TUGAS PRAKTIKUM PEMROGRAMAN STATISTIKA
Metode Integral Numerik
library(pracma)Fungsi yang akan digunakan dari setiap metode sebagai berikut :
Metode Trapezoidal
trapezoid <- function(ftn, a, b, n = 100) {
h <- (b-a)/n
x.vec <- seq(a, b, by = h)
f.vec <- sapply(x.vec, ftn) # ftn(x.vec)
Trap <- h*(f.vec[1]/2 + sum(f.vec[2:n]) + f.vec[n+1]/2)
return(Trap)
}Metode Simpson
simpson_n <- function(ftn, a, b, n = 100) {
n <- max(c(2*(n %/% 2), 4))
h <- (b-a)/n
x.vec1 <- seq(a+h, b-h, by = 2*h) # ganjil
x.vec2 <- seq(a+2*h, b-2*h, by = 2*h) # genap
f.vec1 <- sapply(x.vec1, ftn) # ganjil
f.vec2 <- sapply(x.vec2, ftn) # genap
S <- h/3*(ftn(a) + ftn(b) + 4*sum(f.vec1) + 2*sum(f.vec2))
return(S)
}Metode Gauss Quadrature
# untuk n=2
gaussLegendre(n=2,a=-1,b=1)## $x
## [1] -0.5773503 0.5773503
##
## $w
## [1] 1 1
# untuk n=3
gaussLegendre(n=3,a=-1,b=1)## $x
## [1] -7.745967e-01 8.881784e-16 7.745967e-01
##
## $w
## [1] 0.5555556 0.8888889 0.5555556
# untuk n=4
gaussLegendre(n=4,a=-1,b=1)## $x
## [1] -0.8611363 -0.3399810 0.3399810 0.8611363
##
## $w
## [1] 0.3478548 0.6521452 0.6521452 0.3478548
# untuk n=5
gaussLegendre(n=5,a=-1,b=1)## $x
## [1] -9.061798e-01 -5.384693e-01 6.661338e-16 5.384693e-01 9.061798e-01
##
## $w
## [1] 0.2369269 0.4786287 0.5688889 0.4786287 0.2369269
# untuk n=6
gaussLegendre(n=6,a=-1,b=1)## $x
## [1] -0.9324695 -0.6612094 -0.2386192 0.2386192 0.6612094 0.9324695
##
## $w
## [1] 0.1713245 0.3607616 0.4679139 0.4679139 0.3607616 0.1713245
# untuk n=7
gaussLegendre(n=7,a=-1,b=1)## $x
## [1] -9.491079e-01 -7.415312e-01 -4.058452e-01 9.992007e-16 4.058452e-01
## [6] 7.415312e-01 9.491079e-01
##
## $w
## [1] 0.1294850 0.2797054 0.3818301 0.4179592 0.3818301 0.2797054 0.1294850
Soal 1
Diketahui pdf (probability density function) dari distribusi Kumaraswamy adalah sebagai berikut
\(f(x|a,b)=abx^{a-1}(1-x^{(a)})^{b-1}\)
dimana \(x\epsilon(0,1)\)
Jika diketahui a=5 dan b=3
- Hitunglah E(X) dengan menggunakan Metode Trapezoida untuk n=4, Simpson n=4 dan Four-point Gauss Quadrature tanpa menggunakan software apapun. (Boleh diketik ataupun tulisa tangan kemudian difoto)
- Jika diketahui nilai exact \(E(X)= \frac {b \Gamma (1+1/2)\Gamma(b)}{\Gamma(1+(1/a) +b)}\) ,metode mana yang paling mendekati untuk menghitung nilai E(X) dengan toleransi 0,0001? Gunakan R!
