This document forms part of the data and code deposited at:
https://github.com/acp29/Elmasri_GRIN2A

Load package requirements

if (!require(package="tidyverse")) utils::install.packages("tidyverse")
library(tidyverse) 
if (!require(package="lme4")) utils::install.packages("lme4")
library(lme4)  
if (!require(package="HLMdiag")) utils::install.packages("HLMdiag")
library(HLMdiag) 
if (!require(package="parameters")) utils::install.packages("parameters")
library(parameters) 
if (!require(package="car")) utils::install.packages("car")
library(car)  
if (!require(package="performance")) utils::install.packages("performance")
library(performance)  
if (!require(package="BayesFactor")) utils::install.packages("BayesFactor")
library(BayesFactor) 
if (!require(package="bayestestR")) utils::install.packages("bayestestR")
library(bayestestR) 
if (!require(package="stats")) utils::install.packages("stats")
library(stats)
if (!require(package="pCalibrate")) utils::install.packages("pCalibrate")
library(pCalibrate)
if (!require(package="afex")) utils::install.packages("afex")
library(afex)
if (!require(package="emmeans")) utils::install.packages("emmeans")
library(emmeans)
if (!require(package="multcomp")) utils::install.packages("multcomp")
library(multcomp)
if (!require(package="knitr")) utils::install.packages("knitr")
library(knitr)
if (!require(package="kableExtra")) utils::install.packages("kableExtra")
library(kableExtra)
if (!require(package="ggplot2")) utils::install.packages("ggplot2")
library(ggplot2)
if (!require(package="qqplotr")) utils::install.packages("qqplotr")
library(qqplotr)
if (!require(package="gridExtra")) utils::install.packages("gridExtra")
library(gridExtra)
if (!require(package="ggforce")) utils::install.packages("ggforce")
library(ggforce)
if (!require(package="devEMF")) utils::install.packages("devEMF")
library(devEMF)
if (!require(package="effectsize")) utils::install.packages("effectsize")
library(effectsize)

Read text in from file

Data <- read.delim("../data/n2a_mutant.dat", header = TRUE)
# Implicit nesting (required for anovaBF)
Data %>% 
  mutate(mutation = as.factor(mutation)) %>% 
  mutate(animal = paste0(as.numeric(mutation),animal)) %>% 
  mutate(slice = paste0(animal,slice)) %>% 
  mutate(pair = paste0(slice,pair)) %>% 
  mutate(pair = factor(pair)) -> Data

Factor encoding

Data$mutation <- as.factor(Data$mutation)
Data$transfection <- as.factor(Data$transfection)
Data$animal <- as.factor(Data$animal)
Data$slice <- as.factor(Data$slice)
Data$pair <- as.factor(Data$pair)

Set mutation WT and transfection - as reference levels

Data$mutation <- factor(Data$mutation, levels=c("WT","C436R","T531M","R518H","K669N","L812M"))
Data$transfection <- factor(Data$transfection, levels=c("-","+"))

lmer settings

settings <- lmerControl(check.conv.singular = .makeCC(action = "ignore",  tol = 1e-4), boundary.tol=0)

Fit a mixed linear model

# Initialize
variates <- c("peaknmda","decaynmda","dt50nmda","chargenmda","peakampa","decayampa","dt50ampa","chargeampa")
l <- length(variates)

for (i in 1:l) {
  
variates[i] -> resp  

cat('\n\n\n# Analysis of',resp,'\n\n')

# Plot data
# colours selected from:
#  > library(scales)
#  > show_col(hue_pal()(9))
p1 <- Data %>%
    mutate(mutation_jittered = jitter((as.numeric(mutation)+(as.numeric(transfection)-1)/2.5), 0.5),
           grouping=interaction(pair, mutation)) %>%
    mutate(mutation_transfection = as.numeric(mutation)+(as.numeric(transfection)-1)/2.5) %>%
    ggplot(aes(x=mutation, y=!!sym(resp), group=grouping, color=transfection)) + 
    geom_blank() +
    geom_line(aes(mutation_jittered), alpha=0.2, color="grey") +
    geom_point(aes(mutation_jittered), alpha=0.4, shape=16) +
    scale_color_manual(values=c("grey","#00BA38")) +
    stat_summary(mapping = aes(x=mutation_transfection,y=!!sym(resp)), fun.data="median_hilow", fun.args = list(conf.int=0.5), geom="linerange", color="black", size=1.0,inherit.aes=FALSE) + 
    stat_summary(mapping = aes(x=mutation_transfection,y=!!sym(resp)), fun="median", geom="point", shape=21, fill="white", color="black", size=2.5, stroke=1, inherit.aes=FALSE) +
    ylab(resp) +
    ggtitle("a") +
    theme(axis.text.x = element_text(angle = 45, vjust=1, hjust=1),axis.line = element_line(colour="black"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          panel.border = element_blank(),
          panel.background = element_blank(),
          legend.title = element_blank(),
          legend.position = "top")
p2 <- Data %>% 
    pivot_wider(c(mutation,pair,!!sym(resp)),names_from=transfection,values_from=!!sym(resp)) %>% 
    mutate(ratio = `+`/`-`) %>%
    ggplot(aes(x=mutation, y=ratio, colour=mutation)) +
    geom_sina(alpha=0.9, shape = 16) + 
    scale_color_manual(values=c("grey","#00C19F","#00B9E3","#619CFF","#DB72FB","#FF61C3")) +
    stat_summary(fun.data="median_hilow", fun.args = list(conf.int=0.5), geom="linerange", color="black", size=1.0) + 
    stat_summary(fun="median", geom="point", shape=21, fill="white", color="black", size=2.5, stroke=1) +
    ylab("ratio") +
    ggtitle("b") +
    theme(axis.text.x = element_text(angle = 45, vjust=1, hjust=1),axis.line = element_line(colour="black"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          panel.border = element_blank(),
          panel.background = element_blank(),
          legend.position = "none")
grid.arrange(p1, p2, nrow = 1, ncol = 2, top=sprintf("Summary plots of the data for: %s\n",resp))

# Fit the model with planned contrasts and perform hypothesis testing
  
# Setup planned, orthogonal contrasts
# ("WT","NONE","C436R","T531M","R518H","K669N","L812M")
# According to exploratory factor and cluster analysis of published data:
# GOF1 is gain-of-function (Factor 1)
# LOF1 is loss-of-function (Factor 1)
# LOF2 is loss-of-function (Factor 2)
# Factor 1 (functional change, e.g. EC50[Glu])
# Factor 2 (expression change, e.g. surface expression and current density)
WT_vs_Mutants   <- c(-5,1,1,1,1,1)/6
GOF1_vs_LOF12   <- c(0,-2,-2,-2,3,3)/5
LOF1_vs_LOF2    <- c(0,-1,-1,2,0,0)/3
GOF1            <- c(0,0,0,0,-1,1)/2
LOF2            <- c(0,-1,1,0,0,0)/2
contr.orth <- cbind(WT_vs_Mutants, GOF1_vs_LOF12, LOF1_vs_LOF2, LOF2, GOF1)
rownames(contr.orth) <- levels(Data$mutation)

