library(eurostat)
library(tidyverse)
# qsa_o <- get_eurostat("nasq_10_nf_tr")
# saveRDS(qsa_o,"E:/R/charts/14112021/qsa.rds")
qsa_o <- readRDS("E:/R/charts/14112021/qsa.rds")
qsa <- qsa_o %>%
filter(sector == "S14_S15" &
time >= "2019-04-01" &
s_adj == "NSA" &
unit == "CP_MNAC" &
na_item %in% c("B7G") &
direct == "PAID") %>%
select(geo, na_item, time, values) %>%
group_by(geo) %>%
mutate(index = values * 100 / values[time == "2019-04-01"]) %>%
ungroup() %>%
filter(time == "2019-04-01" | time == "2021-04-01") %>%
mutate(time = str_remove_all(time, "-")) %>%
select(-values) %>%
pivot_wider(
names_from = time,
values_from = index,
names_prefix = "q"
) %>%
mutate(change = q20210401 - 100) %>%
na.omit()
ggplot(qsa, aes(change, reorder(geo, change))) +
geom_col(fill = "steelblue") +
theme_light() +
labs(
x = "",
y = "",
title = "Gap en la Renta Bruta de los Hogares",
subtitle = "2021Q2 comparado a 2019Q2=100",
caption = "Luis Biedma"
)

es <- qsa_o %>%
filter(geo %in% c("ES") &
sector == "S14_S15" &
time >= "2019-04-01" &
s_adj == "NSA" &
unit == "CP_MNAC" &
na_item %in% c("B7G", "D1", "B2A3G", "D4", "D5", "D61", "D62", "D63")) %>%
filter(time == "2019-04-01" | time == "2021-04-01") %>%
unite("na_item", c(na_item, direct)) %>%
pivot_wider(
names_from = na_item,
values_from = values
) %>%
mutate(
B7G_NET = B7G_RECV,
D1_NET = D1_RECV - D1_PAID,
D4_NET = D4_RECV - D4_PAID,
B2A3G_NET = B2A3G_RECV,
D5_NET = -D5_PAID,
D61_NET = D61_RECV - D61_PAID,
D62_NET = D62_RECV - D62_PAID,
D63_NET = D63_RECV - D63_PAID
) %>%
select(geo, time, B7G_NET, D1_NET, B2A3G_NET, D4_NET, D5_NET, D61_NET, D62_NET, D63_NET) %>%
pivot_longer(
cols = c(where(is.numeric)),
names_to = "na_item",
values_to = "values"
)
ggplot(es %>% filter(na_item != "B7G_NET"), aes(values, na_item, fill = as.factor(time))) +
geom_col(position = "dodge") +
scale_x_continuous(labels = scales::label_number()) +
labs(
fill = "Trimestre",
x = "",
y = "",
title = "Principales componentes de la Renta de los Hogares",
caption = "Luis Biedma"
) +
theme_light() +
scale_fill_manual(values = c("steelblue", "red"))

es <- es %>%
mutate(time = str_remove_all(time, "-")) %>%
pivot_wider(
names_from = time,
values_from = values,
names_prefix = "q"
) %>%
mutate(change = q20210401 - q20190401)
ggplot(es, aes(change, na_item)) +
geom_col(fill = "steelblue") +
scale_x_continuous(labels = scales::label_number()) +
labs(
x = "",
y = "",
title = "Cambio de los principales componentes de la Renta de los Hogares",
subtitle = "Entre 2021Q2 y 2019Q2",
caption = "Luis Biedma"
) +
theme_light()

d42 <- qsa_o %>%
filter(geo %in% c("ES") &
sector %in% c("S1", "S14_S15") &
time >= "2015-04-01" &
s_adj == "NSA" &
unit == "CP_MNAC" &
na_item %in% c("D42") &
direct == "RECV")
ggplot(d42, aes(time, values, colour = sector)) +
geom_line(size = 0.8) +
scale_y_continuous(labels = scales::label_number()) +
labs(
x = "",
y = "",
title = "D42: Rentas distribuidas de las sociedades",
caption = "Luis Biedma"
) +
theme_light() +
scale_colour_manual(values = c("steelblue", "red"))

d42_all <- qsa_o %>%
filter(sector %in% c("S1", "S14_S15") &
time >= "2015-04-01" &
s_adj == "NSA" &
unit == "CP_MNAC" &
na_item %in% c("D42") &
direct == "RECV") %>%
pivot_wider(
names_from = sector,
values_from = values
) %>%
mutate(peso = S14_S15 * 100 / S1) %>%
group_by(geo) %>%
summarise(media = mean(peso, na.rm = TRUE))
ggplot(na.omit(d42_all), aes(media, reorder(geo, media))) +
geom_col(fill = "steelblue") +
labs(
x = "",
y = "",
title = "Porcentaje de D.42 recibido por los Hogares sobre el Total",
subtitle = "Media 2015Q2-2020Q2",
caption = "Luis Biedma"
) +
theme_light()