Jawaban
Soal 1
Bagian a
Secara Manual
Diketahui fungsi pdf yaitu
\(f(x|a,b)=abx^{a-1}(1-x^{(a)})^{b-1}\)
dimana, \(x\epsilon(0,1)\)
dan diketahui nilai a= 5 dan b=3
maka;
\(f(x|a,b)=abx^{a-1}(1-x^{(a)})^{b-1}\)
\(f(x|5,3)=5*3x^{5-1}(1-x^{(5)})^{3-1}\)
\(f(x|5,3)=15x^4(1-x^{(5)})^{2}\)
untuk E(X) yaitu
\(E(X)= \int_{-\infty}^{\infty} x f(x) dx\)
\(E(X)= \int_{0}^{1}x(15x^4(1-x^{(5)})^{2})dx\)
\(E(X)= \int_{0}^{1}15x^5(1-x^{(5)})^{2}dx\)
sehingga fungsi E(X) = \(15x^5(1-x^{(5)})^{2}\) dengan batas yaitu [0,1]
Metode Trapezoida
Setelah diperoleh fungsi E(X) = \(15x^5(1-x^{(5)})^{2}\) akan dilakukan perhitungan nilai E(X) (untuk selanjutnya \(f(x)\) yang digunakan adalah fungsi \(E(X)\)) dengan metode Trapezoida sebagai berikut :
diketahui \(n=4\), untuk panjang sub interval yaitu
\(h=\frac {1-0}{4} =1/4\)
maka bentuk dari metode trapezoidal adalah
\(T_4= \frac {h}{2}[f(x_0)+2f(x_1)+2f(x_2)+2f(x_3)+f(x_4)]\)
menghitung setiap \(f(x)\) pada setiap \(x_i\)
\(f(x_0)\)\(=f(0)=15(0)^5(1-0^5)^2= 0\)
\(f(x_1)\)\(=f(0,25)=15(0,25)^5(1-0,25^5)^2= 0,01461984\)
\(f(x_2)\)\(=f(0,50)=15(0,50)^5(1-0,50^5)^2= 0,43991089\)
\(f(x_3)\)\(=f(0,75)=15(0,75)^5(1-0,75^5)^2= 2,07061679\)
\(f(x_4)\)\(=f(1)=15(1)^5(1-1^5)^2= 0\)
karena, \(h=1/4\) diperoleh
\(T_4= \frac {1/4}{2}[0+2*0,01461984+2*0,43991089 + 2*2,07061679+0]= \frac{1}{8} (5,05029503) = 0,63128688\)
sehingga,
\(\int_{0}^{1}15x^5(1-x^{(5)})^{2}dx \approx T_4= 0,63128688\)
jika dibandingkan dengan hasil yang diperoleh secara exact adalah
\(\int_{0}^{1}15x^5(1-x^{(5)})^{2}dx\) = \([\frac{15x^16}{16} - \frac{30x^10}{11}+\frac{5x^6}{6}]_0^1\) = \(\frac {125}{176}= 0,710227272\)
Metode Simpson
Setelah diperoleh fungsi E(X) = \(15x^5(1-x^{(5)})^{2}\) akan dilakukan perhitungan nilai E(X) dengan metode Simpson sebagai berikut :
diketahui \(n=4\), untuk panjang sub interval yaitu
\(h=\frac {1-0}{4} =1/4\)
maka bentuk dari metode simpson adalah
\(S_4= \frac {h}{3}[f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+f(x_4)]\)
menghitung setiap \(f(x)\) pada setiap \(x_i\)
\(f(x_0)\)\(=f(0)\) \(=15(0)^5(1-0^5)^2= 0\)
\(f(x_1)\)\(=f(0,25)\) \(=15(0,25)^5(1-0,25^5)^2\) \(= 0,01461984\)
\(f(x_2)\)\(=f(0,50)\) \(=15(0,50)^5(1-0,50^5)^2\) \(= 0,43991089\)
\(f(x_3)\)\(=f(0,75)\) \(=15(0,75)^5(1-0,75^5)^2\) \(= 2,07061679\)
\(f(x_4)\)\(=f(1)\) \(=15(1)^5(1-1^5)^2\) \(= 0\)
karena, \(h=1/4\) diperoleh
\(S_4= \frac {1/4}{3}[0+4*0,01461984+2*0,43991089 + 4*2,07061679+0]= \frac{1}{12} (5,05029503) = 0,76839736\)
sehingga,
\(\int_{0}^{1}15x^5(1-x^{(5)})^{2}dx \approx S_4= 0,76839736\)
jika dibandingkan dengan hasil yang diperoleh secara exact adalah
\(\int_{0}^{1}15x^5(1-x^{(5)})^{2}dx\) \(= [\frac{15x^16}{16} - \frac{30x^10}{11}+\frac{5x^6}{6}]_0^1\) \(= \frac {125}{176}= 0,710227272\)
Metode Four-point Gaussian Quadrature
Setelah diperoleh fungsi E(X) = \(15x^5(1-x^{(5)})^{2}\) akan dilakukan perhitungan nilai E(X) dengan metode four-point gaussian quadratur dengan \(n=4\).