# Check that contrasts are indeed orthogonal
contr.orth %>%
  cor() %>%
  knitr::kable(caption = sprintf("**All off-diagonal elements in correlation matrix of orthogonal contrasts should be zero: %s**",resp), digits = 2) %>% 
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover")) %>%
  print()
contr.orth %>%
  colSums() %>%
  as.data.frame() %>%
  rename(.,'sum' = '.') %>%
  knitr::kable(caption = sprintf("**Sum of each orthogonal contrast should be zero: %s**",resp), digits = 2) %>% 
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover")) %>%
  print()

# Fit model (with orthogonal contrasts)
contrasts(Data$mutation) <- contr.orth 
attr(Data$mutation,"contrasts") %>%
  as.data.frame() %>%
  rownames_to_column(var = "mutation") %>% 
  knitr::kable(caption = sprintf("**Matrix of contrasts on mutation: %s**",resp), digits = 2) %>% 
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover")) %>%
  print()
contrasts(Data$transfection) <- rbind(-1,1)/2
attr(Data$transfection,"contrasts") %>% 
  as.data.frame() %>%
  rename(contrast = "V1") %>%
  rownames_to_column(var = "transfection") %>% 
  mutate_at("transfection", str_replace_all, pattern = "\\+", replacement = "\\\\+")  %>% 
  mutate_at("transfection", str_replace_all, pattern = "\\-", replacement = "\\\\-")  %>% 
  knitr::kable(caption = sprintf("**Matrix of contrasts on transfection: %s**",resp), digits = 2) %>% 
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover")) %>%
  print() 
formula <- sprintf("log(%s) ~ mutation * transfection + (1|animal/slice/pair)", resp)
model <- lme4::lmer(formula, data = Data, REML = TRUE, control = settings, na.action = "na.fail") 

# Checking model assumptions
resid = residuals(model)
n = length(resid)
stdev = sqrt((n-1)/n) * sd(resid) # standard deviation with denominator n
std_resid = resid/stdev
p1 <- ggplot(Data, aes(x = fitted(model), y = std_resid)) +
  geom_point() +
  ggtitle("a") +
  xlab("Fitted values") + ylab("Standardized Residuals") +
  geom_hline(yintercept = 0) +
  geom_quantile(formula=y~x, color="#619CFF", size=1) +
  geom_smooth(method="loess", formula = y ~ x, color="#F8766D", size=1, se=FALSE)
p2 <- ggplot(Data, aes(x = std_resid)) +
  geom_histogram(aes(y=..density..), binwidth = 0.9*n^(-1/5), fill="#619CFF", alpha=0.33)  +
  geom_density(kernel="gaussian", alpha=0, color="#619CFF", size=1) +
  ggtitle("b") +
  xlab("Standardized Residuals") + ylab("Density") +
  geom_vline(xintercept = 0) +
  geom_function(fun = dnorm, args = list(mean=0, sd=1), col = "#F8766D", size = 1)
p3 <- ggplot(Data, aes(sample = std_resid)) +
  geom_qq_band(distribution = "norm", bandType = "ts", mapping = aes(fill = "TS"), fill="#619CFF", alpha = 0.33) +
  stat_qq() + 
  stat_qq_line(color="#F8766D",size=1) +
  ggtitle("c") +
  xlab("Normal Quantiles") + ylab("Sample Quantiles") 
infl <- hlm_influence(model, level="pair:(slice:animal)")
p4 <- infl %>% 
  mutate(influential = cooksd > 1.0) %>% 
  ggplot(aes(x=`pair:(slice:animal)`,y=cooksd, color=influential)) + 
  geom_segment(aes(x=`pair:(slice:animal)`, xend=`pair:(slice:animal)`, y=0, yend=cooksd)) + 
  geom_point() + 
  ylab("Cook's distance") +
  scale_color_manual(values=c("#619CFF","#F8766D")) + 
  ggtitle("d") +
  theme(axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        legend.position = "none",
        panel.background = element_rect(color="#EBEBEB"),
        panel.grid = element_blank(),
        panel.grid.minor.y = element_line(color = "white", size=0.25),
        panel.grid.major.y = element_line(color = "white", size=0.5),
        axis.line = element_blank(),
        axis.line.x = element_line(size = 0.5, colour = "black"))
grid.arrange(p1, p2, p3, p4, nrow=2, ncol=2, top=sprintf("Plots of standardized model residuals and Cook's distances: %s\n",resp))

# Calculate ANOVA table for the fitted model (Type III sum of squares) 
car::Anova(model, type = 3, test.statistic = "F") %>%       # Uses Kenward-Roger degrees of freedom
  as.data.frame() %>%
  rownames_to_column(var="Source") %>%
  filter(Source != "(Intercept)") -> aov

# Calculate Bayes Factors for ANOVA and append them to the ANOVA data frame
# Inclusion Bayes Factor based on matched models (prior odds uniform-equal)
Data %>% 
  mutate(logresp = log(!!sym(resp))) %>%
  as.data.frame() -> Data
set.seed(123456)
anovaBF(logresp ~ mutation * transfection + animal + slice + pair, 
                 whichRandom = c("animal","slice","pair"), 
                 whichModels = "withmain", 
                 iterations = 20000,
                 data = Data) %>%
  bayesfactor_inclusion(match_models = TRUE) %>% 
  as.data.frame() %>% 
  na.omit() %>%    # removes the (nuisance) random factors
  mutate(BF = exp(log_BF)) %>%
  mutate_at("BF", formatC, format='g',digits = 3) %>% 
  dplyr::select(BF) %>% 
  unlist() -> aov$BF

# Calculate orthogonal contrasts and append them to the ANOVA summary table
# I go to the trouble of transforming the t-statistic (which is returned from the linear model) 
# to an F statistic but they give identical p-values; I think this makes more sense and provides 
# more consistency when splitting the source of variation into orthogonal contrasts and presenting 
# them in an ANOVA table (eg. like with summary.aov or orthogonal contrasts in SAS)
model_parameters(model, ci_method = "kenward", exponentiate = TRUE, effects = "fixed") %>%  
  filter(grepl(":",Parameter)) %>%                          # select interaction terms only
  rename(Source = Parameter) %>%                            # set denominator degrees of freedom
  mutate(Df = 1) %>%                                        # set numerator degrees of freedom
  add_column(BF = "")  %>%                                  # add empty column for Bayes factors
  rename(Df.res = df_error) %>%                             # set denominator degrees of freedom
  mutate(F = abs(t)^2) %>%                                  # calculate F statistic
  mutate(`Pr(>F)` = pf(F,Df,Df.res,lower.tail=FALSE)) %>%   # calculate p value
  dplyr::select(c(Source,F,Df,Df.res,`Pr(>F)`,BF)) %>%      # select columns of interest for table
  rbind(aov,.) %>%                                          # row bind with anova table
  mutate(`Pr(>F)` = afex::round_ps_apa(`Pr(>F)`)) %>%       # format p values as APA style
  knitr::kable(caption = sprintf("**ANOVA table (Type III Wald F tests with Kenward-Roger df) and Bayes factors for fixed effects with interaction source split into orthogonal contrasts: %s**",resp), digits = 2) %>% 
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover")) %>%
  add_indent(c(4:8)) %>%                                    # add indentation to indicate source components
  print()

