Ex. 1

Use a data set such as PlantGrowth in R to calculate three different distance metrics and discuss the results.

Without thinking much about it I calculated the distance using both variables, independent and dependent, (you can see the results below), but then the numbers didn’t really make sense. For the Manhattan distance it is just doubling the difference in the independent variable, weight, from one point to another. For the euclidean distance it’s summing the square of the difference in weight with the square of the same difference in weight and then taking the square root, and the same for minkowski with p=3 except it’s the difference cubed plus the same difference cubed and then the cube root. This really makes no sense. So then I removed the categorical dependent variable and recalculated. All three distance measures are exactly the same and equal to the difference in weight in this case, which I think is as it should be…

Distance calculated using both the independent and dependent variables

p <- PlantGrowth
p
p_manhattan <- as.data.frame(as.matrix(dist(p, method = "manhattan")))
rownames(p_manhattan) <- paste0("   ", as.character(c(1:30)))
kbl(p_manhattan) %>%
  kable_minimal(font_size = 10) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 0.00 2.82 2.02 3.88 0.66 0.88 2.00 0.72 2.32 1.94 1.28 0.00 0.48 1.16 3.40 0.68 3.72 1.44 0.30 1.04 4.28 1.90 2.74 2.66 2.40 2.24 1.50 3.96 3.26 2.18
2 2.82 0.00 0.80 1.06 2.16 1.94 0.82 2.10 0.50 0.88 1.54 2.82 2.34 3.98 0.58 3.50 0.90 1.38 2.52 1.78 1.46 0.92 0.08 0.16 0.42 0.58 1.32 1.14 0.44 0.64
3 2.02 0.80 0.00 1.86 1.36 1.14 0.02 1.30 0.30 0.08 0.74 2.02 1.54 3.18 1.38 2.70 1.70 0.58 1.72 0.98 2.26 0.12 0.72 0.64 0.38 0.22 0.52 1.94 1.24 0.16
4 3.88 1.06 1.86 0.00 3.22 3.00 1.88 3.16 1.56 1.94 2.60 3.88 3.40 5.04 0.48 4.56 0.16 2.44 3.58 2.84 0.40 1.98 1.14 1.22 1.48 1.64 2.38 0.08 0.62 1.70
5 0.66 2.16 1.36 3.22 0.00 0.22 1.34 0.06 1.66 1.28 0.62 0.66 0.18 1.82 2.74 1.34 3.06 0.78 0.36 0.38 3.62 1.24 2.08 2.00 1.74 1.58 0.84 3.30 2.60 1.52
6 0.88 1.94 1.14 3.00 0.22 0.00 1.12 0.16 1.44 1.06 0.40 0.88 0.40 2.04 2.52 1.56 2.84 0.56 0.58 0.16 3.40 1.02 1.86 1.78 1.52 1.36 0.62 3.08 2.38 1.30
7 2.00 0.82 0.02 1.88 1.34 1.12 0.00 1.28 0.32 0.06 0.72 2.00 1.52 3.16 1.40 2.68 1.72 0.56 1.70 0.96 2.28 0.10 0.74 0.66 0.40 0.24 0.50 1.96 1.26 0.18
8 0.72 2.10 1.30 3.16 0.06 0.16 1.28 0.00 1.60 1.22 0.56 0.72 0.24 1.88 2.68 1.40 3.00 0.72 0.42 0.32 3.56 1.18 2.02 1.94 1.68 1.52 0.78 3.24 2.54 1.46
9 2.32 0.50 0.30 1.56 1.66 1.44 0.32 1.60 0.00 0.38 1.04 2.32 1.84 3.48 1.08 3.00 1.40 0.88 2.02 1.28 1.96 0.42 0.42 0.34 0.08 0.08 0.82 1.64 0.94 0.14
10 1.94 0.88 0.08 1.94 1.28 1.06 0.06 1.22 0.38 0.00 0.66 1.94 1.46 3.10 1.46 2.62 1.78 0.50 1.64 0.90 2.34 0.04 0.80 0.72 0.46 0.30 0.44 2.02 1.32 0.24
11 1.28 1.54 0.74 2.60 0.62 0.40 0.72 0.56 1.04 0.66 0.00 1.28 0.80 2.44 2.12 1.96 2.44 0.16 0.98 0.24 3.00 0.62 1.46 1.38 1.12 0.96 0.22 2.68 1.98 0.90
12 0.00 2.82 2.02 3.88 0.66 0.88 2.00 0.72 2.32 1.94 1.28 0.00 0.48 1.16 3.40 0.68 3.72 1.44 0.30 1.04 4.28 1.90 2.74 2.66 2.40 2.24 1.50 3.96 3.26 2.18
13 0.48 2.34 1.54 3.40 0.18 0.40 1.52 0.24 1.84 1.46 0.80 0.48 0.00 1.64 2.92 1.16 3.24 0.96 0.18 0.56 3.80 1.42 2.26 2.18 1.92 1.76 1.02 3.48 2.78 1.70
14 1.16 3.98 3.18 5.04 1.82 2.04 3.16 1.88 3.48 3.10 2.44 1.16 1.64 0.00 4.56 0.48 4.88 2.60 1.46 2.20 5.44 3.06 3.90 3.82 3.56 3.40 2.66 5.12 4.42 3.34
15 3.40 0.58 1.38 0.48 2.74 2.52 1.40 2.68 1.08 1.46 2.12 3.40 2.92 4.56 0.00 4.08 0.32 1.96 3.10 2.36 0.88 1.50 0.66 0.74 1.00 1.16 1.90 0.56 0.14 1.22
16 0.68 3.50 2.70 4.56 1.34 1.56 2.68 1.40 3.00 2.62 1.96 0.68 1.16 0.48 4.08 0.00 4.40 2.12 0.98 1.72 4.96 2.58 3.42 3.34 3.08 2.92 2.18 4.64 3.94 2.86
17 3.72 0.90 1.70 0.16 3.06 2.84 1.72 3.00 1.40 1.78 2.44 3.72 3.24 4.88 0.32 4.40 0.00 2.28 3.42 2.68 0.56 1.82 0.98 1.06 1.32 1.48 2.22 0.24 0.46 1.54
18 1.44 1.38 0.58 2.44 0.78 0.56 0.56 0.72 0.88 0.50 0.16 1.44 0.96 2.60 1.96 2.12 2.28 0.00 1.14 0.40 2.84 0.46 1.30 1.22 0.96 0.80 0.06 2.52 1.82 0.74
19 0.30 2.52 1.72 3.58 0.36 0.58 1.70 0.42 2.02 1.64 0.98 0.30 0.18 1.46 3.10 0.98 3.42 1.14 0.00 0.74 3.98 1.60 2.44 2.36 2.10 1.94 1.20 3.66 2.96 1.88
20 1.04 1.78 0.98 2.84 0.38 0.16 0.96 0.32 1.28 0.90 0.24 1.04 0.56 2.20 2.36 1.72 2.68 0.40 0.74 0.00 3.24 0.86 1.70 1.62 1.36 1.20 0.46 2.92 2.22 1.14
21 4.28 1.46 2.26 0.40 3.62 3.40 2.28 3.56 1.96 2.34 3.00 4.28 3.80 5.44 0.88 4.96 0.56 2.84 3.98 3.24 0.00 2.38 1.54 1.62 1.88 2.04 2.78 0.32 1.02 2.10
22 1.90 0.92 0.12 1.98 1.24 1.02 0.10 1.18 0.42 0.04 0.62 1.90 1.42 3.06 1.50 2.58 1.82 0.46 1.60 0.86 2.38 0.00 0.84 0.76 0.50 0.34 0.40 2.06 1.36 0.28
23 2.74 0.08 0.72 1.14 2.08 1.86 0.74 2.02 0.42 0.80 1.46 2.74 2.26 3.90 0.66 3.42 0.98 1.30 2.44 1.70 1.54 0.84 0.00 0.08 0.34 0.50 1.24 1.22 0.52 0.56
24 2.66 0.16 0.64 1.22 2.00 1.78 0.66 1.94 0.34 0.72 1.38 2.66 2.18 3.82 0.74 3.34 1.06 1.22 2.36 1.62 1.62 0.76 0.08 0.00 0.26 0.42 1.16 1.30 0.60 0.48
25 2.40 0.42 0.38 1.48 1.74 1.52 0.40 1.68 0.08 0.46 1.12 2.40 1.92 3.56 1.00 3.08 1.32 0.96 2.10 1.36 1.88 0.50 0.34 0.26 0.00 0.16 0.90 1.56 0.86 0.22
26 2.24 0.58 0.22 1.64 1.58 1.36 0.24 1.52 0.08 0.30 0.96 2.24 1.76 3.40 1.16 2.92 1.48 0.80 1.94 1.20 2.04 0.34 0.50 0.42 0.16 0.00 0.74 1.72 1.02 0.06
27 1.50 1.32 0.52 2.38 0.84 0.62 0.50 0.78 0.82 0.44 0.22 1.50 1.02 2.66 1.90 2.18 2.22 0.06 1.20 0.46 2.78 0.40 1.24 1.16 0.90 0.74 0.00 2.46 1.76 0.68
28 3.96 1.14 1.94 0.08 3.30 3.08 1.96 3.24 1.64 2.02 2.68 3.96 3.48 5.12 0.56 4.64 0.24 2.52 3.66 2.92 0.32 2.06 1.22 1.30 1.56 1.72 2.46 0.00 0.70 1.78
29 3.26 0.44 1.24 0.62 2.60 2.38 1.26 2.54 0.94 1.32 1.98 3.26 2.78 4.42 0.14 3.94 0.46 1.82 2.96 2.22 1.02 1.36 0.52 0.60 0.86 1.02 1.76 0.70 0.00 1.08
30 2.18 0.64 0.16 1.70 1.52 1.30 0.18 1.46 0.14 0.24 0.90 2.18 1.70 3.34 1.22 2.86 1.54 0.74 1.88 1.14 2.10 0.28 0.56 0.48 0.22 0.06 0.68 1.78 1.08 0.00
p_euclidean <- as.matrix(dist(p, method = "euclidean"))
rownames(p_euclidean) <- paste0("   ", as.character(c(1:30)))
kbl(p_euclidean) %>%
  kable_minimal(font_size = 10) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 0.0000 1.9940 1.4284 2.7436 0.4667 0.6223 1.4142 0.5091 1.6405 1.3718 0.9051 0.0000 0.3394 0.8202 2.4042 0.4808 2.6304 1.0182 0.2121 0.7354 3.0264 1.3435 1.9375 1.8809 1.6971 1.5839 1.0607 2.8001 2.3052 1.5415
2 1.9940 0.0000 0.5657 0.7495 1.5274 1.3718 0.5798 1.4849 0.3536 0.6223 1.0889 1.9940 1.6546 2.8143 0.4101 2.4749 0.6364 0.9758 1.7819 1.2587 1.0324 0.6505 0.0566 0.1131 0.2970 0.4101 0.9334 0.8061 0.3111 0.4525
3 1.4284 0.5657 0.0000 1.3152 0.9617 0.8061 0.0141 0.9192 0.2121 0.0566 0.5233 1.4284 1.0889 2.2486 0.9758 1.9092 1.2021 0.4101 1.2162 0.6930 1.5981 0.0849 0.5091 0.4525 0.2687 0.1556 0.3677 1.3718 0.8768 0.1131
4 2.7436 0.7495 1.3152 0.0000 2.2769 2.1213 1.3294 2.2345 1.1031 1.3718 1.8385 2.7436 2.4042 3.5638 0.3394 3.2244 0.1131 1.7253 2.5314 2.0082 0.2828 1.4001 0.8061 0.8627 1.0465 1.1597 1.6829 0.0566 0.4384 1.2021
5 0.4667 1.5274 0.9617 2.2769 0.0000 0.1556 0.9475 0.0424 1.1738 0.9051 0.4384 0.4667 0.1273 1.2869 1.9375 0.9475 2.1637 0.5515 0.2546 0.2687 2.5597 0.8768 1.4708 1.4142 1.2304 1.1172 0.5940 2.3335 1.8385 1.0748
6 0.6223 1.3718 0.8061 2.1213 0.1556 0.0000 0.7920 0.1131 1.0182 0.7495 0.2828 0.6223 0.2828 1.4425 1.7819 1.1031 2.0082 0.3960 0.4101 0.1131 2.4042 0.7212 1.3152 1.2587 1.0748 0.9617 0.4384 2.1779 1.6829 0.9192
7 1.4142 0.5798 0.0141 1.3294 0.9475 0.7920 0.0000 0.9051 0.2263 0.0424 0.5091 1.4142 1.0748 2.2345 0.9899 1.8950 1.2162 0.3960 1.2021 0.6788 1.6122 0.0707 0.5233 0.4667 0.2828 0.1697 0.3536 1.3859 0.8910 0.1273
8 0.5091 1.4849 0.9192 2.2345 0.0424 0.1131 0.9051 0.0000 1.1314 0.8627 0.3960 0.5091 0.1697 1.3294 1.8950 0.9899 2.1213 0.5091 0.2970 0.2263 2.5173 0.8344 1.4284 1.3718 1.1879 1.0748 0.5515 2.2910 1.7961 1.0324
9 1.6405 0.3536 0.2121 1.1031 1.1738 1.0182 0.2263 1.1314 0.0000 0.2687 0.7354 1.6405 1.3011 2.4607 0.7637 2.1213 0.9899 0.6223 1.4284 0.9051 1.3859 0.2970 0.2970 0.2404 0.0566 0.0566 0.5798 1.1597 0.6647 0.0990
10 1.3718 0.6223 0.0566 1.3718 0.9051 0.7495 0.0424 0.8627 0.2687 0.0000 0.4667 1.3718 1.0324 2.1920 1.0324 1.8526 1.2587 0.3536 1.1597 0.6364 1.6546 0.0283 0.5657 0.5091 0.3253 0.2121 0.3111 1.4284 0.9334 0.1697
11 0.9051 1.0889 0.5233 1.8385 0.4384 0.2828 0.5091 0.3960 0.7354 0.4667 0.0000 0.9051 0.5657 1.7253 1.4991 1.3859 1.7253 0.1131 0.6930 0.1697 2.1213 0.4384 1.0324 0.9758 0.7920 0.6788 0.1556 1.8950 1.4001 0.6364
12 0.0000 1.9940 1.4284 2.7436 0.4667 0.6223 1.4142 0.5091 1.6405 1.3718 0.9051 0.0000 0.3394 0.8202 2.4042 0.4808 2.6304 1.0182 0.2121 0.7354 3.0264 1.3435 1.9375 1.8809 1.6971 1.5839 1.0607 2.8001 2.3052 1.5415
13 0.3394 1.6546 1.0889 2.4042 0.1273 0.2828 1.0748 0.1697 1.3011 1.0324 0.5657 0.3394 0.0000 1.1597 2.0648 0.8202 2.2910 0.6788 0.1273 0.3960 2.6870 1.0041 1.5981 1.5415 1.3576 1.2445 0.7212 2.4607 1.9658 1.2021
14 0.8202 2.8143 2.2486 3.5638 1.2869 1.4425 2.2345 1.3294 2.4607 2.1920 1.7253 0.8202 1.1597 0.0000 3.2244 0.3394 3.4507 1.8385 1.0324 1.5556 3.8467 2.1637 2.7577 2.7011 2.5173 2.4042 1.8809 3.6204 3.1254 2.3617
15 2.4042 0.4101 0.9758 0.3394 1.9375 1.7819 0.9899 1.8950 0.7637 1.0324 1.4991 2.4042 2.0648 3.2244 0.0000 2.8850 0.2263 1.3859 2.1920 1.6688 0.6223 1.0607 0.4667 0.5233 0.7071 0.8202 1.3435 0.3960 0.0990 0.8627
16 0.4808 2.4749 1.9092 3.2244 0.9475 1.1031 1.8950 0.9899 2.1213 1.8526 1.3859 0.4808 0.8202 0.3394 2.8850 0.0000 3.1113 1.4991 0.6930 1.2162 3.5072 1.8243 2.4183 2.3617 2.1779 2.0648 1.5415 3.2810 2.7860 2.0223
17 2.6304 0.6364 1.2021 0.1131 2.1637 2.0082 1.2162 2.1213 0.9899 1.2587 1.7253 2.6304 2.2910 3.4507 0.2263 3.1113 0.0000 1.6122 2.4183 1.8950 0.3960 1.2869 0.6930 0.7495 0.9334 1.0465 1.5698 0.1697 0.3253 1.0889
18 1.0182 0.9758 0.4101 1.7253 0.5515 0.3960 0.3960 0.5091 0.6223 0.3536 0.1131 1.0182 0.6788 1.8385 1.3859 1.4991 1.6122 0.0000 0.8061 0.2828 2.0082 0.3253 0.9192 0.8627 0.6788 0.5657 0.0424 1.7819 1.2869 0.5233