Sebelum kita menggunakan nilai-nilai koefisien dan titik gauss, perlu dilakukan transformasi sehingga domain integral menjadi [−1,1].
\(x= \frac {1}{2}[t(b-a)+a+b]=\frac {1}{2} [t(1)+1+0]=\frac {t+1}{2}\)
dan
\(dx= \frac {1}{2}(b-a)dt = \frac{1}{2} (1-0) dt = \frac {1}{2} dt\)
sehingga diperoleh intergarlnya;
\(\int_{0}^{1}15x^5(1-x^{(5)})^{2}dx =\int_{-1}^{1} 15(\frac{t+1}{2})(1-(\frac{t+1}{2})^5)^2 \frac {1}{2} dt\)
\(= \int_{-1}^{1} \frac {1}{2}(15(\frac{t+1}{2})(1-(\frac{t+1}{2})^5)^2) dt \approx I= C_1 f(t_1)+C_2 f(t_2) + C_3 f(t_3)+C_4 f(t_4)\)
dimana nilai \(I\) yaitu
\(I= 0,3478548f(t_1)+0,6521452f(t_2)+0,65214552f(t_3)+0,3478548f(t_4)\)
dimana,
\(f(t_1)=f(-0,8611363)= \frac{1}{2} (15(\frac{-0,8611363+1}{2})^5(1-(\frac{-0,8611363+1}{2})^5)^2= 1,2102E-05\)
\(f(t_2)=f(-0,339810)= \frac{1}{2} (15(\frac{-0,339810+1}{2})^5(1-(\frac{-0,339810+1}{2})^5)^2= 0,02916387\)
\(f(t_2)=f(0,339810)= \frac{1}{2} (15(\frac{0,339810+1}{2})^5(1-(\frac{0,339810+1}{2})^5)^2= 0,47790891\)
\(f(t_1)=f(0,8611363)= \frac{1}{2} (15(\frac{0,8611363+1}{2})^5(1-(\frac{0,8611363+1}{2})^5)^2= 0,7572665\)
maka diperoleh nilai ,
\(I= 0,3478548*1,2102E-05+0,6521452*0,02916387+0,65214552*0,47790891+0,3478548*0,7572665=0,67910748\)
dan jika dibandingakn dengan nilai exact yaitu
\(\int_{0}^{1}15x^5(1-x^{(5)})^{2}dx \approx I= 0,67910748\)
jika dibandingkan dengan hasil yang diperoleh secara exact adalah
\(\int_{0}^{1}15x^5(1-x^{(5)})^{2}dx\) $= [ - +]_0^1 $ \(= \frac {125}{176}= 0,710227272\)
Dengan Menggunakan R
Berikut dilakukan perbandingan hasil dengan program R,
Mendefisikan fungsi \(E(X)\):
f <- function(x){
15*x^5*(1-x^5)^2
}Metode trapezoida
trapezoid(f,0,1,n = 4)## [1] 0.6312869
trapzfun(f,0,1,maxit = 4)## $value
## [1] 0.7098069
##
## $iter
## [1] 4
##
## $rel.err
## [1] 0.005901199
Metode simpson
simpson_n(f,0,1,n = 4)## [1] 0.7683974
Metode four-point gaussian
jika batas asli a=0,b=1
gL <- gaussLegendre(n = 4,a = 0,1)
Ci <- gL$w # koefisien
Ci## [1] 0.1739274 0.3260726 0.3260726 0.1739274
xi <- gL$x # gauss point
xi## [1] 0.06943184 0.33000948 0.66999052 0.93056816
I <- sum(Ci * f(xi))
I## [1] 0.6792999
Dari pengerjaan secara manual atau menggunakan program R menunjukkan nilai yang sama.