# Calculate intraclass correlation coefficients (ICC) for the random effects
icc(model, by_group=TRUE, tolerance=0) %>% 
  as.data.frame() %>% 
  mutate(N = ngrps(model)) %>%
  rbind(.,c("residual",1-sum(.$ICC),nobs(model))) %>%
  mutate(ICC = as.numeric(ICC)) %>%                               
  knitr::kable(caption = sprintf("**Intraclass correlation coefficients for random effects: %s**",resp), digits = 3) %>% 
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover")) %>%
  print()

# Calculated estimated marginal means, By default, emmeans uses Kenward-Roger's method for estimating the degrees of freedom
emm <- emmeans(model, ~ mutation * transfection, data = Data, tran = 'log', type = 'response')
emm %>% 
  summary(calc = c(n = ".wgt.")) %>%
  as.data.frame() %>%
  mutate_at("transfection", str_replace_all, pattern = "\\+", replacement = "\\\\+")  %>% 
  mutate_at("transfection", str_replace_all, pattern = "\\-", replacement = "\\\\-")  %>% 
  relocate(df, .before = response) %>%
  dplyr::select(-SE) %>%
  knitr::kable(caption = sprintf("**Estimated marginal means with 95%% confidence intervals: %s**",resp), digits = 2) %>% 
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover")) %>%
  print()

# Calculate overall average for untransfected neurons
emmeans(model, ~ mutation * transfection, data = Data) %>%
  as.data.frame() %>%
  filter(transfection == "-") %>%
  dplyr::select(emmean) %>% 
  colMeans() %>%
  exp() %>%
  sprintf("**Overall average of %s for untransfected neurons**: %.2f",resp,.) %>%
  print()

# Calculate transfected/untransfected ratios
emm.transfection <- contrast(emm, method = "trt.vs.ctrl", interaction = FALSE, by = 'mutation', adjust = "none")
emm.transfection %>%
  confint() %>%
  as.data.frame() %>%
  relocate(df, .before = ratio) %>%
  dplyr::select(-SE) %>%
  knitr::kable(caption = sprintf("**Estimated marginal means with 95%% confidence intervals for transfected/untransfected ratios: %s**",resp), digits = 2) %>% 
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover")) %>%
  print()

# 95% confidence intervals for interaction contrasts
emm.interaction <- contrast(emm, method = "trt.vs.ctrl", interaction = TRUE, adjust = "none")
emm.interaction %>%
  confint() %>% 
  relocate(df, .before = ratio) %>%
  dplyr::select(-SE) %>%
  knitr::kable(caption = sprintf("**95%% confidence intervals for contrasts: %s**",resp), digits = 2) %>% 
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover")) %>%
  print()

# Standardized effect sizes (*r*) for interaction contrasts
# Methods used the same as this server: https://easystats4u.shinyapps.io/statistic2effectsize/
emm.interaction %>% 
    as.data.frame() %>% 
    mutate(n = df+nrow(.)+1) %>% 
    mutate(r = t_to_r(t.ratio, df)$r) %>% 
    mutate(z = atanh(r),
           SE = 1/sqrt(n-3),
           CI = sprintf("[%.2f, %.2f]",
                        LL = tanh(z - 1.96*SE),
                        UL = tanh(z + 1.96*SE))) %>%
    dplyr::select(-c(ratio,SE,df,null,t.ratio,p.value,z)) %>%
    knitr::kable(col.names = c("mutation",
                               "transfection",
                               "*n*",
                               "*r*",
                               "95% *CI*"),
                 caption = sprintf("**Standardized effect sizes (*r*) for contrasts: %s**",resp), digits = 2) %>% 
    kableExtra::kable_styling(bootstrap_options = c("striped", "hover")) %>%
    print()

posthoc = FALSE

if (posthoc == TRUE) {
  
# p-values and maximum Bayes Factors for interaction contrasts 
# Dunnett's step-down adjustment to control FWER on p-values (using multcomp package)
# Chapter 4.1.2 in Bretz, F., Hothorn, T. and Westfall, P. (2011) Multiple Comparisons Using R. Taylor and Frances Group, LLC.
emm.interaction %>%   
    as.glht() %>%
    summary(test = adjusted(type = "free")) -> glht.out  
emm.interaction %>%   
  as.data.frame() %>%
  dplyr::select(-SE) %>%
  mutate(p.adj = glht.out$test$pvalues) %>%
  mutate(p.adj = sapply(p.adj,max,.Machine$double.eps)) %>%
  mutate(maxBF = 1/pCalibrate(p.adj,"exploratory")) %>%
  mutate_at("maxBF", formatC, format='g',digits = 3) %>%
  mutate(p.value = afex::round_ps_apa(p.value)) %>%
  mutate(p.adj = afex::round_ps_apa(p.adj)) %>%
  knitr::kable(caption = sprintf("**Hypothesis testing on interaction parameters (Dunnett's step-down p-value adjustment): %s**",resp), digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover")) %>%
  print()

}
# Replot data with 95% confidence intervals
emf(sprintf("../img/%s_%s.emf","n2a_mutants",resp), width=5, height=3.5)
emm %>%
    as.data.frame() %>%
    mutate(mutation_transfection = as.numeric(mutation)+(as.numeric(transfection)-1)/2.5) -> emm_df
p1 <- Data %>%
    mutate(mutation_jittered = jitter((as.numeric(mutation)+(as.numeric(transfection)-1)/2.5), 0.5),
           grouping=interaction(pair, mutation)) %>%
    mutate(mutation_transfection = as.numeric(mutation)+(as.numeric(transfection)-1)/2.5) %>%
    ggplot(aes(x=mutation, y=!!sym(resp), group=grouping, color=transfection)) + 
    geom_blank() +
    geom_line(aes(mutation_jittered), alpha=0.3, color="grey", size=0.75) +
    geom_point(aes(mutation_jittered), alpha=0.6, shape = 16, size=1.25) +
    scale_color_manual(values=c("grey","#00BA38")) +
    scale_fill_manual(values=c("grey","#00BA38")) +
    geom_crossbar(data = emm_df, 
                    aes(x=mutation_transfection, y=response, ymin=`lower.CL`, ymax=`upper.CL`, fill=transfection), 
                    color="black", alpha=0.5, size=0.5, fatten=1, width=0.3, inherit.aes=FALSE) + 
    ylab(resp) +
    theme(axis.text.x = element_text(angle = 45, vjust=1, hjust=1),axis.line = element_line(colour="black"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          panel.border = element_blank(),
          panel.background = element_blank(),
          legend.title = element_blank(),
          legend.position = c(0.5, 1.06),
          legend.direction = "horizontal",
          text = element_text(size=14))
emm.transfection %>%
    confint() %>%
    as.data.frame() -> emm.transfection_df
p2 <- Data %>% 
    pivot_wider(c(mutation,pair,!!sym(resp)),names_from=transfection,values_from=!!sym(resp)) %>% 
    mutate(ratio = `+`/`-`) %>%
    ggplot(aes(x=mutation, y=ratio, colour=mutation)) +
    geom_sina(alpha=0.6, shape=16, size=1.25, maxwidth=0.5) + 
    geom_crossbar(data = emm.transfection_df, 
                           aes(x=mutation, y=ratio, ymin=`lower.CL`, ymax=`upper.CL`, fill=mutation), 
                    color="black", alpha=0.5, size=0.5, fatten=1, width=0.8, inherit.aes=FALSE) +
    scale_colour_manual(values=c("grey","#00C19F","#00B9E3","#619CFF","#DB72FB","#FF61C3")) +
    scale_fill_manual(values=c("grey","#00C19F","#00B9E3","#619CFF","#DB72FB","#FF61C3")) +
    ylab("ratio") +
    theme(axis.text.x = element_text(angle = 45, vjust=1, hjust=1), axis.line = element_line(colour="black"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          panel.border = element_blank(),
          panel.background = element_blank(),
          legend.position = "none",
          text=element_text(size=14))
grid.arrange(p1, p2, layout_matrix=rbind(c(1,2)), top=sprintf("Summary plots of the data with 95%% confidence intervals: %s\n",resp))
dev.off() #turn off device and finalize file


