Sq Mean Sq F value Pr(>F)
## FactorA 1 917 917.1 10.969 0.00126 **
## FactorB 1 388 388.1 4.642 0.03342 *
## FactorA:FactorB 1 219 218.7 2.615 0.10875
## Residuals 108 9030 83.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model5)
## hat values (leverages) are all = 0.03571429
## and there are no factor predictors; no plot no. 5
### B)From the above summary we can say that the Factor A and Factor B has p value less than 0.05 hence they are significant ### And from the graph we can say that that the normality plot looks good and hence the model is adequate
a<-c(-1,1)
A<-rep(a,8)
b<-c(-1,-1,1,1)
B<-rep(b,4)
c<-c(rep(-1,4),rep(1,4))
C<-rep(c,2)
D<-c(rep(-1,8),rep(1,8))
Observation4<-c(1.92,11.28,1.09,5.75,2.13,9.53,1.03,5.35,1.60,11.73,1.16,4.68,2.16,9.11,1.07,5.30)
dat4<-data.frame(Observation4,A,B,C,D)
model6<-lm(Observation4~A*B*C*D,data = dat4)
coef(model6)
## (Intercept) A B C D A:B
## 4.680625 3.160625 -1.501875 -0.220625 -0.079375 -1.069375
## A:C B:C A:D B:D C:D A:B:C
## -0.298125 0.229375 -0.056875 -0.046875 0.029375 0.344375
## A:B:D A:C:D B:C:D A:B:C:D
## -0.096875 -0.010625 0.094375 0.141875
halfnormal(model6)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A B A:B A:B:C
### From Above graph we can see that A,B,AB are signicicant ABC is given significant but by looking at the diagram it seems unsignificant hence cosidring it as not significant
AA<-as.fixed(dat4$A)
BB<-as.fixed(dat4$B)
dat5<-data.frame(Observation4,AA,BB)
model7<-aov(Observation4~AA*BB,data = dat5)
GAD::gad(model7)
## Analysis of Variance Table
##
## Response: Observation4
## Df Sum Sq Mean Sq F value Pr(>F)
## AA 1 159.833 159.833 333.088 4.049e-10 ***
## BB 1 36.090 36.090 75.211 1.630e-06 ***
## AA:BB 1 18.297 18.297 38.130 4.763e-05 ***
## Residual 12 5.758 0.480
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model7)
LogObservation<-log(Observation4)
dat6<-data.frame(LogObservation,A,B,C,D)
model8<-lm(LogObservation~A*B*C*D,data = dat6)
coef(model8)
## (Intercept) A B C D A:B
## 1.185417116 0.812870345 -0.314277554 -0.006408558 -0.018077390 -0.024684570
## A:C B:C A:D B:D C:D A:B:C
## -0.039723700 -0.004225796 -0.009578245 0.003708723 0.017780432 0.063434408
## A:B:D A:C:D B:C:D A:B:C:D
## -0.029875960 -0.003740235 0.003765760 0.031322043
halfnormal(model8)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A B A:B:C
### From the above graph we can see that A and B are Significant
dat7<-data.frame(LogObservation,AA,BB)
model9<-aov(LogObservation~AA+BB,data = dat7)
GAD::gad(model9)
## Analysis of Variance Table
##
## Response: LogObservation
## Df Sum Sq Mean Sq F value Pr(>F)
## AA 1 10.5721 10.5721 962.95 1.408e-13 ***
## BB 1 1.5803 1.5803 143.94 2.095e-08 ***
## Residual 13 0.1427 0.0110
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model9)
dat8<-data.frame(LogObservation,A,B)
model10<-lm(LogObservation~A+B,data = dat8)
coef(model10)
## (Intercept) A B
## 1.1854171 0.8128703 -0.3142776
a1<-c(-1,1)
b1<-c(-1,-1,1,1)
c1<-c(-1,-1,-1,-1,1,1,1,1)