19 0.2121 1.7819 1.2162 2.5314 0.2546 0.4101 1.2021 0.2970 1.4284 1.1597 0.6930 0.2121 0.1273 1.0324 2.1920 0.6930 2.4183 0.8061 0.0000 0.5233 2.8143 1.1314 1.7253 1.6688 1.4849 1.3718 0.8485 2.5880 2.0930 1.3294
20 0.7354 1.2587 0.6930 2.0082 0.2687 0.1131 0.6788 0.2263 0.9051 0.6364 0.1697 0.7354 0.3960 1.5556 1.6688 1.2162 1.8950 0.2828 0.5233 0.0000 2.2910 0.6081 1.2021 1.1455 0.9617 0.8485 0.3253 2.0648 1.5698 0.8061
21 3.0264 1.0324 1.5981 0.2828 2.5597 2.4042 1.6122 2.5173 1.3859 1.6546 2.1213 3.0264 2.6870 3.8467 0.6223 3.5072 0.3960 2.0082 2.8143 2.2910 0.0000 1.6829 1.0889 1.1455 1.3294 1.4425 1.9658 0.2263 0.7212 1.4849
22 1.3435 0.6505 0.0849 1.4001 0.8768 0.7212 0.0707 0.8344 0.2970 0.0283 0.4384 1.3435 1.0041 2.1637 1.0607 1.8243 1.2869 0.3253 1.1314 0.6081 1.6829 0.0000 0.5940 0.5374 0.3536 0.2404 0.2828 1.4566 0.9617 0.1980
23 1.9375 0.0566 0.5091 0.8061 1.4708 1.3152 0.5233 1.4284 0.2970 0.5657 1.0324 1.9375 1.5981 2.7577 0.4667 2.4183 0.6930 0.9192 1.7253 1.2021 1.0889 0.5940 0.0000 0.0566 0.2404 0.3536 0.8768 0.8627 0.3677 0.3960
24 1.8809 0.1131 0.4525 0.8627 1.4142 1.2587 0.4667 1.3718 0.2404 0.5091 0.9758 1.8809 1.5415 2.7011 0.5233 2.3617 0.7495 0.8627 1.6688 1.1455 1.1455 0.5374 0.0566 0.0000 0.1838 0.2970 0.8202 0.9192 0.4243 0.3394
25 1.6971 0.2970 0.2687 1.0465 1.2304 1.0748 0.2828 1.1879 0.0566 0.3253 0.7920 1.6971 1.3576 2.5173 0.7071 2.1779 0.9334 0.6788 1.4849 0.9617 1.3294 0.3536 0.2404 0.1838 0.0000 0.1131 0.6364 1.1031 0.6081 0.1556
26 1.5839 0.4101 0.1556 1.1597 1.1172 0.9617 0.1697 1.0748 0.0566 0.2121 0.6788 1.5839 1.2445 2.4042 0.8202 2.0648 1.0465 0.5657 1.3718 0.8485 1.4425 0.2404 0.3536 0.2970 0.1131 0.0000 0.5233 1.2162 0.7212 0.0424
27 1.0607 0.9334 0.3677 1.6829 0.5940 0.4384 0.3536 0.5515 0.5798 0.3111 0.1556 1.0607 0.7212 1.8809 1.3435 1.5415 1.5698 0.0424 0.8485 0.3253 1.9658 0.2828 0.8768 0.8202 0.6364 0.5233 0.0000 1.7395 1.2445 0.4808
28 2.8001 0.8061 1.3718 0.0566 2.3335 2.1779 1.3859 2.2910 1.1597 1.4284 1.8950 2.8001 2.4607 3.6204 0.3960 3.2810 0.1697 1.7819 2.5880 2.0648 0.2263 1.4566 0.8627 0.9192 1.1031 1.2162 1.7395 0.0000 0.4950 1.2587
29 2.3052 0.3111 0.8768 0.4384 1.8385 1.6829 0.8910 1.7961 0.6647 0.9334 1.4001 2.3052 1.9658 3.1254 0.0990 2.7860 0.3253 1.2869 2.0930 1.5698 0.7212 0.9617 0.3677 0.4243 0.6081 0.7212 1.2445 0.4950 0.0000 0.7637
30 1.5415 0.4525 0.1131 1.2021 1.0748 0.9192 0.1273 1.0324 0.0990 0.1697 0.6364 1.5415 1.2021 2.3617 0.8627 2.0223 1.0889 0.5233 1.3294 0.8061 1.4849 0.1980 0.3960 0.3394 0.1556 0.0424 0.4808 1.2587 0.7637 0.0000
p_minkowski_p3 <- as.matrix(dist(p, method = "minkowski", p=3))
rownames(p_minkowski_p3) <- paste0("   ", as.character(c(1:30)))
kbl(p_minkowski_p3) %>%
  kable_minimal(font_size = 10) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 0.0000 1.7765 1.2725 2.4442 0.4158 0.5544 1.2599 0.4536 1.4615 1.2221 0.8063 0.0000 0.3024 0.7308 2.1419 0.4284 2.3435 0.9071 0.1890 0.6552 2.6962 1.1969 1.7261 1.6757 1.5119 1.4111 0.9449 2.4946 2.0537 1.3733
2 1.7765 0.0000 0.5040 0.6678 1.3607 1.2221 0.5166 1.3229 0.3150 0.5544 0.9701 1.7765 1.4741 2.5072 0.3654 2.2049 0.5670 0.8693 1.5875 1.1213 0.9197 0.5796 0.0504 0.1008 0.2646 0.3654 0.8315 0.7182 0.2772 0.4032
3 1.2725 0.5040 0.0000 1.1717 0.8567 0.7182 0.0126 0.8189 0.1890 0.0504 0.4662 1.2725 0.9701 2.0033 0.8693 1.7009 1.0709 0.3654 1.0835 0.6174 1.4237 0.0756 0.4536 0.4032 0.2394 0.1386 0.3276 1.2221 0.7812 0.1008
4 2.4442 0.6678 1.1717 0.0000 2.0285 1.8899 1.1843 1.9907 0.9827 1.2221 1.6379 2.4442 2.1419 3.1750 0.3024 2.8726 0.1008 1.5371 2.2553 1.7891 0.2520 1.2473 0.7182 0.7686 0.9323 1.0331 1.4993 0.0504 0.3906 1.0709
5 0.4158 1.3607 0.8567 2.0285 0.0000 0.1386 0.8441 0.0378 1.0457 0.8063 0.3906 0.4158 0.1134 1.1465 1.7261 0.8441 1.9277 0.4914 0.2268 0.2394 2.2805 0.7812 1.3103 1.2599 1.0961 0.9953 0.5292 2.0789 1.6379 0.9575
6 0.5544 1.2221 0.7182 1.8899 0.1386 0.0000 0.7056 0.1008 0.9071 0.6678 0.2520 0.5544 0.2520 1.2851 1.5875 0.9827 1.7891 0.3528 0.3654 0.1008 2.1419 0.6426 1.1717 1.1213 0.9575 0.8567 0.3906 1.9403 1.4993 0.8189
7 1.2599 0.5166 0.0126 1.1843 0.8441 0.7056 0.0000 0.8063 0.2016 0.0378 0.4536 1.2599 0.9575 1.9907 0.8819 1.6883 1.0835 0.3528 1.0709 0.6048 1.4363 0.0630 0.4662 0.4158 0.2520 0.1512 0.3150 1.2347 0.7938 0.1134
8 0.4536 1.3229 0.8189 1.9907 0.0378 0.1008 0.8063 0.0000 1.0079 0.7686 0.3528 0.4536 0.1512 1.1843 1.6883 0.8819 1.8899 0.4536 0.2646 0.2016 2.2427 0.7434 1.2725 1.2221 1.0583 0.9575 0.4914 2.0411 1.6001 0.9197
9 1.4615 0.3150 0.1890 0.9827 1.0457 0.9071 0.2016 1.0079 0.0000 0.2394 0.6552 1.4615 1.1591 2.1923 0.6804 1.8899 0.8819 0.5544 1.2725 0.8063 1.2347 0.2646 0.2646 0.2142 0.0504 0.0504 0.5166 1.0331 0.5922 0.0882
10 1.2221 0.5544 0.0504 1.2221 0.8063 0.6678 0.0378 0.7686 0.2394 0.0000 0.4158 1.2221 0.9197 1.9529 0.9197 1.6505 1.1213 0.3150 1.0331 0.5670 1.4741 0.0252 0.5040 0.4536 0.2898 0.1890 0.2772 1.2725 0.8315 0.1512
11 0.8063 0.9701 0.4662 1.6379 0.3906 0.2520 0.4536 0.3528 0.6552 0.4158 0.0000 0.8063 0.5040 1.5371 1.3355 1.2347 1.5371 0.1008 0.6174 0.1512 1.8899 0.3906 0.9197 0.8693 0.7056 0.6048 0.1386 1.6883 1.2473 0.5670
12 0.0000 1.7765 1.2725 2.4442 0.4158 0.5544 1.2599 0.4536 1.4615 1.2221 0.8063 0.0000 0.3024 0.7308 2.1419 0.4284 2.3435 0.9071 0.1890 0.6552 2.6962 1.1969 1.7261 1.6757 1.5119 1.4111 0.9449 2.4946 2.0537 1.3733
13 0.3024 1.4741 0.9701 2.1419 0.1134 0.2520 0.9575 0.1512 1.1591 0.9197 0.5040 0.3024 0.0000 1.0331 1.8395 0.7308 2.0411 0.6048 0.1134 0.3528 2.3938 0.8945 1.4237 1.3733 1.2095 1.1087 0.6426 2.1923 1.7513 1.0709
14 0.7308 2.5072 2.0033 3.1750 1.1465 1.2851 1.9907 1.1843 2.1923 1.9529 1.5371 0.7308 1.0331 0.0000 2.8726 0.3024 3.0742 1.6379 0.9197 1.3859 3.4270 1.9277 2.4568 2.4064 2.2427 2.1419 1.6757 3.2254 2.7844 2.1041
15 2.1419 0.3654 0.8693 0.3024 1.7261 1.5875 0.8819 1.6883 0.6804 0.9197 1.3355 2.1419 1.8395 2.8726 0.0000 2.5702 0.2016 1.2347 1.9529 1.4867 0.5544 0.9449 0.4158 0.4662 0.6300 0.7308 1.1969 0.3528 0.0882 0.7686
16 0.4284 2.2049 1.7009 2.8726 0.8441 0.9827 1.6883 0.8819 1.8899 1.6505 1.2347 0.4284 0.7308 0.3024 2.5702 0.0000 2.7718 1.3355 0.6174 1.0835 3.1246 1.6253 2.1545 2.1041 1.9403 1.8395 1.3733 2.9230 2.4820 1.8017
17 2.3435 0.5670 1.0709 0.1008 1.9277 1.7891 1.0835 1.8899 0.8819 1.1213 1.5371 2.3435 2.0411 3.0742 0.2016 2.7718 0.0000 1.4363 2.1545 1.6883 0.3528 1.1465 0.6174 0.6678 0.8315 0.9323 1.3985 0.1512 0.2898 0.9701
18 0.9071 0.8693 0.3654 1.5371 0.4914 0.3528 0.3528 0.4536 0.5544 0.3150 0.1008 0.9071 0.6048 1.6379 1.2347 1.3355 1.4363 0.0000 0.7182 0.2520 1.7891 0.2898 0.8189 0.7686 0.6048 0.5040 0.0378 1.5875 1.1465 0.4662
19 0.1890 1.5875 1.0835 2.2553 0.2268 0.3654 1.0709 0.2646 1.2725 1.0331 0.6174 0.1890 0.1134 0.9197 1.9529 0.6174 2.1545 0.7182 0.0000 0.4662 2.5072 1.0079 1.5371 1.4867 1.3229 1.2221 0.7560 2.3057 1.8647 1.1843
20 0.6552 1.1213 0.6174 1.7891 0.2394 0.1008 0.6048 0.2016 0.8063 0.5670 0.1512 0.6552 0.3528 1.3859 1.4867 1.0835 1.6883 0.2520 0.4662 0.0000 2.0411 0.5418 1.0709 1.0205 0.8567 0.7560 0.2898 1.8395 1.3985 0.7182
21 2.6962 0.9197 1.4237 0.2520 2.2805 2.1419 1.4363 2.2427 1.2347 1.4741 1.8899 2.6962 2.3938 3.4270 0.5544 3.1246 0.3528 1.7891 2.5072 2.0411 0.0000 1.4993 0.9701 1.0205 1.1843 1.2851 1.7513 0.2016 0.6426 1.3229
22 1.1969 0.5796 0.0756 1.2473 0.7812 0.6426 0.0630 0.7434 0.2646 0.0252 0.3906 1.1969 0.8945 1.9277 0.9449 1.6253 1.1465 0.2898 1.0079 0.5418 1.4993 0.0000 0.5292 0.4788 0.3150 0.2142 0.2520 1.2977 0.8567 0.1764
23 1.7261 0.0504 0.4536 0.7182 1.3103 1.1717 0.4662 1.2725 0.2646 0.5040 0.9197 1.7261 1.4237 2.4568 0.4158 2.1545 0.6174 0.8189 1.5371 1.0709 0.9701 0.5292 0.0000 0.0504 0.2142 0.3150 0.7812 0.7686 0.3276 0.3528
24 1.6757 0.1008 0.4032 0.7686 1.2599 1.1213 0.4158 1.2221 0.2142 0.4536 0.8693 1.6757 1.3733 2.4064 0.4662 2.1041 0.6678 0.7686 1.4867 1.0205 1.0205 0.4788 0.0504 0.0000 0.1638 0.2646 0.7308 0.8189 0.3780 0.3024
25 1.5119 0.2646 0.2394 0.9323 1.0961 0.9575 0.2520 1.0583 0.0504 0.2898 0.7056 1.5119 1.2095 2.2427 0.6300 1.9403 0.8315 0.6048 1.3229 0.8567 1.1843 0.3150 0.2142 0.1638 0.0000 0.1008 0.5670 0.9827 0.5418 0.1386
26 1.4111 0.3654 0.1386 1.0331 0.9953 0.8567 0.1512 0.9575 0.0504 0.1890 0.6048 1.4111 1.1087 2.1419 0.7308 1.8395 0.9323 0.5040 1.2221 0.7560 1.2851 0.2142 0.3150 0.2646 0.1008 0.0000 0.4662 1.0835 0.6426 0.0378
27 0.9449 0.8315 0.3276 1.4993 0.5292 0.3906 0.3150 0.4914 0.5166 0.2772 0.1386 0.9449 0.6426 1.6757 1.1969 1.3733 1.3985 0.0378 0.7560 0.2898 1.7513 0.2520 0.7812 0.7308 0.5670 0.4662 0.0000 1.5497 1.1087 0.4284
28 2.4946 0.7182 1.2221 0.0504 2.0789 1.9403 1.2347 2.0411 1.0331 1.2725 1.6883 2.4946 2.1923 3.2254 0.3528 2.9230 0.1512 1.5875 2.3057 1.8395 0.2016 1.2977 0.7686 0.8189 0.9827 1.0835 1.5497 0.0000 0.4410 1.1213
29 2.0537 0.2772 0.7812 0.3906 1.6379 1.4993 0.7938 1.6001 0.5922 0.8315 1.2473 2.0537 1.7513 2.7844 0.0882 2.4820 0.2898 1.1465 1.8647 1.3985 0.6426 0.8567 0.3276 0.3780 0.5418 0.6426 1.1087 0.4410 0.0000 0.6804
30 1.3733 0.4032 0.1008 1.0709 0.9575 0.8189 0.1134 0.9197 0.0882 0.1512 0.5670 1.3733 1.0709 2.1041 0.7686 1.8017 0.9701 0.4662 1.1843 0.7182 1.3229 0.1764 0.3528 0.3024 0.1386 0.0378 0.4284 1.1213 0.6804 0.0000
kbl(data.frame(rowSums(p_manhattan), rowSums(p_euclidean), rowSums(p_minkowski_p3))) %>%
  kable_minimal(full_width = F)
rowSums.p_manhattan. rowSums.p_euclidean. rowSums.p_minkowski_p3.
1 57.86 40.91 36.45
2 41.58 29.40 26.19
3 33.62 23.77 21.18
4 63.18 44.67 39.80
5 44.42 31.41 27.98
6 41.22 29.15 25.97
7 33.58 23.74 21.15
8 43.46 30.73 27.38
9 35.26 24.93 22.21
10 33.58 23.74 21.15
11 36.90 26.09 23.25
12 57.86 40.91 36.45
13 47.66 33.70 30.02
14 88.98 62.92 56.05
15 52.30 36.98 32.95
16 75.54 53.41 47.59
17 59.34 41.96 37.38
18 35.62 25.19 22.44
19 51.26 36.25 32.29
20 39.30 27.79 24.76
21 74.22 52.48 46.76
22 33.66 23.80 21.20
23 40.30 28.50 25.39
24 39.18 27.70 24.68
25 36.06 25.50 22.72
26 34.62 24.48 21.81
27 35.26 24.93 22.21
28 65.26 46.15 41.11
29 49.50 35.00 31.18
30 34.26 24.23 21.58