}

Analysis of peaknmda

All off-diagonal elements in correlation matrix of orthogonal contrasts should be zero: peaknmda
WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT_vs_Mutants 1 0 0 0 0
GOF1_vs_LOF12 0 1 0 0 0
LOF1_vs_LOF2 0 0 1 0 0
LOF2 0 0 0 1 0
GOF1 0 0 0 0 1
Sum of each orthogonal contrast should be zero: peaknmda
sum
WT_vs_Mutants 0
GOF1_vs_LOF12 0
LOF1_vs_LOF2 0
LOF2 0
GOF1 0
Matrix of contrasts on mutation: peaknmda
mutation WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT -0.83 0.0 0.00 0.0 0.0
C436R 0.17 -0.4 -0.33 -0.5 0.0
T531M 0.17 -0.4 -0.33 0.5 0.0
R518H 0.17 -0.4 0.67 0.0 0.0
K669N 0.17 0.6 0.00 0.0 -0.5
L812M 0.17 0.6 0.00 0.0 0.5
Matrix of contrasts on transfection: peaknmda
transfection contrast
- -0.5
+ 0.5
ANOVA table (Type III Wald F tests with Kenward-Roger df) and Bayes factors for fixed effects with interaction source split into orthogonal contrasts: peaknmda
Source F Df Df.res Pr(>F) BF
mutation 0.72 5 19.8 .615 0.472
transfection 78.02 1 119.0 <.001 7.94e+11
mutation:transfection 0.87 5 119.0 .502 0.0838
mutationWT_vs_Mutants:transfection1 2.47 1 119.0 .118
mutationGOF1_vs_LOF12:transfection1 1.88 1 119.0 .173
mutationLOF1_vs_LOF2:transfection1 0.25 1 119.0 .617
mutationLOF2:transfection1 0.00 1 119.0 .992
mutationGOF1:transfection1 0.14 1 119.0 .711
Intraclass correlation coefficients for random effects: peaknmda
Group ICC N
pair:(slice:animal) 0.245 125
slice:animal 0.224 78
animal 0.369 27
residual 0.161 250
Estimated marginal means with 95% confidence intervals: peaknmda
mutation transfection df response n lower.CL upper.CL
WT - 17.63 145.50 18 69.13 306.22
C436R - 29.14 106.83 17 59.12 193.01
T531M - 19.64 178.67 17 83.60 381.88
R518H - 22.44 113.63 17 57.88 223.07
K669N - 19.51 88.64 29 49.28 159.44
L812M - 21.18 137.25 27 78.80 239.05
WT + 17.63 115.06 18 54.67 242.16
C436R + 29.14 67.30 17 37.25 121.59
T531M + 19.64 112.75 17 52.75 240.98
R518H + 22.44 66.56 17 33.91 130.67
K669N + 19.51 60.66 29 33.73 109.12
L812M + 21.18 98.65 27 56.64 171.82
[1] “Overall average of peaknmda for untransfected neurons: 125.13”
Estimated marginal means with 95% confidence intervals for transfected/untransfected ratios: peaknmda
contrast mutation df ratio lower.CL upper.CL
(+) / (-) WT 119 0.79 0.63 1.00
(+) / (-) C436R 119 0.63 0.50 0.80
(+) / (-) T531M 119 0.63 0.50 0.80
(+) / (-) R518H 119 0.59 0.46 0.74
(+) / (-) K669N 119 0.68 0.57 0.82
(+) / (-) L812M 119 0.72 0.60 0.87
95% confidence intervals for contrasts: peaknmda
mutation_trt.vs.ctrl transfection_trt.vs.ctrl df ratio lower.CL upper.CL
C436R / WT (+) / (-) 119 0.80 0.57 1.11
T531M / WT (+) / (-) 119 0.80 0.57 1.11
R518H / WT (+) / (-) 119 0.74 0.53 1.03
K669N / WT (+) / (-) 119 0.87 0.65 1.16
L812M / WT (+) / (-) 119 0.91 0.68 1.22
Standardized effect sizes (r) for contrasts: peaknmda
mutation transfection n r 95% CI
C436R / WT (+) / (-) 125 -0.12 [-0.29, 0.05]
T531M / WT (+) / (-) 125 -0.12 [-0.29, 0.05]
R518H / WT (+) / (-) 125 -0.16 [-0.33, 0.01]
K669N / WT (+) / (-) 125 -0.09 [-0.26, 0.09]
L812M / WT (+) / (-) 125 -0.06 [-0.23, 0.12]

