library(readxl)
CerinaData <- read_excel("C:/Users/leocint/Desktop/CerinaData.xlsx")
View(CerinaData)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.0.6 v dplyr 1.0.5
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(dplyr)
view(CerinaData)
New<-na.omit(CerinaData)%>%
view()
d<- t.test(New$`Post-test Score`,New$`Pre-test Score`,paired = TRUE)
d
##
## Paired t-test
##
## data: New$`Post-test Score` and New$`Pre-test Score`
## t = 1.6361, df = 22, p-value = 0.1161
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2559605 2.1690040
## sample estimates:
## mean of the differences
## 0.9565217
Interpretation of the Results
The p-value of the the test is 0.1161, which is greater than the significance level alpha = 0.05. We can then accept the null hypothesis and conclude that there is no significant difference in the Post-test Score and Pre-test Score.