Distance calculated using only the independent variable

p1 <- p[,1]

p1_manhattan <- as.data.frame(as.matrix(dist(p1, method = "manhattan")))
rownames(p1_manhattan) <- paste0("   ", as.character(c(1:30)))
kbl(p1_manhattan) %>%
  kable_minimal(font_size = 10) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 0.00 1.41 1.01 1.94 0.33 0.44 1.00 0.36 1.16 0.97 0.64 0.00 0.24 0.58 1.70 0.34 1.86 0.72 0.15 0.52 2.14 0.95 1.37 1.33 1.20 1.12 0.75 1.98 1.63 1.09
2 1.41 0.00 0.40 0.53 1.08 0.97 0.41 1.05 0.25 0.44 0.77 1.41 1.17 1.99 0.29 1.75 0.45 0.69 1.26 0.89 0.73 0.46 0.04 0.08 0.21 0.29 0.66 0.57 0.22 0.32
3 1.01 0.40 0.00 0.93 0.68 0.57 0.01 0.65 0.15 0.04 0.37 1.01 0.77 1.59 0.69 1.35 0.85 0.29 0.86 0.49 1.13 0.06 0.36 0.32 0.19 0.11 0.26 0.97 0.62 0.08
4 1.94 0.53 0.93 0.00 1.61 1.50 0.94 1.58 0.78 0.97 1.30 1.94 1.70 2.52 0.24 2.28 0.08 1.22 1.79 1.42 0.20 0.99 0.57 0.61 0.74 0.82 1.19 0.04 0.31 0.85
5 0.33 1.08 0.68 1.61 0.00 0.11 0.67 0.03 0.83 0.64 0.31 0.33 0.09 0.91 1.37 0.67 1.53 0.39 0.18 0.19 1.81 0.62 1.04 1.00 0.87 0.79 0.42 1.65 1.30 0.76
6 0.44 0.97 0.57 1.50 0.11 0.00 0.56 0.08 0.72 0.53 0.20 0.44 0.20 1.02 1.26 0.78 1.42 0.28 0.29 0.08 1.70 0.51 0.93 0.89 0.76 0.68 0.31 1.54 1.19 0.65
7 1.00 0.41 0.01 0.94 0.67 0.56 0.00 0.64 0.16 0.03 0.36 1.00 0.76 1.58 0.70 1.34 0.86 0.28 0.85 0.48 1.14 0.05 0.37 0.33 0.20 0.12 0.25 0.98 0.63 0.09
8 0.36 1.05 0.65 1.58 0.03 0.08 0.64 0.00 0.80 0.61 0.28 0.36 0.12 0.94 1.34 0.70 1.50 0.36 0.21 0.16 1.78 0.59 1.01 0.97 0.84 0.76 0.39 1.62 1.27 0.73
9 1.16 0.25 0.15 0.78 0.83 0.72 0.16 0.80 0.00 0.19 0.52 1.16 0.92 1.74 0.54 1.50 0.70 0.44 1.01 0.64 0.98 0.21 0.21 0.17 0.04 0.04 0.41 0.82 0.47 0.07
10 0.97 0.44 0.04 0.97 0.64 0.53 0.03 0.61 0.19 0.00 0.33 0.97 0.73 1.55 0.73 1.31 0.89 0.25 0.82 0.45 1.17 0.02 0.40 0.36 0.23 0.15 0.22 1.01 0.66 0.12
11 0.64 0.77 0.37 1.30 0.31 0.20 0.36 0.28 0.52 0.33 0.00 0.64 0.40 1.22 1.06 0.98 1.22 0.08 0.49 0.12 1.50 0.31 0.73 0.69 0.56 0.48 0.11 1.34 0.99 0.45
12 0.00 1.41 1.01 1.94 0.33 0.44 1.00 0.36 1.16 0.97 0.64 0.00 0.24 0.58 1.70 0.34 1.86 0.72 0.15 0.52 2.14 0.95 1.37 1.33 1.20 1.12 0.75 1.98 1.63 1.09
13 0.24 1.17 0.77 1.70 0.09 0.20 0.76 0.12 0.92 0.73 0.40 0.24 0.00 0.82 1.46 0.58 1.62 0.48 0.09 0.28 1.90 0.71 1.13 1.09 0.96 0.88 0.51 1.74 1.39 0.85
14 0.58 1.99 1.59 2.52 0.91 1.02 1.58 0.94 1.74 1.55 1.22 0.58 0.82 0.00 2.28 0.24 2.44 1.30 0.73 1.10 2.72 1.53 1.95 1.91 1.78 1.70 1.33 2.56 2.21 1.67
15 1.70 0.29 0.69 0.24 1.37 1.26 0.70 1.34 0.54 0.73 1.06 1.70 1.46 2.28 0.00 2.04 0.16 0.98 1.55 1.18 0.44 0.75 0.33 0.37 0.50 0.58 0.95 0.28 0.07 0.61
16 0.34 1.75 1.35 2.28 0.67 0.78 1.34 0.70 1.50 1.31 0.98 0.34 0.58 0.24 2.04 0.00 2.20 1.06 0.49 0.86 2.48 1.29 1.71 1.67 1.54 1.46 1.09 2.32 1.97 1.43
17 1.86 0.45 0.85 0.08 1.53 1.42 0.86 1.50 0.70 0.89 1.22 1.86 1.62 2.44 0.16 2.20 0.00 1.14 1.71 1.34 0.28 0.91 0.49 0.53 0.66 0.74 1.11 0.12 0.23 0.77
18 0.72 0.69 0.29 1.22 0.39 0.28 0.28 0.36 0.44 0.25 0.08 0.72 0.48 1.30 0.98 1.06 1.14 0.00 0.57 0.20 1.42 0.23 0.65 0.61 0.48 0.40 0.03 1.26 0.91 0.37
19 0.15 1.26 0.86 1.79 0.18 0.29 0.85 0.21 1.01 0.82 0.49 0.15 0.09 0.73 1.55 0.49 1.71 0.57 0.00 0.37 1.99 0.80 1.22 1.18 1.05 0.97 0.60 1.83 1.48 0.94
20 0.52 0.89 0.49 1.42 0.19 0.08 0.48 0.16 0.64 0.45 0.12 0.52 0.28 1.10 1.18 0.86 1.34 0.20 0.37 0.00 1.62 0.43 0.85 0.81 0.68 0.60 0.23 1.46 1.11 0.57
21 2.14 0.73 1.13 0.20 1.81 1.70 1.14 1.78 0.98 1.17 1.50 2.14 1.90 2.72 0.44 2.48 0.28 1.42 1.99 1.62 0.00 1.19 0.77 0.81 0.94 1.02 1.39 0.16 0.51 1.05
22 0.95 0.46 0.06 0.99 0.62 0.51 0.05 0.59 0.21 0.02 0.31 0.95 0.71 1.53 0.75 1.29 0.91 0.23 0.80 0.43 1.19 0.00 0.42 0.38 0.25 0.17 0.20 1.03 0.68 0.14
23 1.37 0.04 0.36 0.57 1.04 0.93 0.37 1.01 0.21 0.40 0.73 1.37 1.13 1.95 0.33 1.71 0.49 0.65 1.22 0.85 0.77 0.42 0.00 0.04 0.17 0.25 0.62 0.61 0.26 0.28
24 1.33 0.08 0.32 0.61 1.00 0.89 0.33 0.97 0.17 0.36 0.69 1.33 1.09 1.91 0.37 1.67 0.53 0.61 1.18 0.81 0.81 0.38 0.04 0.00 0.13 0.21 0.58 0.65 0.30 0.24
25 1.20 0.21 0.19 0.74 0.87 0.76 0.20 0.84 0.04 0.23 0.56 1.20 0.96 1.78 0.50 1.54 0.66 0.48 1.05 0.68 0.94 0.25 0.17 0.13 0.00 0.08 0.45 0.78 0.43 0.11
26 1.12 0.29 0.11 0.82 0.79 0.68 0.12 0.76 0.04 0.15 0.48 1.12 0.88 1.70 0.58 1.46 0.74 0.40 0.97 0.60 1.02 0.17 0.25 0.21 0.08 0.00 0.37 0.86 0.51 0.03
27 0.75 0.66 0.26 1.19 0.42 0.31 0.25 0.39 0.41 0.22 0.11 0.75 0.51 1.33 0.95 1.09 1.11 0.03 0.60 0.23 1.39 0.20 0.62 0.58 0.45 0.37 0.00 1.23 0.88 0.34
28 1.98 0.57 0.97 0.04 1.65 1.54 0.98 1.62 0.82 1.01 1.34 1.98 1.74 2.56 0.28 2.32 0.12 1.26 1.83 1.46 0.16 1.03 0.61 0.65 0.78 0.86 1.23 0.00 0.35 0.89
29 1.63 0.22 0.62 0.31 1.30 1.19 0.63 1.27 0.47 0.66 0.99 1.63 1.39 2.21 0.07 1.97 0.23 0.91 1.48 1.11 0.51 0.68 0.26 0.30 0.43 0.51 0.88 0.35 0.00 0.54
30 1.09 0.32 0.08 0.85 0.76 0.65 0.09 0.73 0.07 0.12 0.45 1.09 0.85 1.67 0.61 1.43 0.77 0.37 0.94 0.57 1.05 0.14 0.28 0.24 0.11 0.03 0.34 0.89 0.54 0.00
p1_euclidean <- as.matrix(dist(p1, method = "euclidean"))
rownames(p1_euclidean) <- paste0("   ", as.character(c(1:30)))
kbl(p1_euclidean) %>%
  kable_minimal(font_size = 10) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 0.00 1.41 1.01 1.94 0.33 0.44 1.00 0.36 1.16 0.97 0.64 0.00 0.24 0.58 1.70 0.34 1.86 0.72 0.15 0.52 2.14 0.95 1.37 1.33 1.20 1.12 0.75 1.98 1.63 1.09
2 1.41 0.00 0.40 0.53 1.08 0.97 0.41 1.05 0.25 0.44 0.77 1.41 1.17 1.99 0.29 1.75 0.45 0.69 1.26 0.89 0.73 0.46 0.04 0.08 0.21 0.29 0.66 0.57 0.22 0.32
3 1.01 0.40 0.00 0.93 0.68 0.57 0.01 0.65 0.15 0.04 0.37 1.01 0.77 1.59 0.69 1.35 0.85 0.29 0.86 0.49 1.13 0.06 0.36 0.32 0.19 0.11 0.26 0.97 0.62 0.08
4 1.94 0.53 0.93 0.00 1.61 1.50 0.94 1.58 0.78 0.97 1.30 1.94 1.70 2.52 0.24 2.28 0.08 1.22 1.79 1.42 0.20 0.99 0.57 0.61 0.74 0.82 1.19 0.04 0.31 0.85
5 0.33 1.08 0.68 1.61 0.00 0.11 0.67 0.03 0.83 0.64 0.31 0.33 0.09 0.91 1.37 0.67 1.53 0.39 0.18 0.19 1.81 0.62 1.04 1.00 0.87 0.79 0.42 1.65 1.30 0.76
6 0.44 0.97 0.57 1.50 0.11 0.00 0.56 0.08 0.72 0.53 0.20 0.44 0.20 1.02 1.26 0.78 1.42 0.28 0.29 0.08 1.70 0.51 0.93 0.89 0.76 0.68 0.31 1.54 1.19 0.65
7 1.00 0.41 0.01 0.94 0.67 0.56 0.00 0.64 0.16 0.03 0.36 1.00 0.76 1.58 0.70 1.34 0.86 0.28 0.85 0.48 1.14 0.05 0.37 0.33 0.20 0.12 0.25 0.98 0.63 0.09
8 0.36 1.05 0.65 1.58 0.03 0.08 0.64 0.00 0.80 0.61 0.28 0.36 0.12 0.94 1.34 0.70 1.50 0.36 0.21 0.16 1.78 0.59 1.01 0.97 0.84 0.76 0.39 1.62 1.27 0.73
9 1.16 0.25 0.15 0.78 0.83 0.72 0.16 0.80 0.00 0.19 0.52 1.16 0.92 1.74 0.54 1.50 0.70 0.44 1.01 0.64 0.98 0.21 0.21 0.17 0.04 0.04 0.41 0.82 0.47 0.07
10 0.97 0.44 0.04 0.97 0.64 0.53 0.03 0.61 0.19 0.00 0.33 0.97 0.73 1.55 0.73 1.31 0.89 0.25 0.82 0.45 1.17 0.02 0.40 0.36 0.23 0.15 0.22 1.01 0.66 0.12
11 0.64 0.77 0.37 1.30 0.31 0.20 0.36 0.28 0.52 0.33 0.00 0.64 0.40 1.22 1.06 0.98 1.22 0.08 0.49 0.12 1.50 0.31 0.73 0.69 0.56 0.48 0.11 1.34 0.99 0.45
12 0.00 1.41 1.01 1.94 0.33 0.44 1.00 0.36 1.16 0.97 0.64 0.00 0.24 0.58 1.70 0.34 1.86 0.72 0.15 0.52 2.14 0.95 1.37 1.33 1.20 1.12 0.75 1.98 1.63 1.09
13 0.24 1.17 0.77 1.70 0.09 0.20 0.76 0.12 0.92 0.73 0.40 0.24 0.00 0.82 1.46 0.58 1.62 0.48 0.09 0.28 1.90 0.71 1.13 1.09 0.96 0.88 0.51 1.74 1.39 0.85
14 0.58 1.99 1.59 2.52 0.91 1.02 1.58 0.94 1.74 1.55 1.22 0.58 0.82 0.00 2.28 0.24 2.44 1.30 0.73 1.10 2.72 1.53 1.95 1.91 1.78 1.70 1.33 2.56 2.21 1.67
15 1.70 0.29 0.69 0.24 1.37 1.26 0.70 1.34 0.54 0.73 1.06 1.70 1.46 2.28 0.00 2.04 0.16 0.98 1.55 1.18 0.44 0.75 0.33 0.37 0.50 0.58 0.95 0.28 0.07 0.61
16 0.34 1.75 1.35 2.28 0.67 0.78 1.34 0.70 1.50 1.31 0.98 0.34 0.58 0.24 2.04 0.00 2.20 1.06 0.49 0.86 2.48 1.29 1.71 1.67 1.54 1.46 1.09 2.32 1.97 1.43
17 1.86 0.45 0.85 0.08 1.53 1.42 0.86 1.50 0.70 0.89 1.22 1.86 1.62 2.44 0.16 2.20 0.00 1.14 1.71 1.34 0.28 0.91 0.49 0.53 0.66 0.74 1.11 0.12 0.23 0.77