Analysis of decaynmda

All off-diagonal elements in correlation matrix of orthogonal contrasts should be zero: decaynmda
WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT_vs_Mutants 1 0 0 0 0
GOF1_vs_LOF12 0 1 0 0 0
LOF1_vs_LOF2 0 0 1 0 0
LOF2 0 0 0 1 0
GOF1 0 0 0 0 1
Sum of each orthogonal contrast should be zero: decaynmda
sum
WT_vs_Mutants 0
GOF1_vs_LOF12 0
LOF1_vs_LOF2 0
LOF2 0
GOF1 0
Matrix of contrasts on mutation: decaynmda
mutation WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT -0.83 0.0 0.00 0.0 0.0
C436R 0.17 -0.4 -0.33 -0.5 0.0
T531M 0.17 -0.4 -0.33 0.5 0.0
R518H 0.17 -0.4 0.67 0.0 0.0
K669N 0.17 0.6 0.00 0.0 -0.5
L812M 0.17 0.6 0.00 0.0 0.5
Matrix of contrasts on transfection: decaynmda
transfection contrast
- -0.5
+ 0.5
ANOVA table (Type III Wald F tests with Kenward-Roger df) and Bayes factors for fixed effects with interaction source split into orthogonal contrasts: decaynmda
Source F Df Df.res Pr(>F) BF
mutation 3.06 5 19.28 .034 1.11
transfection 179.57 1 119.00 <.001 3.11e+22
mutation:transfection 12.09 5 119.00 <.001 3.43e+08
mutationWT_vs_Mutants:transfection1 37.09 1 119.00 <.001
mutationGOF1_vs_LOF12:transfection1 28.34 1 119.00 <.001
mutationLOF1_vs_LOF2:transfection1 0.13 1 119.00 .723
mutationLOF2:transfection1 0.23 1 119.00 .633
mutationGOF1:transfection1 0.12 1 119.00 .733
Intraclass correlation coefficients for random effects: decaynmda
Group ICC N
pair:(slice:animal) 0.044 125
slice:animal 0.118 78
animal 0.158 27
residual 0.680 250
Estimated marginal means with 95% confidence intervals: decaynmda
mutation transfection df response n lower.CL upper.CL
WT - 22.80 103.13 18 83.82 126.90
C436R - 50.01 90.07 17 75.20 107.88
T531M - 25.76 97.89 17 79.13 121.08
R518H - 34.13 91.10 17 74.89 110.81
K669N - 25.42 87.30 29 74.08 102.87
L812M - 29.56 86.00 27 73.29 100.92
WT + 22.80 100.62 18 81.77 123.81
C436R + 50.01 176.46 17 147.33 211.34
T531M + 25.76 203.51 17 164.52 251.74
R518H + 34.13 176.94 17 145.47 215.23
K669N + 25.42 117.76 29 99.93 138.77
L812M + 29.56 119.93 27 102.19 140.74
[1] “Overall average of decaynmda for untransfected neurons: 92.39”
Estimated marginal means with 95% confidence intervals for transfected/untransfected ratios: decaynmda
contrast mutation df ratio lower.CL upper.CL
(+) / (-) WT 119 0.98 0.82 1.16
(+) / (-) C436R 119 1.96 1.65 2.33
(+) / (-) T531M 119 2.08 1.75 2.47
(+) / (-) R518H 119 1.94 1.63 2.31
(+) / (-) K669N 119 1.35 1.18 1.54
(+) / (-) L812M 119 1.39 1.21 1.60
95% confidence intervals for contrasts: decaynmda
mutation_trt.vs.ctrl transfection_trt.vs.ctrl df ratio lower.CL upper.CL
C436R / WT (+) / (-) 119 2.01 1.58 2.56
T531M / WT (+) / (-) 119 2.13 1.67 2.72
R518H / WT (+) / (-) 119 1.99 1.56 2.54
K669N / WT (+) / (-) 119 1.38 1.11 1.71
L812M / WT (+) / (-) 119 1.43 1.15 1.78
Standardized effect sizes (r) for contrasts: decaynmda
mutation transfection n r 95% CI
C436R / WT (+) / (-) 125 0.46 [0.31, 0.59]
T531M / WT (+) / (-) 125 0.49 [0.35, 0.61]
R518H / WT (+) / (-) 125 0.46 [0.31, 0.59]
K669N / WT (+) / (-) 125 0.26 [0.09, 0.42]
L812M / WT (+) / (-) 125 0.28 [0.11, 0.44]

Analysis of dt50nmda

All off-diagonal elements in correlation matrix of orthogonal contrasts should be zero: dt50nmda
WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT_vs_Mutants 1 0 0 0 0
GOF1_vs_LOF12 0 1 0 0 0
LOF1_vs_LOF2 0 0 1 0 0
LOF2 0 0 0 1 0
GOF1 0 0 0 0 1
Sum of each orthogonal contrast should be zero: dt50nmda
sum
WT_vs_Mutants 0
GOF1_vs_LOF12 0
LOF1_vs_LOF2 0
LOF2 0
GOF1 0
Matrix of contrasts on mutation: dt50nmda
mutation WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT -0.83 0.0 0.00 0.0 0.0
C436R 0.17 -0.4 -0.33 -0.5 0.0
T531M 0.17 -0.4 -0.33 0.5 0.0
R518H 0.17 -0.4 0.67 0.0 0.0
K669N 0.17 0.6 0.00 0.0 -0.5
L812M 0.17 0.6 0.00 0.0 0.5
Matrix of contrasts on transfection: dt50nmda
transfection contrast
- -0.5
+ 0.5
ANOVA table (Type III Wald F tests with Kenward-Roger df) and Bayes factors for fixed effects with interaction source split into orthogonal contrasts: dt50nmda
Source F Df Df.res Pr(>F) BF
mutation 6.33 5 18.73 .001 6.59
transfection 439.09 1 119.00 <.001 2.77e+39
mutation:transfection 17.03 5 119.00 <.001 1.5e+11
mutationWT_vs_Mutants:transfection1 49.74 1 119.00 <.001
mutationGOF1_vs_LOF12:transfection1 29.18 1 119.00 <.001
mutationLOF1_vs_LOF2:transfection1 2.60 1 119.00 .110
mutationLOF2:transfection1 4.77 1 119.00 .031
mutationGOF1:transfection1 5.00 1 119.00 .027
Intraclass correlation coefficients for random effects: dt50nmda
Group ICC N
pair:(slice:animal) 0.148 125
slice:animal 0.223 78
animal 0.073 27
residual 0.556 250
Estimated marginal means with 95% confidence intervals: dt50nmda
mutation transfection df response n lower.CL upper.CL
WT - 19.92 42.66 18 35.65 51.04
C436R - 52.32 40.44 17 34.29 47.70
T531M - 24.57 45.34 17 37.58 54.70
R518H - 35.25 42.41 17 35.60 50.53
K669N - 24.43 37.67 29 32.60 43.54
L812M - 26.65 37.11 27 32.23 42.74
WT + 19.92 48.66 18 40.67 58.22
C436R + 52.32 86.56 17 73.39 102.09
T531M + 24.57 122.73 17 101.72 148.08
R518H + 35.25 87.87 17 73.75 104.69
K669N + 24.43 56.59 29 48.97 65.40
L812M + 26.65 67.24 27 58.39 77.44
[1] “Overall average of dt50nmda for untransfected neurons: 40.84”
Estimated marginal means with 95% confidence intervals for transfected/untransfected ratios: dt50nmda
contrast mutation df ratio lower.CL upper.CL
(+) / (-) WT 119 1.14 0.99 1.32
(+) / (-) C436R 119 2.14 1.84 2.49
(+) / (-) T531M 119 2.71 2.33 3.15
(+) / (-) R518H 119 2.07 1.78 2.41
(+) / (-) K669N 119 1.50 1.34 1.69
(+) / (-) L812M 119 1.81 1.61 2.04
95% confidence intervals for contrasts: dt50nmda
mutation_trt.vs.ctrl transfection_trt.vs.ctrl df ratio lower.CL upper.CL
C436R / WT (+) / (-) 119 1.88 1.52 2.31
T531M / WT (+) / (-) 119 2.37 1.92 2.93
R518H / WT (+) / (-) 119 1.82 1.47 2.24
K669N / WT (+) / (-) 119 1.32 1.09 1.59
L812M / WT (+) / (-) 119 1.59 1.31 1.92
Standardized effect sizes (r) for contrasts: dt50nmda
mutation transfection n r 95% CI
C436R / WT (+) / (-) 125 0.48 [0.33, 0.60]
T531M / WT (+) / (-) 125 0.60 [0.47, 0.70]
R518H / WT (+) / (-) 125 0.46 [0.31, 0.59]
K669N / WT (+) / (-) 125 0.26 [0.09, 0.42]
L812M / WT (+) / (-) 125 0.41 [0.25, 0.54]