Bagian b
Jika diketahui nilai exact E(X) \(E(X)= \frac {b \Gamma (1+1/2)\Gamma(b)}{\Gamma(1+(1/a) +b)}\), akan di cari nilai E(X) dengan toleransi 0,0001.
#nilai exact E(X)
a = 5
b = 3
E<-(b*gamma (1+(1/a))*gamma(b))/(gamma(1+(1/a)+b))
E## [1] 0.7102273
Metode trapezoida
exact_value=0.7102273
tol <- 0.0001
err <- 1
n = 4
while(err>tol){
res_trap <- trapezoid(f,0,1,n = n)
err <- abs(res_trap-exact_value)
cat("n=",n,", result=",res_trap,", error=",err,"\n",sep = "")
n=n+1
if(n==1000){
break
}
}## n=4, result=0.6312869, error=0.07894042
## n=5, result=0.6738123, error=0.03641497
## n=6, result=0.6914928, error=0.01873454
## n=7, result=0.6997126, error=0.01051473
## n=8, result=0.7039057, error=0.006321603
## n=9, result=0.7062116, error=0.004015656
## n=10, result=0.7075597, error=0.002667593
## n=11, result=0.7083885, error=0.001838822
## n=12, result=0.7089199, error=0.001307439
## n=13, result=0.7092729, error=0.0009544148
## n=14, result=0.7095147, error=0.000712649
## n=15, result=0.7096846, error=0.0005426739
## n=16, result=0.7098069, error=0.0004204042
## n=17, result=0.7098966, error=0.0003306616
## n=18, result=0.7099637, error=0.0002636072
## n=19, result=0.7100146, error=0.0002127014
## n=20, result=0.7100538, error=0.0001734994
## n=21, result=0.7100844, error=0.0001429188
## n=22, result=0.7101085, error=0.0001187833
## n=23, result=0.7101278, error=9.953088e-05
Metode simpson
exact_value=0.7102273
tol <- 0.0001
err <- 1
n = 4
while(err>tol){
res_simp <- simpson_n(f,0,1,n = n)
err <- abs(res_simp-exact_value)
cat("n=",n,", result=",res_simp,", error=",err,"\n",sep = "")
n=n+1
if(n==1000){
break
}
}## n=4, result=0.7683974, error=0.05817006
## n=5, result=0.7683974, error=0.05817006
## n=6, result=0.7497082, error=0.03948094
## n=7, result=0.7497082, error=0.03948094
## n=8, result=0.728112, error=0.01788467
## n=9, result=0.728112, error=0.01788467
## n=10, result=0.7188088, error=0.008581532
## n=11, result=0.7188088, error=0.008581532
## n=12, result=0.7147289, error=0.004501593
## n=13, result=0.7147289, error=0.004501593
## n=14, result=0.712782, error=0.002554712
## n=15, result=0.712782, error=0.002554712
## n=16, result=0.711774, error=0.001546662
## n=17, result=0.711774, error=0.001546662
## n=18, result=0.7112144, error=0.0009870756
## n=19, result=0.7112144, error=0.0009870756
## n=20, result=0.7108852, error=0.0006578651
## n=21, result=0.7108852, error=0.0006578651
## n=22, result=0.7106819, error=0.0004545628