18 0.72 0.69 0.29 1.22 0.39 0.28 0.28 0.36 0.44 0.25 0.08 0.72 0.48 1.30 0.98 1.06 1.14 0.00 0.57 0.20 1.42 0.23 0.65 0.61 0.48 0.40 0.03 1.26 0.91 0.37
19 0.15 1.26 0.86 1.79 0.18 0.29 0.85 0.21 1.01 0.82 0.49 0.15 0.09 0.73 1.55 0.49 1.71 0.57 0.00 0.37 1.99 0.80 1.22 1.18 1.05 0.97 0.60 1.83 1.48 0.94
20 0.52 0.89 0.49 1.42 0.19 0.08 0.48 0.16 0.64 0.45 0.12 0.52 0.28 1.10 1.18 0.86 1.34 0.20 0.37 0.00 1.62 0.43 0.85 0.81 0.68 0.60 0.23 1.46 1.11 0.57
21 2.14 0.73 1.13 0.20 1.81 1.70 1.14 1.78 0.98 1.17 1.50 2.14 1.90 2.72 0.44 2.48 0.28 1.42 1.99 1.62 0.00 1.19 0.77 0.81 0.94 1.02 1.39 0.16 0.51 1.05
22 0.95 0.46 0.06 0.99 0.62 0.51 0.05 0.59 0.21 0.02 0.31 0.95 0.71 1.53 0.75 1.29 0.91 0.23 0.80 0.43 1.19 0.00 0.42 0.38 0.25 0.17 0.20 1.03 0.68 0.14
23 1.37 0.04 0.36 0.57 1.04 0.93 0.37 1.01 0.21 0.40 0.73 1.37 1.13 1.95 0.33 1.71 0.49 0.65 1.22 0.85 0.77 0.42 0.00 0.04 0.17 0.25 0.62 0.61 0.26 0.28
24 1.33 0.08 0.32 0.61 1.00 0.89 0.33 0.97 0.17 0.36 0.69 1.33 1.09 1.91 0.37 1.67 0.53 0.61 1.18 0.81 0.81 0.38 0.04 0.00 0.13 0.21 0.58 0.65 0.30 0.24
25 1.20 0.21 0.19 0.74 0.87 0.76 0.20 0.84 0.04 0.23 0.56 1.20 0.96 1.78 0.50 1.54 0.66 0.48 1.05 0.68 0.94 0.25 0.17 0.13 0.00 0.08 0.45 0.78 0.43 0.11
26 1.12 0.29 0.11 0.82 0.79 0.68 0.12 0.76 0.04 0.15 0.48 1.12 0.88 1.70 0.58 1.46 0.74 0.40 0.97 0.60 1.02 0.17 0.25 0.21 0.08 0.00 0.37 0.86 0.51 0.03
27 0.75 0.66 0.26 1.19 0.42 0.31 0.25 0.39 0.41 0.22 0.11 0.75 0.51 1.33 0.95 1.09 1.11 0.03 0.60 0.23 1.39 0.20 0.62 0.58 0.45 0.37 0.00 1.23 0.88 0.34
28 1.98 0.57 0.97 0.04 1.65 1.54 0.98 1.62 0.82 1.01 1.34 1.98 1.74 2.56 0.28 2.32 0.12 1.26 1.83 1.46 0.16 1.03 0.61 0.65 0.78 0.86 1.23 0.00 0.35 0.89
29 1.63 0.22 0.62 0.31 1.30 1.19 0.63 1.27 0.47 0.66 0.99 1.63 1.39 2.21 0.07 1.97 0.23 0.91 1.48 1.11 0.51 0.68 0.26 0.30 0.43 0.51 0.88 0.35 0.00 0.54
30 1.09 0.32 0.08 0.85 0.76 0.65 0.09 0.73 0.07 0.12 0.45 1.09 0.85 1.67 0.61 1.43 0.77 0.37 0.94 0.57 1.05 0.14 0.28 0.24 0.11 0.03 0.34 0.89 0.54 0.00
p1_minkowski_p3 <- as.matrix(dist(p1, method = "minkowski", p=3))
rownames(p1_minkowski_p3) <- paste0("   ", as.character(c(1:30)))
kbl(p1_minkowski_p3) %>%
  kable_minimal(font_size = 10) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 0.00 1.41 1.01 1.94 0.33 0.44 1.00 0.36 1.16 0.97 0.64 0.00 0.24 0.58 1.70 0.34 1.86 0.72 0.15 0.52 2.14 0.95 1.37 1.33 1.20 1.12 0.75 1.98 1.63 1.09
2 1.41 0.00 0.40 0.53 1.08 0.97 0.41 1.05 0.25 0.44 0.77 1.41 1.17 1.99 0.29 1.75 0.45 0.69 1.26 0.89 0.73 0.46 0.04 0.08 0.21 0.29 0.66 0.57 0.22 0.32
3 1.01 0.40 0.00 0.93 0.68 0.57 0.01 0.65 0.15 0.04 0.37 1.01 0.77 1.59 0.69 1.35 0.85 0.29 0.86 0.49 1.13 0.06 0.36 0.32 0.19 0.11 0.26 0.97 0.62 0.08
4 1.94 0.53 0.93 0.00 1.61 1.50 0.94 1.58 0.78 0.97 1.30 1.94 1.70 2.52 0.24 2.28 0.08 1.22 1.79 1.42 0.20 0.99 0.57 0.61 0.74 0.82 1.19 0.04 0.31 0.85
5 0.33 1.08 0.68 1.61 0.00 0.11 0.67 0.03 0.83 0.64 0.31 0.33 0.09 0.91 1.37 0.67 1.53 0.39 0.18 0.19 1.81 0.62 1.04 1.00 0.87 0.79 0.42 1.65 1.30 0.76
6 0.44 0.97 0.57 1.50 0.11 0.00 0.56 0.08 0.72 0.53 0.20 0.44 0.20 1.02 1.26 0.78 1.42 0.28 0.29 0.08 1.70 0.51 0.93 0.89 0.76 0.68 0.31 1.54 1.19 0.65
7 1.00 0.41 0.01 0.94 0.67 0.56 0.00 0.64 0.16 0.03 0.36 1.00 0.76 1.58 0.70 1.34 0.86 0.28 0.85 0.48 1.14 0.05 0.37 0.33 0.20 0.12 0.25 0.98 0.63 0.09
8 0.36 1.05 0.65 1.58 0.03 0.08 0.64 0.00 0.80 0.61 0.28 0.36 0.12 0.94 1.34 0.70 1.50 0.36 0.21 0.16 1.78 0.59 1.01 0.97 0.84 0.76 0.39 1.62 1.27 0.73
9 1.16 0.25 0.15 0.78 0.83 0.72 0.16 0.80 0.00 0.19 0.52 1.16 0.92 1.74 0.54 1.50 0.70 0.44 1.01 0.64 0.98 0.21 0.21 0.17 0.04 0.04 0.41 0.82 0.47 0.07
10 0.97 0.44 0.04 0.97 0.64 0.53 0.03 0.61 0.19 0.00 0.33 0.97 0.73 1.55 0.73 1.31 0.89 0.25 0.82 0.45 1.17 0.02 0.40 0.36 0.23 0.15 0.22 1.01 0.66 0.12
11 0.64 0.77 0.37 1.30 0.31 0.20 0.36 0.28 0.52 0.33 0.00 0.64 0.40 1.22 1.06 0.98 1.22 0.08 0.49 0.12 1.50 0.31 0.73 0.69 0.56 0.48 0.11 1.34 0.99 0.45
12 0.00 1.41 1.01 1.94 0.33 0.44 1.00 0.36 1.16 0.97 0.64 0.00 0.24 0.58 1.70 0.34 1.86 0.72 0.15 0.52 2.14 0.95 1.37 1.33 1.20 1.12 0.75 1.98 1.63 1.09
13 0.24 1.17 0.77 1.70 0.09 0.20 0.76 0.12 0.92 0.73 0.40 0.24 0.00 0.82 1.46 0.58 1.62 0.48 0.09 0.28 1.90 0.71 1.13 1.09 0.96 0.88 0.51 1.74 1.39 0.85
14 0.58 1.99 1.59 2.52 0.91 1.02 1.58 0.94 1.74 1.55 1.22 0.58 0.82 0.00 2.28 0.24 2.44 1.30 0.73 1.10 2.72 1.53 1.95 1.91 1.78 1.70 1.33 2.56 2.21 1.67
15 1.70 0.29 0.69 0.24 1.37 1.26 0.70 1.34 0.54 0.73 1.06 1.70 1.46 2.28 0.00 2.04 0.16 0.98 1.55 1.18 0.44 0.75 0.33 0.37 0.50 0.58 0.95 0.28 0.07 0.61
16 0.34 1.75 1.35 2.28 0.67 0.78 1.34 0.70 1.50 1.31 0.98 0.34 0.58 0.24 2.04 0.00 2.20 1.06 0.49 0.86 2.48 1.29 1.71 1.67 1.54 1.46 1.09 2.32 1.97 1.43
17 1.86 0.45 0.85 0.08 1.53 1.42 0.86 1.50 0.70 0.89 1.22 1.86 1.62 2.44 0.16 2.20 0.00 1.14 1.71 1.34 0.28 0.91 0.49 0.53 0.66 0.74 1.11 0.12 0.23 0.77
18 0.72 0.69 0.29 1.22 0.39 0.28 0.28 0.36 0.44 0.25 0.08 0.72 0.48 1.30 0.98 1.06 1.14 0.00 0.57 0.20 1.42 0.23 0.65 0.61 0.48 0.40 0.03 1.26 0.91 0.37
19 0.15 1.26 0.86 1.79 0.18 0.29 0.85 0.21 1.01 0.82 0.49 0.15 0.09 0.73 1.55 0.49 1.71 0.57 0.00 0.37 1.99 0.80 1.22 1.18 1.05 0.97 0.60 1.83 1.48 0.94
20 0.52 0.89 0.49 1.42 0.19 0.08 0.48 0.16 0.64 0.45 0.12 0.52 0.28 1.10 1.18 0.86 1.34 0.20 0.37 0.00 1.62 0.43 0.85 0.81 0.68 0.60 0.23 1.46 1.11 0.57
21 2.14 0.73 1.13 0.20 1.81 1.70 1.14 1.78 0.98 1.17 1.50 2.14 1.90 2.72 0.44 2.48 0.28 1.42 1.99 1.62 0.00 1.19 0.77 0.81 0.94 1.02 1.39 0.16 0.51 1.05
22 0.95 0.46 0.06 0.99 0.62 0.51 0.05 0.59 0.21 0.02 0.31 0.95 0.71 1.53 0.75 1.29 0.91 0.23 0.80 0.43 1.19 0.00 0.42 0.38 0.25 0.17 0.20 1.03 0.68 0.14
23 1.37 0.04 0.36 0.57 1.04 0.93 0.37 1.01 0.21 0.40 0.73 1.37 1.13 1.95 0.33 1.71 0.49 0.65 1.22 0.85 0.77 0.42 0.00 0.04 0.17 0.25 0.62 0.61 0.26 0.28
24 1.33 0.08 0.32 0.61 1.00 0.89 0.33 0.97 0.17 0.36 0.69 1.33 1.09 1.91 0.37 1.67 0.53 0.61 1.18 0.81 0.81 0.38 0.04 0.00 0.13 0.21 0.58 0.65 0.30 0.24
25 1.20 0.21 0.19 0.74 0.87 0.76 0.20 0.84 0.04 0.23 0.56 1.20 0.96 1.78 0.50 1.54 0.66 0.48 1.05 0.68 0.94 0.25 0.17 0.13 0.00 0.08 0.45 0.78 0.43 0.11
26 1.12 0.29 0.11 0.82 0.79 0.68 0.12 0.76 0.04 0.15 0.48 1.12 0.88 1.70 0.58 1.46 0.74 0.40 0.97 0.60 1.02 0.17 0.25 0.21 0.08 0.00 0.37 0.86 0.51 0.03
27 0.75 0.66 0.26 1.19 0.42 0.31 0.25 0.39 0.41 0.22 0.11 0.75 0.51 1.33 0.95 1.09 1.11 0.03 0.60 0.23 1.39 0.20 0.62 0.58 0.45 0.37 0.00 1.23 0.88 0.34
28 1.98 0.57 0.97 0.04 1.65 1.54 0.98 1.62 0.82 1.01 1.34 1.98 1.74 2.56 0.28 2.32 0.12 1.26 1.83 1.46 0.16 1.03 0.61 0.65 0.78 0.86 1.23 0.00 0.35 0.89
29 1.63 0.22 0.62 0.31 1.30 1.19 0.63 1.27 0.47 0.66 0.99 1.63 1.39 2.21 0.07 1.97 0.23 0.91 1.48 1.11 0.51 0.68 0.26 0.30 0.43 0.51 0.88 0.35 0.00 0.54
30 1.09 0.32 0.08 0.85 0.76 0.65 0.09 0.73 0.07 0.12 0.45 1.09 0.85 1.67 0.61 1.43 0.77 0.37 0.94 0.57 1.05 0.14 0.28 0.24 0.11 0.03 0.34 0.89 0.54 0.00
kbl(data.frame(rowSums(p1_manhattan), rowSums(p1_euclidean), rowSums(p1_minkowski_p3))) %>%
  kable_minimal(full_width = F)
rowSums.p1_manhattan. rowSums.p1_euclidean. rowSums.p1_minkowski_p3.
1 28.93 28.93 28.93
2 20.79 20.79 20.79
3 16.81 16.81 16.81
4 31.59 31.59 31.59
5 22.21 22.21 22.21
6 20.61 20.61 20.61
7 16.79 16.79 16.79
8 21.73 21.73 21.73
9 17.63 17.63 17.63
10 16.79 16.79 16.79
11 18.45 18.45 18.45
12 28.93 28.93 28.93
13 23.83 23.83 23.83
14 44.49 44.49 44.49
15 26.15 26.15 26.15
16 37.77 37.77 37.77
17 29.67 29.67 29.67
18 17.81 17.81 17.81
19 25.63 25.63 25.63
20 19.65 19.65 19.65
21 37.11 37.11 37.11
22 16.83 16.83 16.83
23 20.15 20.15 20.15
24 19.59 19.59 19.59
25 18.03 18.03 18.03
26 17.31 17.31 17.31
27 17.63 17.63 17.63
28 32.63 32.63 32.63
29 24.75 24.75 24.75
30 17.13 17.13 17.13