Analysis of chargenmda

All off-diagonal elements in correlation matrix of orthogonal contrasts should be zero: chargenmda
WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT_vs_Mutants 1 0 0 0 0
GOF1_vs_LOF12 0 1 0 0 0
LOF1_vs_LOF2 0 0 1 0 0
LOF2 0 0 0 1 0
GOF1 0 0 0 0 1
Sum of each orthogonal contrast should be zero: chargenmda
sum
WT_vs_Mutants 0
GOF1_vs_LOF12 0
LOF1_vs_LOF2 0
LOF2 0
GOF1 0
Matrix of contrasts on mutation: chargenmda
mutation WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT -0.83 0.0 0.00 0.0 0.0
C436R 0.17 -0.4 -0.33 -0.5 0.0
T531M 0.17 -0.4 -0.33 0.5 0.0
R518H 0.17 -0.4 0.67 0.0 0.0
K669N 0.17 0.6 0.00 0.0 -0.5
L812M 0.17 0.6 0.00 0.0 0.5
Matrix of contrasts on transfection: chargenmda
transfection contrast
- -0.5
+ 0.5
ANOVA table (Type III Wald F tests with Kenward-Roger df) and Bayes factors for fixed effects with interaction source split into orthogonal contrasts: chargenmda
Source F Df Df.res Pr(>F) BF
mutation 1.05 5 19.48 .420 0.547
transfection 0.00 1 119.00 .991 0.141
mutation:transfection 2.13 5 119.00 .067 0.632
mutationWT_vs_Mutants:transfection1 4.18 1 119.00 .043
mutationGOF1_vs_LOF12:transfection1 4.26 1 119.00 .041
mutationLOF1_vs_LOF2:transfection1 2.47 1 119.00 .119
mutationLOF2:transfection1 0.17 1 119.00 .682
mutationGOF1:transfection1 0.32 1 119.00 .572
Intraclass correlation coefficients for random effects: chargenmda
Group ICC N
pair:(slice:animal) 0.326 125
slice:animal 0.225 78
animal 0.267 27
residual 0.183 250
Estimated marginal means with 95% confidence intervals: chargenmda
mutation transfection df response n lower.CL upper.CL
WT - 16.95 18.79 18 8.32 42.43
C436R - 31.70 10.29 17 5.26 20.11
T531M - 19.35 22.68 17 9.84 52.31
R518H - 23.37 13.54 17 6.40 28.68
K669N - 19.22 9.45 29 4.95 18.01
L812M - 20.99 16.78 27 9.06 31.07
WT + 16.95 14.29 18 6.33 32.26
C436R + 31.70 12.69 17 6.49 24.81
T531M + 19.35 30.58 17 13.26 70.51
R518H + 23.37 13.02 17 6.15 27.56
K669N + 19.22 9.01 29 4.72 17.17
L812M + 20.99 14.54 27 7.85 26.92
[1] “Overall average of chargenmda for untransfected neurons: 14.53”
Estimated marginal means with 95% confidence intervals for transfected/untransfected ratios: chargenmda
contrast mutation df ratio lower.CL upper.CL
(+) / (-) WT 119 0.76 0.57 1.02
(+) / (-) C436R 119 1.23 0.91 1.67
(+) / (-) T531M 119 1.35 1.00 1.82
(+) / (-) R518H 119 0.96 0.71 1.30
(+) / (-) K669N 119 0.95 0.76 1.20
(+) / (-) L812M 119 0.87 0.68 1.10
95% confidence intervals for contrasts: chargenmda
mutation_trt.vs.ctrl transfection_trt.vs.ctrl df ratio lower.CL upper.CL
C436R / WT (+) / (-) 119 1.62 1.06 2.47
T531M / WT (+) / (-) 119 1.77 1.16 2.70
R518H / WT (+) / (-) 119 1.26 0.83 1.93
K669N / WT (+) / (-) 119 1.25 0.86 1.82
L812M / WT (+) / (-) 119 1.14 0.78 1.67
Standardized effect sizes (r) for contrasts: chargenmda
mutation transfection n r 95% CI
C436R / WT (+) / (-) 125 0.20 [0.03, 0.37]
T531M / WT (+) / (-) 125 0.24 [0.07, 0.40]
R518H / WT (+) / (-) 125 0.10 [-0.08, 0.27]
K669N / WT (+) / (-) 125 0.11 [-0.07, 0.28]
L812M / WT (+) / (-) 125 0.06 [-0.11, 0.24]

Analysis of peakampa

All off-diagonal elements in correlation matrix of orthogonal contrasts should be zero: peakampa
WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT_vs_Mutants 1 0 0 0 0
GOF1_vs_LOF12 0 1 0 0 0
LOF1_vs_LOF2 0 0 1 0 0
LOF2 0 0 0 1 0
GOF1 0 0 0 0 1
Sum of each orthogonal contrast should be zero: peakampa
sum
WT_vs_Mutants 0
GOF1_vs_LOF12 0
LOF1_vs_LOF2 0
LOF2 0
GOF1 0
Matrix of contrasts on mutation: peakampa
mutation WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT -0.83 0.0 0.00 0.0 0.0
C436R 0.17 -0.4 -0.33 -0.5 0.0
T531M 0.17 -0.4 -0.33 0.5 0.0
R518H 0.17 -0.4 0.67 0.0 0.0
K669N 0.17 0.6 0.00 0.0 -0.5
L812M 0.17 0.6 0.00 0.0 0.5
Matrix of contrasts on transfection: peakampa
transfection contrast
- -0.5
+ 0.5
ANOVA table (Type III Wald F tests with Kenward-Roger df) and Bayes factors for fixed effects with interaction source split into orthogonal contrasts: peakampa
Source F Df Df.res Pr(>F) BF
mutation 2.66 5 19.95 .053 2.14
transfection 2.38 1 119.00 .125 1.26
mutation:transfection 1.49 5 119.00 .199 0.276
mutationWT_vs_Mutants:transfection1 0.04 1 119.00 .839
mutationGOF1_vs_LOF12:transfection1 7.23 1 119.00 .008
mutationLOF1_vs_LOF2:transfection1 0.15 1 119.00 .700
mutationLOF2:transfection1 0.05 1 119.00 .819
mutationGOF1:transfection1 0.01 1 119.00 .928
Intraclass correlation coefficients for random effects: peakampa
Group ICC N
pair:(slice:animal) 0.266 125
slice:animal 0.000 78
animal 0.403 27
residual 0.331 250
Estimated marginal means with 95% confidence intervals: peakampa
mutation transfection df response n lower.CL upper.CL
WT - 20.13 9.85 18 5.24 18.50
C436R - 31.09 14.82 17 9.05 24.29
T531M - 20.59 14.09 17 7.48 26.55
R518H - 23.70 16.74 17 9.51 29.46
K669N - 20.47 34.06 29 20.86 55.62
L812M - 23.83 28.93 27 18.11 46.20
WT + 20.13 8.81 18 4.69 16.56
C436R + 31.09 16.25 17 9.92 26.62
T531M + 20.59 14.73 17 7.82 27.75
R518H + 23.70 16.73 17 9.51 29.44
K669N + 20.47 26.26 29 16.08 42.89
L812M + 23.83 21.98 27 13.76 35.11
[1] “Overall average of peakampa for untransfected neurons: 17.99”
Estimated marginal means with 95% confidence intervals for transfected/untransfected ratios: peakampa
contrast mutation df ratio lower.CL upper.CL
(+) / (-) WT 119 0.89 0.68 1.18
(+) / (-) C436R 119 1.10 0.82 1.46
(+) / (-) T531M 119 1.05 0.78 1.39
(+) / (-) R518H 119 1.00 0.75 1.33
(+) / (-) K669N 119 0.77 0.62 0.96
(+) / (-) L812M 119 0.76 0.60 0.96
95% confidence intervals for contrasts: peakampa
mutation_trt.vs.ctrl transfection_trt.vs.ctrl df ratio lower.CL upper.CL
C436R / WT (+) / (-) 119 1.22 0.82 1.83
T531M / WT (+) / (-) 119 1.17 0.78 1.75
R518H / WT (+) / (-) 119 1.12 0.75 1.67
K669N / WT (+) / (-) 119 0.86 0.60 1.23
L812M / WT (+) / (-) 119 0.85 0.59 1.22
Standardized effect sizes (r) for contrasts: peakampa
mutation transfection n r 95% CI
C436R / WT (+) / (-) 125 0.09 [-0.09, 0.26]
T531M / WT (+) / (-) 125 0.07 [-0.11, 0.24]
R518H / WT (+) / (-) 125 0.05 [-0.13, 0.22]
K669N / WT (+) / (-) 125 -0.08 [-0.25, 0.10]
L812M / WT (+) / (-) 125 -0.08 [-0.25, 0.10]