d1<-c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
A1<-c(rep(a1,16))
B1<-c(rep(b1,8))
C1<-c(rep(c1,4))
D1<-c(rep(d1,2))
E1<-c(rep(-1,16),rep(1,16))
Observation5<-c(8.11,5.56,5.77,5.82,9.17,7.8,3.23,5.69,8.82,14.23,9.2,8.94,8.68,11.49,6.25,9.12,7.93,5,7.47,12,9.86,3.65,6.4,11.61,12.43,17.55,8.87,25.38,13.06,18.85,11.78,26.05)
dat9<-data.frame(A1,B1,C1,D1,E1,Observation5)
model11<-lm(Observation5~A1*B1*C1*D1*E1,data=dat9)
halfnormal(model11)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] D1 E1 A1:D1 A1 D1:E1 B1:E1 A1:B1 A1:B1:E1
##
## [9] A1:E1 A1:D1:E1
coef(model11)
## (Intercept) A1 B1 C1 D1
## 10.1803125 1.6159375 0.0434375 -0.0121875 2.9884375
## E1 A1:B1 A1:C1 B1:C1 A1:D1
## 2.1878125 1.2365625 -0.0015625 -0.1953125 1.6665625
## B1:D1 C1:D1 A1:E1 B1:E1 C1:E1
## -0.0134375 0.0034375 1.0271875 1.2834375 0.3015625
## D1:E1 A1:B1:C1 A1:B1:D1 A1:C1:D1 B1:C1:D1
## 1.3896875 0.2503125 -0.3453125 -0.0634375 0.3053125
## A1:B1:E1 A1:C1:E1 B1:C1:E1 A1:D1:E1 B1:D1:E1
## 1.1853125 -0.2590625 0.1709375 0.9015625 -0.0396875
## C1:D1:E1 A1:B1:C1:D1 A1:B1:C1:E1 A1:B1:D1:E1 A1:C1:D1:E1
## 0.3959375 -0.0740625 -0.1846875 0.4071875 0.1278125
## B1:C1:D1:E1 A1:B1:C1:D1:E1
## -0.0746875 -0.3553125
dat10<-data.frame(A1,B1,D1,E1,Observation5)
model12<-aov(Observation5~A1+B1+D1+E1+A1*B1+B1*E1+D1*E1+A1*D1+A1*E1+A1*B1*E1+A1*D1*E1,data = dat10)
plot(model12)
## hat values (leverages) are all = 0.375
## and there are no factor predictors; no plot no. 5
### From the above plot we can say that the model is adequate but because there is change in vriance our Assumption is wrong
model13<-aov(Observation5~A1*B1*D1*E1,data = dat10)
halfnormal(model13)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] D1 E1 A1:D1 A1 D1:E1 B1:E1 A1:B1 A1:B1:E1
##
## [9] A1:E1 A1:D1:E1 e10
coef(model13)
## (Intercept) A1 B1 D1 E1 A1:B1
## 10.1803125 1.6159375 0.0434375 2.9884375 2.1878125 1.2365625
## A1:D1 B1:D1 A1:E1 B1:E1 D1:E1 A1:B1:D1
## 1.6665625 -0.0134375 1.0271875 1.2834375 1.3896875 -0.3453125
## A1:B1:E1 A1:D1:E1 B1:D1:E1 A1:B1:D1:E1
## 1.1853125 0.9015625 -0.0396875 0.4071875
summary(model13)
## Df Sum Sq Mean Sq F value Pr(>F)
## A1 1 83.56 83.56 57.233 1.14e-06 ***
## B1 1 0.06 0.06 0.041 0.841418
## D1 1 285.78 285.78 195.742 2.16e-10 ***
## E1 1 153.17 153.17 104.910 1.97e-08 ***
## A1:B1 1 48.93 48.93 33.514 2.77e-05 ***
## A1:D1 1 88.88 88.88 60.875 7.66e-07 ***
## B1:D1 1 0.01 0.01 0.004 0.950618
## A1:E1 1 33.76 33.76 23.126 0.000193 ***
## B1:E1 1 52.71 52.71 36.103 1.82e-05 ***
## D1:E1 1 61.80 61.80 42.328 7.24e-06 ***
## A1:B1:D1 1 3.82 3.82 2.613 0.125501
## A1:B1:E1 1 44.96 44.96 30.794 4.40e-05 ***
## A1:D1:E1 1 26.01 26.01 17.815 0.000650 ***
## B1:D1:E1 1 0.05 0.05 0.035 0.854935
## A1:B1:D1:E1 1 5.31 5.31 3.634 0.074735 .
## Residuals 16 23.36 1.46
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model14<-lm(Observation5~A1+B1+D1+E1, data = dat10)
coef(model14)
## (Intercept) A1 B1 D1 E1
## 10.1803125 1.6159375 0.0434375 2.9884375 2.1878125