Ex. 2

Now use a higher-dimensional data set mtcars to carry out the same three distance metrics in the previous question and discuss the results.

cars <- mtcars
cars
c_manhattan <- as.data.frame(as.matrix(dist(cars, method = "manhattan")))
kbl(c_manhattan) %>%
  kable_paper(bootstrap_options = "striped", full_width = F, font_size = 11)
Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout Valiant Duster 360 Merc 240D Merc 230 Merc 280 Merc 280C Merc 450SE Merc 450SL Merc 450SLC Cadillac Fleetwood Lincoln Continental Chrysler Imperial Fiat 128 Honda Civic Toyota Corolla Toyota Corona Dodge Challenger AMC Javelin Camaro Z28 Pontiac Firebird Fiat X1-9 Porsche 914-2 Lotus Europa Ford Pantera L Ferrari Dino Maserati Bora Volvo 142E
Mazda RX4 0.000 0.815 79.30 108.80 275.43 84.64 347.96 75.02 48.99 27.08 29.08 198.62 197.58 200.13 426.72 424.66 414.65 146.310 160.79 157.34 65.31 211.95 198.21 339.14 315.44 140.605 69.95 84.98 356.03 85.69 382.2 47.91
Mazda RX4 Wag 0.815 0.000 79.00 107.98 274.62 83.83 348.26 74.20 48.17 26.27 28.27 197.81 196.76 199.31 425.90 423.85 413.84 146.005 160.49 157.04 65.00 211.44 197.39 339.44 314.62 140.300 70.28 84.91 356.33 86.20 382.5 47.28
Datsun 710 79.300 78.995 0.00 174.90 349.51 141.54 427.16 75.72 41.99 100.70 102.08 273.94 272.50 274.25 502.88 501.14 491.94 67.110 83.78 78.14 21.09 286.33 271.73 418.34 389.45 61.405 23.17 45.10 435.33 134.89 461.4 32.13
Hornet 4 Drive 108.795 107.980 174.90 0.00 176.41 42.65 254.19 167.50 141.97 111.81 112.61 100.70 99.27 101.02 329.64 327.91 319.00 240.345 258.67 251.38 154.94 113.09 98.63 246.41 216.22 235.720 173.47 185.83 267.73 193.62 293.1 145.31
Hornet Sportabout 275.430 274.615 349.51 176.41 0.00 213.21 77.77 341.77 316.24 252.95 253.95 93.59 92.55 95.10 155.29 153.23 143.38 416.620 431.11 427.65 331.21 70.82 84.78 89.99 41.01 410.915 340.90 349.27 109.76 227.66 234.6 317.90
Valiant 84.640 83.825 141.54 42.65 213.21 0.00 289.74 133.02 107.05 83.60 82.20 136.24 134.80 136.55 364.90 363.30 354.56 206.930 225.31 217.10 120.44 148.01 134.24 281.96 253.97 202.365 140.11 162.48 303.77 166.87 328.6 119.95
Duster 360 347.960 348.265 427.16 254.19 77.77 289.74 0.00 419.42 393.89 326.60 325.80 154.50 155.26 153.61 160.00 137.94 98.78 494.270 508.75 505.31 408.87 141.73 155.56 12.22 118.52 488.565 417.91 426.68 35.25 298.95 158.3 395.55
Merc 240D 75.020 74.205 75.72 167.50 341.77 133.02 419.42 0.00 43.67 93.28 94.08 266.20 264.76 266.51 495.14 493.40 484.19 83.910 92.30 92.08 67.25 278.59 263.99 410.68 381.71 79.345 65.09 115.46 429.95 133.39 455.6 78.93
Merc 230 48.990 48.175 41.99 141.97 316.24 107.05 393.89 43.67 0.00 67.29 68.09 240.67 239.23 240.98 469.61 467.87 458.67 107.240 123.62 117.42 29.80 253.06 238.46 385.07 356.19 102.675 38.42 81.09 403.92 104.38 430.1 41.06
Merc 280 27.080 26.265 100.70 111.81 252.95 83.60 326.60 93.28 67.29 0.00 2.00 175.38 173.94 175.69 402.32 400.58 391.38 167.670 182.16 178.71 84.70 189.77 175.18 317.78 292.89 161.965 96.51 103.18 337.17 83.87 362.8 68.95
Merc 280C 29.080 28.265 102.08 112.61 253.95 82.20 325.80 94.08 68.09 2.00 0.00 174.58 173.14 174.89 401.52 399.78 390.57 168.470 183.72 179.50 85.50 188.97 174.38 316.98 294.89 162.765 98.51 105.18 336.37 85.87 362.0 70.35
Merc 450SE 198.620 197.805 273.94 100.70 93.59 136.24 154.50 266.20 240.67 175.38 174.58 0.00 1.44 2.09 230.10 228.04 218.35 341.050 355.54 352.08 255.65 75.49 61.22 146.18 133.59 335.345 266.09 274.46 168.75 150.85 193.4 242.33
Merc 450SL 197.580 196.765 272.50 99.27 92.55 134.80 155.26 264.76 239.23 173.94 173.14 1.44 0.00 2.55 231.14 229.08 219.75 339.610 354.10 350.64 254.21 76.25 61.98 147.16 132.78 333.905 265.05 273.42 169.51 149.81 194.1 240.89
Merc 450SLC 200.130 199.315 274.25 101.02 95.10 136.55 153.61 266.51 240.98 175.69 174.89 2.09 2.55 0.00 228.63 226.89 218.00 341.360 355.85 352.39 255.96 75.20 60.33 145.41 135.22 335.655 267.60 275.97 169.06 152.36 192.5 242.64
Cadillac Fleetwood 426.720 425.905 502.88 329.64 155.29 364.90 160.00 495.14 469.61 402.32 401.52 230.10 231.14 228.63 0.00 22.40 62.26 569.990 584.48 581.02 484.58 219.11 232.51 169.68 115.28 564.285 496.19 504.56 195.25 378.95 318.3 471.27
Lincoln Continental 424.664 423.849 501.14 327.91 153.23 363.30 137.94 493.40 467.87 400.58 399.78 228.04 229.08 226.89 22.40 0.00 40.01 568.254 582.74 579.29 482.85 217.19 230.46 147.62 113.23 562.549 494.13 502.50 173.19 376.89 296.2 469.53
Chrysler Imperial 414.655 413.840 491.94 319.00 143.38 354.56 98.78 484.19 458.67 391.38 390.57 218.35 219.75 218.00 62.26 40.01 0.00 559.045 573.53 570.08 473.64 207.65 220.61 110.42 103.52 553.340 484.12 492.49 133.19 366.88 256.2 460.32
Fiat 128 146.310 146.005 67.11 240.34 416.62 206.93 494.27 83.91 107.24 167.67 168.47 341.05 339.61 341.36 569.99 568.25 559.04 0.000 22.39 11.04 86.48 353.44 338.83 485.45 456.56 6.235 79.18 70.97 501.98 202.00 528.5 98.78
Honda Civic 160.795 160.490 83.78 258.67 431.11 225.31 508.75 92.30 123.62 182.16 183.72 355.54 354.10 355.85 584.48 582.74 573.53 22.385 0.00 24.41 104.87 367.93 353.32 499.94 471.05 22.950 92.84 84.28 516.18 216.49 543.0 113.36
Toyota Corolla 157.345 157.040 78.14 251.38 427.65 217.10 505.31 92.08 117.42 178.71 179.50 352.08 350.64 352.39 581.02 579.29 570.08 11.035 24.41 0.00 96.66 364.48 349.87 496.49 467.60 16.740 89.81 81.27 512.74 213.03 539.5 109.75
Toyota Corona 65.305 65.000 21.09 154.94 331.21 120.44 408.87 67.25 29.80 84.70 85.50 255.65 254.21 255.96 484.58 482.85 473.64 86.485 104.87 96.66 0.00 268.04 253.43 400.11 371.16 81.920 20.07 58.03 421.33 120.59 447.1 18.14
Dodge Challenger 211.950 211.435 286.33 113.09 70.82 148.01 141.73 278.59 253.06 189.77 188.97 75.49 76.25 75.20 219.11 217.19 207.65 353.440 367.93 364.48 268.04 0.00 15.21 133.95 111.53 347.735 277.42 285.85 156.48 214.18 214.6 254.72
AMC Javelin 198.205 197.390 271.73 98.63 84.78 134.24 155.56 263.99 238.46 175.18 174.38 61.22 61.98 60.33 232.51 230.46 220.61 338.835 353.32 349.87 253.43 15.21 0.00 147.78 125.73 333.130 263.68 272.04 170.74 200.44 200.4 240.12
Camaro Z28 339.140 339.445 418.34 246.41 89.99 281.96 12.22 410.68 385.07 317.78 316.98 146.18 147.16 145.41 169.68 147.62 110.42 485.450 499.94 496.49 400.11 133.95 147.78 0.00 130.19 479.745 409.09 417.86 27.57 289.67 149.0 386.73
Pontiac Firebird 315.435 314.620 389.45 216.22 41.01 253.97 118.52 381.71 356.19 292.89 294.89 133.59 132.78 135.22 115.28 113.23 103.52 456.565 471.05 467.60 371.16 111.53 125.73 130.19 0.00 450.860 380.90 389.27 150.76 267.67 275.4 357.85
Fiat X1-9 140.605 140.300 61.41 235.72 410.92 202.37 488.56 79.34 102.67 161.97 162.76 335.35 333.90 335.65 564.28 562.55 553.34 6.235 22.95 16.74 81.92 347.74 333.13 479.75 450.86 0.000 73.36 70.93 496.27 196.29 522.8 93.08
Porsche 914-2 69.950 70.285 23.17 173.47 340.90 140.11 417.91 65.09 38.42 96.51 98.51 266.09 265.05 267.60 496.19 494.13 484.12 79.180 92.84 89.81 20.07 277.42 263.68 409.09 380.90 73.355 0.00 54.09 423.34 123.64 450.1 28.16
Lotus Europa 84.977 84.912 45.10 185.83 349.27 162.48 426.68 115.46 81.09 103.18 105.18 274.46 273.42 275.97 504.56 502.50 492.49 70.967 84.28 81.27 58.03 285.85 272.04 417.86 389.27 70.932 54.09 0.00 433.01 132.41 458.9 43.21
Ford Pantera L 356.030 356.335 435.33 267.73 109.76 303.77 35.25 429.95 403.92 337.17 336.37 168.75 169.51 169.06 195.25 173.19 133.19 501.980 516.18 512.74 421.33 156.48 170.74 27.57 150.76 496.275 423.34 433.01 0.00 304.90 127.0 403.20
Ferrari Dino 85.690 86.205 134.89 193.62 227.66 166.87 298.95 133.39 104.38 83.87 85.87 150.85 149.81 152.36 378.95 376.89 366.88 202.000 216.49 213.03 120.59 214.18 200.44 289.67 267.67 196.295 123.64 132.41 304.90 0.00 326.5 103.30
Maserati Bora 382.170 382.475 461.37 293.06 234.64 328.61 158.27 455.63 430.10 362.81 362.01 193.37 194.13 192.48 318.27 296.21 256.20 528.480 542.97 539.51 447.07 214.60 200.43 148.97 275.38 522.775 450.12 458.89 126.98 326.48 0.0 429.76
Volvo 142E 47.910 47.285 32.13 145.31 317.90 119.95 395.55 78.93 41.06 68.95 70.35 242.33 240.89 242.64 471.27 469.53 460.32 98.780 113.36 109.75 18.14 254.72 240.12 386.73 357.85 93.075 28.16 43.21 403.20 103.30 429.8 0.00
c_euclidean <- as.matrix(dist(cars, method = "euclidean"))
kbl(c_euclidean) %>%
  kable_paper(bootstrap_options = "striped", full_width = F, font_size = 11)
Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout Valiant Duster 360 Merc 240D Merc 230 Merc 280 Merc 280C Merc 450SE Merc 450SL Merc 450SLC Cadillac Fleetwood Lincoln Continental Chrysler Imperial Fiat 128 Honda Civic Toyota Corolla Toyota Corona Dodge Challenger AMC Javelin Camaro Z28 Pontiac Firebird Fiat X1-9 Porsche 914-2 Lotus Europa Ford Pantera L Ferrari Dino Maserati Bora Volvo 142E