Analysis of decayampa

All off-diagonal elements in correlation matrix of orthogonal contrasts should be zero: decayampa
WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT_vs_Mutants 1 0 0 0 0
GOF1_vs_LOF12 0 1 0 0 0
LOF1_vs_LOF2 0 0 1 0 0
LOF2 0 0 0 1 0
GOF1 0 0 0 0 1
Sum of each orthogonal contrast should be zero: decayampa
sum
WT_vs_Mutants 0
GOF1_vs_LOF12 0
LOF1_vs_LOF2 0
LOF2 0
GOF1 0
Matrix of contrasts on mutation: decayampa
mutation WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT -0.83 0.0 0.00 0.0 0.0
C436R 0.17 -0.4 -0.33 -0.5 0.0
T531M 0.17 -0.4 -0.33 0.5 0.0
R518H 0.17 -0.4 0.67 0.0 0.0
K669N 0.17 0.6 0.00 0.0 -0.5
L812M 0.17 0.6 0.00 0.0 0.5
Matrix of contrasts on transfection: decayampa
transfection contrast
- -0.5
+ 0.5
ANOVA table (Type III Wald F tests with Kenward-Roger df) and Bayes factors for fixed effects with interaction source split into orthogonal contrasts: decayampa
Source F Df Df.res Pr(>F) BF
mutation 0.98 5 20.26 .454 0.518
transfection 1.01 1 119.00 .317 0.57
mutation:transfection 3.36 5 119.00 .007 8.87
mutationWT_vs_Mutants:transfection1 0.75 1 119.00 .389
mutationGOF1_vs_LOF12:transfection1 13.88 1 119.00 <.001
mutationLOF1_vs_LOF2:transfection1 1.03 1 119.00 .312
mutationLOF2:transfection1 0.10 1 119.00 .753
mutationGOF1:transfection1 1.73 1 119.00 .191
Intraclass correlation coefficients for random effects: decayampa
Group ICC N
pair:(slice:animal) 0.070 125
slice:animal 0.197 78
animal 0.522 27
residual 0.211 250
Estimated marginal means with 95% confidence intervals: decayampa
mutation transfection df response n lower.CL upper.CL
WT - 19.17 7.20 18 3.66 14.14
C436R - 27.19 7.07 17 4.22 11.83
T531M - 20.67 13.12 17 6.61 26.03
R518H - 22.30 7.07 17 3.87 12.91
K669N - 20.54 4.71 29 2.77 8.00
L812M - 21.99 5.78 27 3.53 9.48
WT + 19.17 8.18 18 4.16 16.06
C436R + 27.19 5.91 17 3.53 9.89
T531M + 20.67 11.53 17 5.81 22.88
R518H + 22.30 6.97 17 3.82 12.72
K669N + 20.54 5.44 29 3.20 9.24
L812M + 21.99 7.85 27 4.79 12.87
[1] “Overall average of decayampa for untransfected neurons: 7.10”
Estimated marginal means with 95% confidence intervals for transfected/untransfected ratios: decayampa
contrast mutation df ratio lower.CL upper.CL
(+) / (-) WT 119 1.14 0.92 1.41
(+) / (-) C436R 119 0.84 0.67 1.04
(+) / (-) T531M 119 0.88 0.70 1.10
(+) / (-) R518H 119 0.99 0.79 1.23
(+) / (-) K669N 119 1.15 0.97 1.37
(+) / (-) L812M 119 1.36 1.14 1.62
95% confidence intervals for contrasts: decayampa
mutation_trt.vs.ctrl transfection_trt.vs.ctrl df ratio lower.CL upper.CL
C436R / WT (+) / (-) 119 0.74 0.54 1.00
T531M / WT (+) / (-) 119 0.77 0.57 1.05
R518H / WT (+) / (-) 119 0.87 0.64 1.18
K669N / WT (+) / (-) 119 1.02 0.77 1.34
L812M / WT (+) / (-) 119 1.20 0.91 1.58
Standardized effect sizes (r) for contrasts: decayampa
mutation transfection n r 95% CI
C436R / WT (+) / (-) 125 -0.18 [-0.34, -0.00]
T531M / WT (+) / (-) 125 -0.15 [-0.32, 0.03]
R518H / WT (+) / (-) 125 -0.08 [-0.26, 0.09]
K669N / WT (+) / (-) 125 0.01 [-0.17, 0.19]
L812M / WT (+) / (-) 125 0.12 [-0.06, 0.29]