Mazda RX4 0.0000 0.6153 54.91 98.11 210.34 65.47 241.41 50.15 25.47 15.364 15.672 135.4307 135.4014 135.480 326.34 318.05 304.72 93.268 102.83 100.604 42.307 163.12 149.60 233.22 248.68 92.505 44.403 65.73 245.42 66.77 265.65 39.19
Mazda RX4 Wag 0.6153 0.0000 54.89 98.10 210.34 65.44 241.41 50.11 25.33 15.296 15.584 135.4255 135.3960 135.472 326.34 318.04 304.72 93.253 102.82 100.589 42.266 163.11 149.60 233.22 248.68 92.494 44.407 65.74 245.43 66.78 265.65 39.16
Datsun 710 54.9086 54.8915 0.00 150.99 265.08 117.75 294.48 49.66 33.18 66.936 67.026 189.1955 189.1632 189.234 381.09 372.80 359.30 40.993 52.77 47.654 12.966 217.78 204.32 286.00 303.36 39.882 13.136 25.09 297.29 90.24 309.77 20.69
Hornet 4 Drive 98.1125 98.0959 150.99 0.00 121.03 33.55 169.43 121.27 118.24 91.422 91.461 72.4964 72.4314 72.572 234.44 227.97 218.15 184.969 191.55 192.671 138.530 72.44 61.36 163.66 156.22 184.447 139.158 163.24 180.11 130.55 229.34 137.04
Hornet Sportabout 210.3374 210.3359 265.08 121.03 0.00 152.12 70.18 241.51 233.49 199.334 199.341 84.3888 84.3684 84.433 116.28 108.06 97.20 302.038 310.03 309.558 252.333 48.98 61.43 70.97 40.01 301.567 254.145 272.36 89.59 215.07 170.71 248.01
Valiant 65.4718 65.4392 117.75 33.55 152.12 0.00 194.61 89.59 85.01 60.291 60.266 90.6970 90.6770 90.709 266.63 259.63 248.77 152.115 158.96 159.830 105.288 103.43 91.04 187.85 188.53 151.438 106.059 130.82 203.02 106.57 242.44 104.19
Duster 360 241.4076 241.4089 294.48 169.43 70.18 194.61 0.00 281.30 265.88 227.900 227.881 106.4084 106.4321 106.401 119.02 104.51 81.43 333.979 344.05 341.022 282.051 103.90 110.31 10.08 80.81 333.484 285.199 296.46 21.27 226.20 107.72 275.14
Merc 240D 50.1533 50.1146 49.66 121.27 241.51 89.59 281.30 0.00 33.69 64.775 64.890 175.1620 175.1190 175.212 355.66 348.99 338.20 68.611 72.00 76.281 44.085 192.86 180.55 273.84 277.46 67.916 39.447 72.90 287.52 113.30 313.86 53.68
Merc 230 25.4683 25.3285 33.18 118.24 233.49 85.01 265.88 33.69 0.00 39.299 39.387 159.8180 159.7761 159.850 349.28 341.32 328.43 69.313 78.54 76.773 21.096 185.83 172.53 257.75 271.39 68.556 22.118 50.11 269.98 80.66 288.88 24.69
Merc 280 15.3642 15.2957 66.94 91.42 199.33 60.29 227.90 64.78 39.30 0.000 1.523 122.3642 122.3444 122.394 315.39 306.68 292.71 106.505 116.73 113.629 54.364 152.89 139.15 219.55 238.17 105.741 57.646 74.14 231.41 56.84 250.59 48.81
Merc 280C 15.6725 15.5838 67.03 91.46 199.34 60.27 227.88 64.89 39.39 1.523 0.000 122.3461 122.3355 122.359 315.36 306.64 292.70 106.683 116.87 113.812 54.426 152.87 139.12 219.53 238.18 105.856 57.847 74.38 231.40 56.90 250.58 48.89
Merc 450SE 135.4307 135.4255 189.20 72.50 84.39 90.70 106.41 175.16 159.82 122.364 122.346 0.0000 0.9826 1.373 197.88 187.60 171.66 228.325 238.01 235.518 176.602 51.80 41.21 98.72 124.34 227.763 179.503 193.31 112.82 131.03 157.16 170.45
Merc 450SL 135.4014 135.3960 189.16 72.43 84.37 90.68 106.43 175.12 159.78 122.344 122.335 0.9826 0.0000 2.138 197.92 187.63 171.67 228.259 237.96 235.448 176.573 51.82 41.24 98.76 124.32 227.717 179.455 193.24 112.83 131.01 157.18 170.42
Merc 450SLC 135.4795 135.4723 189.23 72.57 84.43 90.71 106.40 175.21 159.85 122.394 122.359 1.3726 2.1383 0.000 197.85 187.57 171.66 228.405 238.08 235.602 176.631 51.80 41.19 98.70 124.37 227.818 179.572 193.40 112.83 131.07 157.17 170.48
Cadillac Fleetwood 326.3396 326.3355 381.09 234.44 116.28 266.63 119.02 355.66 349.28 315.390 315.356 197.8843 197.9154 197.853 0.00 15.62 40.84 417.769 425.33 425.345 368.320 163.63 176.86 128.46 78.54 417.249 370.096 388.54 134.81 328.54 214.94 364.10
Lincoln Continental 318.0470 318.0429 372.80 227.97 108.06 259.63 104.51 348.99 341.32 306.676 306.641 187.5997 187.6331 187.567 15.62 0.00 25.37 410.021 417.97 417.543 360.027 156.28 169.09 114.09 72.69 409.500 362.014 379.47 119.72 317.71 199.34 355.40
Chrysler Imperial 304.7203 304.7169 359.30 218.15 97.20 248.77 81.43 338.20 328.43 292.715 292.699 171.6601 171.6743 171.656 40.84 25.37 0.00 397.228 405.82 404.634 346.572 145.92 157.81 91.29 68.20 396.760 348.847 364.60 95.38 300.16 174.29 341.29
Fiat 128 93.2680 93.2531 40.99 184.97 302.04 152.12 333.98 68.61 69.31 106.505 106.683 228.3248 228.2592 228.405 417.77 410.02 397.23 0.000 14.56 7.832 52.880 254.24 241.12 325.66 339.59 5.147 49.064 49.91 337.16 128.40 349.53 61.33
Honda Civic 102.8308 102.8239 52.77 191.55 310.03 158.96 344.05 72.00 78.54 116.728 116.871 238.0142 237.9588 238.083 425.33 417.97 405.82 14.559 0.00 14.348 63.899 261.85 248.96 335.89 347.07 14.781 59.459 64.05 347.83 141.70 362.16 73.38
Toyota Corolla 100.6040 100.5888 47.65 192.67 309.56 159.83 341.02 76.28 76.77 113.629 113.812 235.5184 235.4482 235.602 425.34 417.54 404.63 7.832 14.35 0.000 59.845 261.83 248.69 332.66 347.17 10.392 56.324 53.88 343.99 133.47 355.26 67.72
Toyota Corona 42.3075 42.2659 12.97 138.53 252.33 105.29 282.05 44.09 21.10 54.364 54.426 176.6021 176.5727 176.631 368.32 360.03 346.57 52.880 63.90 59.845 0.000 205.03 191.56 273.63 290.62 51.841 8.654 31.25 285.13 82.24 299.19 12.25
Dodge Challenger 163.1151 163.1134 217.78 72.44 48.98 103.43 103.90 192.86 185.83 152.893 152.872 51.8009 51.8243 51.801 163.63 156.28 145.92 254.237 261.85 261.834 205.035 0.00 14.02 100.30 85.81 253.662 206.645 226.50 118.75 174.93 185.91 201.37
AMC Javelin 149.6047 149.6015 204.32 61.36 61.43 91.04 110.31 180.55 172.53 139.146 139.118 41.2080 41.2412 41.193 176.86 169.09 157.81 241.120 248.96 248.692 191.558 14.02 0.00 105.61 99.28 240.527 193.308 212.76 123.38 161.11 185.16 187.70
Camaro Z28 233.2229 233.2249 286.00 163.66 70.97 187.85 10.08 273.84 257.75 219.552 219.528 98.7203 98.7567 98.704 128.46 114.09 91.29 325.664 335.89 332.659 273.632 100.30 105.61 0.00 86.27 325.149 276.892 287.62 19.36 216.75 102.59 266.53
Pontiac Firebird 248.6780 248.6762 303.36 156.22 40.01 188.53 80.81 277.46 271.39 238.173 238.181 124.3369 124.3204 124.373 78.54 72.69 68.20 339.586 347.07 347.167 290.624 85.81 99.28 86.27 0.00 339.140 292.165 311.39 101.74 255.06 188.32 286.75
Fiat X1-9 92.5048 92.4940 39.88 184.45 301.57 151.44 333.48 67.92 68.56 105.741 105.856 227.7628 227.7173 227.818 417.25 409.50 396.76 5.147 14.78 10.392 51.841 253.66 240.53 325.15 339.14 0.000 48.377 49.84 336.70 127.82 349.12 60.41
Porsche 914-2 44.4034 44.4074 13.14 139.16 254.15 106.06 285.20 39.45 22.12 57.646 57.847 179.5034 179.4551 179.572 370.10 362.01 348.85 49.064 59.46 56.324 8.654 206.65 193.31 276.89 292.16 48.377 0.000 33.77 288.59 87.91 303.92 18.76
Lotus Europa 65.7328 65.7363 25.09 163.24 272.36 130.82 296.46 72.90 50.11 74.144 74.382 193.3074 193.2408 193.397 388.54 379.47 364.60 49.911 64.05 53.885 31.254 226.50 212.76 287.62 311.39 49.841 33.768 0.00 297.54 80.46 303.28 27.81
Ford Pantera L 245.4247 245.4294 297.29 180.11 89.59 203.02 21.27 287.52 269.98 231.408 231.402 112.8182 112.8297 112.833 134.81 119.72 95.38 337.164 347.83 343.992 285.129 118.75 123.38 19.36 101.74 336.702 288.585 297.54 0.00 224.46 86.94 277.48
Ferrari Dino 66.7661 66.7764 90.24 130.55 215.07 106.57 226.20 113.30 80.66 56.837 56.899 131.0272 131.0078 131.070 328.54 317.71 300.16 128.395 141.70 133.471 82.236 174.93 161.11 216.75 255.06 127.821 87.911 80.46 224.46 0.00 223.53 70.48
Maserati Bora 265.6454 265.6491 309.77 229.34 170.71 242.44 107.72 313.86 288.88 250.587 250.577 157.1633 157.1769 157.168 214.94 199.34 174.29 349.534 362.16 355.260 299.187 185.91 185.16 102.59 188.32 349.120 303.922 303.28 86.94 223.53 0.00 289.12
Volvo 142E 39.1894 39.1626 20.69 137.04 248.01 104.19 275.14 53.68 24.69 48.805 48.889 170.4501 170.4225 170.484 364.10 355.40 341.29 61.330 73.38 67.719 12.251 201.37 187.70 266.53 286.75 60.412 18.756 27.81 277.48 70.48 289.12 0.00
c_minkowski_p3 <- as.matrix(dist(cars, method = "minkowski", p=3))
kbl(c_minkowski_p3) %>%
  kable_paper(bootstrap_options = "striped", full_width = F, font_size = 11)
Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout Valiant Duster 360 Merc 240D Merc 230 Merc 280 Merc 280C Merc 450SE Merc 450SL Merc 450SLC Cadillac Fleetwood Lincoln Continental Chrysler Imperial Fiat 128 Honda Civic Toyota Corolla Toyota Corona Dodge Challenger AMC Javelin Camaro Z28 Pontiac Firebird Fiat X1-9 Porsche 914-2 Lotus Europa Ford Pantera L Ferrari Dino Maserati Bora Volvo 142E
Mazda RX4 0.0000 0.5771 52.60 98.00 202.26 65.02 218.70 48.35 22.07 13.839 13.900 123.7681 123.7671 123.770 314.91 304.23 287.16 85.458 92.64 92.675 40.37 158.85 145.02 210.44 241.58 85.129 41.13 64.97 219.81 65.27 242.12 39.01
Mazda RX4 Wag 0.5771 0.0000 52.60 98.00 202.26 65.02 218.70 48.35 22.02 13.832 13.886 123.7681 123.7671 123.770 314.91 304.23 287.16 85.457 92.64 92.674 40.37 158.85 145.02 210.44 241.58 85.129 41.13 64.97 219.81 65.27 242.12 39.00
Datsun 710 52.6050 52.6043 0.00 150.07 254.86 117.05 269.23 44.44 32.83 62.040 62.047 175.2629 175.2618 175.265 367.51 356.82 339.60 35.758 46.88 41.901 12.26 211.39 197.60 260.54 294.14 35.347 12.41 21.96 268.47 84.45 277.47 18.47
Hornet 4 Drive 98.0020 98.0016 150.07 0.00 110.13 33.05 152.15 114.20 117.28 90.491 90.493 70.3917 70.3878 70.399 220.08 211.06 197.95 180.193 184.24 187.784 137.94 65.44 54.47 147.97 146.40 179.884 137.82 162.91 164.57 119.76 225.53 137.00
Hornet Sportabout 202.2631 202.2631 254.86 110.13 0.00 141.00 70.01 223.39 222.70 193.658 193.658 84.2065 84.2061 84.208 112.73 102.11 87.87 286.664 291.78 294.135 242.62 44.77 57.62 70.08 40.00 286.367 243.09 266.04 89.03 215.00 162.63 240.67
Valiant 65.0185 65.0169 117.05 33.05 141.00 0.00 173.30 82.42 84.25 57.988 57.987 82.0816 82.0812 82.082 252.35 242.78 228.25 147.263 151.52 154.851 104.92 96.39 83.60 167.48 178.66 146.934 104.80 129.95 181.92 94.92 232.74 104.00
Duster 360 218.7023 218.7023 269.23 152.15 70.01 173.30 0.00 251.11 240.49 207.531 207.531 95.5220 95.5227 95.522 113.68 100.89 80.18 303.661 311.32 310.558 257.38 97.66 101.09 10.00 74.12 303.390 259.26 275.42 19.66 217.45 97.77 252.86
Merc 240D 48.3525 48.3499 44.44 114.20 223.39 82.42 251.11 0.00 33.07 61.821 61.834 155.9849 155.9827 155.988 334.27 325.03 310.63 68.042 71.08 75.652 39.52 178.72 166.00 244.03 260.59 67.707 34.99 64.66 255.97 113.01 288.54 49.44
Merc 230 22.0659 22.0220 32.83 117.28 222.70 84.25 240.49 33.07 0.00 34.583 34.596 145.4169 145.4151 145.419 335.20 324.76 308.10 64.215 70.87 71.597 20.73 178.96 165.26 232.28 261.72 63.872 20.77 46.71 241.67 80.03 261.77 21.96
Merc 280 13.8393 13.8315 62.04 90.49 193.66 57.99 207.53 61.82 34.58 0.000 1.436 113.2359 113.2355 113.237 306.37 295.41 277.80 96.195 104.33 103.133 49.97 150.69 136.75 199.03 233.26 95.874 51.79 72.65 207.79 53.39 228.32 47.02
Merc 280C 13.9004 13.8861 62.05 90.49 193.66 57.99 207.53 61.83 34.60 1.436 0.000 113.2354 113.2353 113.236 306.37 295.41 277.80 96.224 104.34 103.164 49.98 150.69 136.75 199.03 233.26 95.886 51.82 72.69 207.79 53.39 228.32 47.03
Merc 450SE 123.7681 123.7681 175.26 70.39 84.21 82.08 95.52 155.98 145.42 113.236 113.235 0.0000 0.9191 1.253 196.34 184.62 165.73 209.102 216.24 216.186 163.20 46.75 36.70 88.07 124.20 208.815 164.68 183.75 100.60 130.80 155.22 159.63
Merc 450SL 123.7671 123.7671 175.26 70.39 84.21 82.08 95.52 155.98 145.42 113.236 113.235 0.9191 0.0000 2.105 196.34 184.62 165.73 209.097 216.24 216.180 163.20 46.75 36.70 88.08 124.20 208.812 164.68 183.74 100.60 130.80 155.22 159.63
Merc 450SLC 123.7703 123.7702 175.26 70.40 84.21 82.08 95.52 155.99 145.42 113.237 113.236 1.2532 2.1048 0.000 196.34 184.62 165.73 209.110 216.25 216.194 163.20 46.75 36.70 88.07 124.20 208.818 164.68 183.76 100.60 130.81 155.22 159.63
Cadillac Fleetwood 314.9128 314.9128 367.51 220.08 112.73 252.35 113.68 334.27 335.20 306.373 306.372 196.3371 196.3381 196.336 0.00 13.97 36.46 399.027 403.78 406.539 355.26 156.31 169.94 123.42 73.74 398.723 355.66 378.74 125.51 327.09 193.07 353.38
Lincoln Continental 304.2321 304.2320 356.82 211.06 102.11 242.78 100.89 325.03 324.76 295.408 295.406 184.6224 184.6235 184.621 13.97 0.00 22.54 388.762 393.85 396.228 344.58 146.40 159.68 110.74 65.48 388.460 345.13 367.56 112.21 315.22 179.13 342.42
Chrysler Imperial 287.1633 287.1633 339.60 197.95 87.87 228.25 80.18 310.63 308.10 277.796 277.796 165.7312 165.7314 165.731 36.46 22.54 0.00 372.243 377.96 379.607 327.39 132.53 144.66 90.14 61.31 371.952 328.23 349.34 90.63 295.64 156.64 324.70
Fiat 128 85.4576 85.4570 35.76 180.19 286.66 147.26 303.66 68.04 64.22 96.195 96.224 209.1024 209.0974 209.110 399.03 388.76 372.24 0.000 14.06 7.626 46.73 242.73 229.16 295.15 325.44 5.103 44.46 47.66 303.51 116.68 312.29 53.89
Honda Civic 92.6398 92.6396 46.88 184.24 291.78 151.52 311.32 71.08 70.87 104.326 104.345 216.2448 216.2412 216.250 403.78 393.85 377.96 14.064 0.00 13.278 56.40 247.55 234.19 303.05 330.10 14.114 52.91 61.65 312.09 129.96 324.30 65.33
Toyota Corolla 92.6746 92.6740 41.90 187.78 294.13 154.85 310.56 75.65 71.60 103.133 103.164 216.1856 216.1799 216.194 406.54 396.23 379.61 7.626 13.28 0.000 53.41 250.25 236.65 301.97 332.96 9.215 51.58 49.93 310.08 120.22 316.95 59.57
Toyota Corona 40.3718 40.3681 12.26 137.94 242.62 104.92 257.38 39.52 20.73 49.974 49.978 163.1983 163.1975 163.200 355.26 344.58 327.39 46.730 56.40 53.406 0.00 199.16 185.36 248.76 281.91 46.325 7.08 27.35 256.97 78.85 268.71 12.02
Dodge Challenger 158.8524 158.8524 211.39 65.44 44.77 96.39 97.66 178.72 178.96 150.691 150.690 46.7467 46.7475 46.747 156.31 146.40 132.53 242.729 247.55 250.247 199.16 0.00 14.00 96.20 82.77 242.420 199.45 223.26 114.92 173.18 185.05 197.59
AMC Javelin 145.0249 145.0249 197.60 54.47 57.62 83.60 101.09 166.00 165.26 136.753 136.752 36.6995 36.7013 36.699 169.94 159.68 144.66 229.160 234.19 236.654 185.36 14.00 0.00 98.47 96.56 228.849 185.72 209.31 116.60 159.21 185.00 183.69
Camaro Z28 210.4438 210.4439 260.54 147.97 70.08 167.48 10.00 244.03 232.28 199.033 199.032 88.0736 88.0751 88.073 123.42 110.74 90.14 295.149 303.05 301.969 248.76 96.20 98.47 0.00 77.65 294.879 250.79 266.22 19.02 207.69 94.61 243.99
Pontiac Firebird 241.5790 241.5790 294.14 146.40 40.00 178.66 74.12 260.59 261.72 233.265 233.265 124.2032 124.2029 124.204 73.74 65.48 61.31 325.436 330.10 332.961 281.91 82.77 96.56 77.65 0.00 325.138 282.20 305.76 93.70 255.00 171.75 280.23
Fiat X1-9 85.1290 85.1287 35.35 179.88 286.37 146.93 303.39 67.71 63.87 95.874 95.886 208.8145 208.8122 208.818 398.72 388.46 371.95 5.103 14.11 9.215 46.33 242.42 228.85 294.88 325.14 0.000 44.15 47.63 303.25 116.55 312.13 53.58
Porsche 914-2 41.1287 41.1288 12.41 137.82 243.09 104.80 259.26 34.99 20.77 51.792 51.823 164.6791 164.6763 164.684 355.66 345.13 328.23 44.463 52.91 51.577 7.08 199.45 185.72 250.79 282.20 44.155 0.00 29.90 259.41 84.72 273.37 18.11
Lotus Europa 64.9693 64.9694 21.96 162.91 266.04 129.95 275.42 64.66 46.71 72.654 72.692 183.7476 183.7427 183.755 378.74 367.56 349.34 47.660 61.65 49.932 27.35 223.26 209.31 266.22 305.76 47.627 29.90 0.00 272.36 71.39 269.96 26.29
Ford Pantera L 219.8090 219.8091 268.47 164.57 89.03 181.92 19.66 255.97 241.67 207.793 207.793 100.5964 100.5967 100.597 125.51 112.21 90.63 303.505 312.09 310.084 256.97 114.92 116.60 19.02 93.70 303.252 259.41 272.36 0.00 211.40 78.46 251.41
Ferrari Dino 65.2661 65.2663 84.45 119.76 215.00 94.92 217.45 113.01 80.03 53.390 53.392 130.8042 130.8038 130.805 327.09 315.22 295.64 116.685 129.96 120.223 78.85 173.18 159.21 207.69 255.00 116.548 84.72 71.39 211.40 0.00 199.10 67.05
Maserati Bora 242.1232 242.1232 277.47 225.53 162.63 232.74 97.77 288.54 261.77 228.320 228.319 155.2239 155.2241 155.224 193.07 179.13 156.64 312.291 324.30 316.955 268.71 185.05 185.00 94.61 171.75 312.127 273.37 269.96 78.46 199.10 0.00 259.01
Volvo 142E 39.0061 39.0048 18.47 137.00 240.67 104.00 252.86 49.44 21.96 47.022 47.027 159.6292 159.6284 159.631 353.38 342.42 324.70 53.893 65.33 59.570 12.02 197.59 183.69 243.99 280.23 53.578 18.11 26.29 251.41 67.05 259.01 0.00
kbl(data.frame(rowSums(c_manhattan), rowSums(c_euclidean), rowSums(c_minkowski_p3))) %>%
  kable_minimal(full_width = F)
rowSums.c_manhattan. rowSums.c_euclidean. rowSums.c_minkowski_p3.
Mazda RX4 5701 4086 3837
Mazda RX4 Wag 5688 4086 3837
Datsun 710 6698 4798 4507
Hornet 4 Drive 5751 4317 4126
Hornet Sportabout 7149 5424 5200
Valiant 5764 4163 3927
Duster 360 8637 5990 5482
Merc 240D 6816 4750 4385
Merc 230 6207 4336 4051
Merc 280 5614 4030 3787
Merc 280C 5626 4032 3787
Merc 450SE 6044 4320 4036
Merc 450SL 6027 4320 4037
Merc 450SLC 6054 4322 4037
Cadillac Fleetwood 10794 8158 7838
Lincoln Continental 10637 7877 7509
Chrysler Imperial 10284 7486 7042
Fiat 128 8206 5678 5281
Honda Civic 8650 5960 5505
Toyota Corolla 8521 5880 5473
Toyota Corona 6389 4562 4282
Dodge Challenger 6330 4729 4536
AMC Javelin 6124 4540 4336
Camaro Z28 8478 5841 5338
Pontiac Firebird 8115 6254 6020
Fiat X1-9 8064 5664 5274
Porsche 914-2 6573 4607 4306
Lotus Europa 6920 5034 4798
Ford Pantera L 9026 6180 5610
Ferrari Dino 6088 4658 4483
Maserati Bora 10514 7339 6733
Volvo 142E 6172 4513 4268