Analysis of dt50ampa

All off-diagonal elements in correlation matrix of orthogonal contrasts should be zero: dt50ampa
WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT_vs_Mutants 1 0 0 0 0
GOF1_vs_LOF12 0 1 0 0 0
LOF1_vs_LOF2 0 0 1 0 0
LOF2 0 0 0 1 0
GOF1 0 0 0 0 1
Sum of each orthogonal contrast should be zero: dt50ampa
sum
WT_vs_Mutants 0
GOF1_vs_LOF12 0
LOF1_vs_LOF2 0
LOF2 0
GOF1 0
Matrix of contrasts on mutation: dt50ampa
mutation WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT -0.83 0.0 0.00 0.0 0.0
C436R 0.17 -0.4 -0.33 -0.5 0.0
T531M 0.17 -0.4 -0.33 0.5 0.0
R518H 0.17 -0.4 0.67 0.0 0.0
K669N 0.17 0.6 0.00 0.0 -0.5
L812M 0.17 0.6 0.00 0.0 0.5
Matrix of contrasts on transfection: dt50ampa
transfection contrast
- -0.5
+ 0.5
ANOVA table (Type III Wald F tests with Kenward-Roger df) and Bayes factors for fixed effects with interaction source split into orthogonal contrasts: dt50ampa
Source F Df Df.res Pr(>F) BF
mutation 1.86 5 19.55 .147 0.767
transfection 1.49 1 119.00 .225 0.189
mutation:transfection 1.04 5 119.00 .397 0.151
mutationWT_vs_Mutants:transfection1 0.04 1 119.00 .836
mutationGOF1_vs_LOF12:transfection1 3.91 1 119.00 .050
mutationLOF1_vs_LOF2:transfection1 0.36 1 119.00 .551
mutationLOF2:transfection1 0.70 1 119.00 .405
mutationGOF1:transfection1 0.05 1 119.00 .819
Intraclass correlation coefficients for random effects: dt50ampa
Group ICC N
pair:(slice:animal) 0.007 125
slice:animal 0.278 78
animal 0.239 27
residual 0.477 250
Estimated marginal means with 95% confidence intervals: dt50ampa
mutation transfection df response n lower.CL upper.CL
WT - 19.37 5.28 18 3.73 7.46
C436R - 37.90 3.56 17 2.67 4.76
T531M - 22.68 6.26 17 4.38 8.95
R518H - 27.30 4.10 17 2.97 5.64
K669N - 22.47 3.37 29 2.56 4.44
L812M - 24.31 3.86 27 2.97 5.02
WT + 19.37 4.92 18 3.48 6.95
C436R + 37.90 3.30 17 2.47 4.40
T531M + 22.68 5.10 17 3.57 7.29
R518H + 27.30 3.85 17 2.80 5.31
K669N + 22.47 3.62 29 2.75 4.77
L812M + 24.31 4.03 27 3.10 5.24
[1] “Overall average of dt50ampa for untransfected neurons: 4.30”
Estimated marginal means with 95% confidence intervals for transfected/untransfected ratios: dt50ampa
contrast mutation df ratio lower.CL upper.CL
(+) / (-) WT 119 0.93 0.76 1.15
(+) / (-) C436R 119 0.93 0.75 1.15
(+) / (-) T531M 119 0.81 0.66 1.01
(+) / (-) R518H 119 0.94 0.76 1.17
(+) / (-) K669N 119 1.07 0.91 1.26
(+) / (-) L812M 119 1.04 0.88 1.24
95% confidence intervals for contrasts: dt50ampa
mutation_trt.vs.ctrl transfection_trt.vs.ctrl df ratio lower.CL upper.CL
C436R / WT (+) / (-) 119 0.99 0.74 1.34
T531M / WT (+) / (-) 119 0.87 0.65 1.18
R518H / WT (+) / (-) 119 1.01 0.75 1.36
K669N / WT (+) / (-) 119 1.15 0.88 1.50
L812M / WT (+) / (-) 119 1.12 0.86 1.46
Standardized effect sizes (r) for contrasts: dt50ampa
mutation transfection n r 95% CI
C436R / WT (+) / (-) 125 0.00 [-0.18, 0.17]
T531M / WT (+) / (-) 125 -0.08 [-0.25, 0.10]
R518H / WT (+) / (-) 125 0.00 [-0.17, 0.18]
K669N / WT (+) / (-) 125 0.10 [-0.08, 0.27]
L812M / WT (+) / (-) 125 0.08 [-0.10, 0.25]

Analysis of chargeampa

All off-diagonal elements in correlation matrix of orthogonal contrasts should be zero: chargeampa
WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT_vs_Mutants 1 0 0 0 0
GOF1_vs_LOF12 0 1 0 0 0
LOF1_vs_LOF2 0 0 1 0 0
LOF2 0 0 0 1 0
GOF1 0 0 0 0 1
Sum of each orthogonal contrast should be zero: chargeampa
sum
WT_vs_Mutants 0
GOF1_vs_LOF12 0
LOF1_vs_LOF2 0
LOF2 0
GOF1 0
Matrix of contrasts on mutation: chargeampa
mutation WT_vs_Mutants GOF1_vs_LOF12 LOF1_vs_LOF2 LOF2 GOF1
WT -0.83 0.0 0.00 0.0 0.0
C436R 0.17 -0.4 -0.33 -0.5 0.0
T531M 0.17 -0.4 -0.33 0.5 0.0
R518H 0.17 -0.4 0.67 0.0 0.0
K669N 0.17 0.6 0.00 0.0 -0.5
L812M 0.17 0.6 0.00 0.0 0.5
Matrix of contrasts on transfection: chargeampa
transfection contrast
- -0.5
+ 0.5
ANOVA table (Type III Wald F tests with Kenward-Roger df) and Bayes factors for fixed effects with interaction source split into orthogonal contrasts: chargeampa
Source F Df Df.res Pr(>F) BF
mutation 3.87 5 18.71 .014 2.78
transfection 0.81 1 119.00 .371 0.236
mutation:transfection 0.23 5 119.00 .951 0.0328
mutationWT_vs_Mutants:transfection1 0.28 1 119.00 .599
mutationGOF1_vs_LOF12:transfection1 0.30 1 119.00 .586
mutationLOF1_vs_LOF2:transfection1 0.09 1 119.00 .769
mutationLOF2:transfection1 0.16 1 119.00 .685
mutationGOF1:transfection1 0.22 1 119.00 .639
Intraclass correlation coefficients for random effects: chargeampa
Group ICC N
pair:(slice:animal) 0.454 125
slice:animal 0.033 78
animal 0.101 27
residual 0.413 250
Estimated marginal means with 95% confidence intervals: chargeampa
mutation transfection df response n lower.CL upper.CL
WT - 19.30 0.62 18 0.42 0.92
C436R - 46.13 0.84 17 0.59 1.20
T531M - 21.41 1.33 17 0.89 1.99
R518H - 30.44 0.86 17 0.59 1.25
K669N - 20.86 1.19 29 0.87 1.63
L812M - 25.13 1.47 27 1.07 2.00
WT + 19.30 0.63 18 0.43 0.94
C436R + 46.13 0.79 17 0.55 1.12
T531M + 21.41 1.36 17 0.91 2.03
R518H + 30.44 0.80 17 0.55 1.17
K669N + 20.86 1.04 29 0.76 1.42
L812M + 25.13 1.38 27 1.01 1.88
[1] “Overall average of chargeampa for untransfected neurons: 1.01”
Estimated marginal means with 95% confidence intervals for transfected/untransfected ratios: chargeampa
contrast mutation df ratio lower.CL upper.CL
(+) / (-) WT 119 1.02 0.77 1.34
(+) / (-) C436R 119 0.94 0.71 1.25
(+) / (-) T531M 119 1.02 0.77 1.35
(+) / (-) R518H 119 0.93 0.70 1.23
(+) / (-) K669N 119 0.87 0.70 1.08
(+) / (-) L812M 119 0.94 0.75 1.18
95% confidence intervals for contrasts: chargeampa
mutation_trt.vs.ctrl transfection_trt.vs.ctrl df ratio lower.CL upper.CL
C436R / WT (+) / (-) 119 0.92 0.62 1.37
T531M / WT (+) / (-) 119 1.00 0.68 1.49
R518H / WT (+) / (-) 119 0.92 0.62 1.36
K669N / WT (+) / (-) 119 0.86 0.60 1.22
L812M / WT (+) / (-) 119 0.92 0.65 1.32
Standardized effect sizes (r) for contrasts: chargeampa
mutation transfection n r 95% CI
C436R / WT (+) / (-) 125 -0.04 [-0.21, 0.14]
T531M / WT (+) / (-) 125 0.00 [-0.17, 0.18]
R518H / WT (+) / (-) 125 -0.04 [-0.21, 0.14]
K669N / WT (+) / (-) 125 -0.08 [-0.25, 0.10]
L812M / WT (+) / (-) 125 -0.04 [-0.21, 0.14]