The results above make mathematical sense if you treat all of the variables as numeric, however, I am not sure if vs and am should be treated as numeric since they are actually categorical? But for example let’s just look at the Mazda RX4 and the Hornet 4 Drive…

Maz_Horn <- cars[c(1,4),]
Maz_Horn

If we take absolute value of the difference between each variable and just add them up we get the Manhattan distance…

Mazda <- Maz_Horn[1,]
Hornet <- Maz_Horn[2,]
differences <- Mazda-Hornet
rownames(differences) <- 'differences'

differences
sum(abs(Mazda-Hornet))
## [1] 108.8

If we take the difference between each variable square each one then add them up and finally take the square root we get the euclidean distance…

differences_sq <- (Mazda-Hornet)^2
rownames(differences_sq) <- 'differences_squared'
differences_sq
sum(differences_sq)
## [1] 9626
sqrt(sum(differences_sq))
## [1] 98.11

And finally the minkowski distance is the difference between each variable cubed then summed up and then take the cube root…

differences_cubed <- (Mazda-Hornet)^3
rownames(differences_cubed) <- 'differences_cubed'
differences_cubed
sum(abs(differences_cubed))
## [1] 941249
sum(abs(differences_cubed))^(1/3)
## [1] 98

In each case above the numeric codes for the categorical variables, vs and am, are included in the calculations that match the output of the dist function.

Ex. 3

Use the built in data set mtcars to carry out hierarchy clustering using two different distance metrics and compare if they get the same results. Discuss the results.

manhattan_clusters <- hclust(dist(cars, method = "manhattan"))
plot(manhattan_clusters)

euclidean_clusters <- hclust(dist(cars, method = "euclidean"))
plot(euclidean_clusters)

minkowski_clusters <- hclust(dist(cars, method = "minkowski", p=3))
plot(minkowski_clusters)

All 3 distance measures give similar but not exactly the same results. The euclidean and minkowski models are more similar than either of those are to the manhattan model however. This makes sense since the calculations and numeric values for the euclidean and minkowski distances are very similar as well.

Ex. 4

Load the well-known Fisher’s iris flower data set that consists of 150 samples for three species (50 samples each species). The four measures or features are the lengths and widths of sepals and petals. Use kNN clustering to analyze this iris data set by selecting 120 samples for training and 30 samples for testing.

set.seed(42)
index <- createDataPartition(iris$Species, p = 0.80, list = FALSE)
train <- iris[index, ]
test <- iris[-index, ]

knn_iris <- train(Species ~ ., data = train, 
                 method = "knn")
knn_iris
## k-Nearest Neighbors 
## 
## 120 samples
##   4 predictor
##   3 classes: 'setosa', 'versicolor', 'virginica' 
## 
## No pre-processing
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 120, 120, 120, 120, 120, 120, ... 
## Resampling results across tuning parameters:
## 
##   k  Accuracy  Kappa 
##   5  0.9710    0.9560
##   7  0.9755    0.9627
##   9  0.9743    0.9610
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 7.
pred_iris <- predict(knn_iris, newdata = test)
confusionMatrix(pred_iris, test$Species)
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         10          0         0
##   versicolor      0          9         1
##   virginica       0          1         9
## 
## Overall Statistics
##                                           
##                Accuracy : 0.933           
##                  95% CI : (0.779, 0.992)  
##     No Information Rate : 0.333           
##     P-Value [Acc > NIR] : 0.00000000000875
##                                           
##                   Kappa : 0.9             
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                  1.000             0.900            0.900
## Specificity                  1.000             0.950            0.950
## Pos Pred Value               1.000             0.900            0.900
## Neg Pred Value               1.000             0.950            0.950
## Prevalence                   0.333             0.333            0.333
## Detection Rate               0.333             0.300            0.300
## Detection Prevalence         0.333             0.333            0.333
## Balanced Accuracy            1.000             0.925            0.925

Ex. 5

Use the iris data set to carry out k-means clustering. Compare the results to the actual classes and estimate the clustering accuracy.

set.seed(42)
kmeans_iris <- kmeans(iris[,c(1:4)], centers = 3, nstart = 25)
kmeans_iris
## K-means clustering with 3 clusters of sizes 50, 62, 38
## 
## Cluster means:
##   Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1        5.006       3.428        1.462       0.246
## 2        5.902       2.748        4.394       1.434
## 3        6.850       3.074        5.742       2.071
## 
## Clustering vector:
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [75] 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3 3 3 3
## [112] 3 3 2 2 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3
## [149] 3 2
## 
## Within cluster sum of squares by cluster:
## [1] 15.15 39.82 23.88
##  (between_SS / total_SS =  88.4 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"
conf_mat <- table(kmeans_iris$cluster, iris$Species)
conf_mat
##    
##     setosa versicolor virginica
##   1     50          0         0
##   2      0         48        14
##   3      0          2        36
accuracy <- sum(diag(conf_mat))/sum(conf_mat)
accuracy
## [1] 0.8933