## n=23, result=0.7106819, error=0.0004545628
## n=24, result=0.7105511, error=0.0003237819
## n=25, result=0.7105511, error=0.0003237819
## n=26, result=0.710464, error=0.0002366803
## n=27, result=0.710464, error=0.0002366803
## n=28, result=0.7104042, error=0.0001769138
## n=29, result=0.7104042, error=0.0001769138
## n=30, result=0.7103621, error=0.0001348299
## n=31, result=0.7103621, error=0.0001348299
## n=32, result=0.7103318, error=0.0001045198
## n=33, result=0.7103318, error=0.0001045198
## n=34, result=0.7103096, error=8.225045e-05
Metode four-point gaussian
exact_value=0.7102273
tol <- 0.0001
err <- 1
n = 4
while(err>tol){
gL <- gaussLegendre(n = n,a = 0,1)
Ci <- gL$w # koefisien
xi <- gL$x # gauss point
res_gl <- sum(Ci * f(xi))
err <- abs(res_gl-exact_value)
cat("n=",n,", result=",res_gl,", error=",err,"\n",sep = "")
n=n+1
if(n==1000){
break
}
}## n=4, result=0.6792999, error=0.03092738
## n=5, result=0.707375, error=0.002852279
## n=6, result=0.7101422, error=8.507726e-05
Soal 2
Diketahui pdf (probability density function) dari distribusi Eksponensial adalah sebagai berikut
$f(x|a.b)= exp - x $, dimana \(x\epsilon\ (0,\infty)\)
jika diketahui \(\lambda\ =2\). Hitunglah CDF dari distribusi eksponensial tersebut untuk \(x=4\), dengan menggunakan metode Trapezoida, Simpson, Gauss Quadrature dan Monte Carlo dengan R. Metode mana yang paling baik? silahkan tentukan nilai toleransi, n dan m sendiri.
Jawaban
diketahui pdf distibusi eksponensial :
\(f(x=4| \lambda = 2)=2 exp^{-2x}\)
maka, CDF dari suatu fungsi yaitu
\(F(x)=\int_{-\infty}^\infty f(t)dt\)
sehingga CDF dari fungsi \(f(x)\) diatas yaitu
\(F(x| \lambda = 2)=\int_{-\infty}^\infty 2 exp^{-2x} dx\)
\(F(x| \lambda = 2)=1-exp^{-2x}\) , dengan batas \((-\infty,\infty)\)
lalu berdasarkan soal \(x=4\) maka batas yang digunakan yaitu \([0,4]\).
Pada soal ini dipilih nilai n =9, toleransi =0,00001 dan m= 2114
Mendefinisikan fungsi :
f1 <- function(x){
2*exp(-2*x)
}Nilai exact CDF
a = 0
b= 4
Ft<- function(x){
2*exp(-2*x)
}
F <- integrate(Ft,a,b)
F## 0.9996645 with absolute error < 1.1e-14
diperoleh nilai Exact CDF yaitu 0,9996645.
Dilakukan perhitungan dengan metode-metode berikut:
Metode trapezoida
trapezoid(f1,0,4,n = 9)## [1] 1.064635
trapzfun(f1,0,4,maxit = 9)## $value
## [1] 0.9996849
##
## $iter
## [1] 9
##
## $rel.err
## [1] 6.101344e-05
exact_value=0.9996645
tol <- 0.00001
err <- 1
n = 9
while(err>tol){
res_trap <- trapezoid(f1,0,4,n = n)
err <- abs(res_trap-exact_value)
cat("n=",n,", result=",res_trap,", error=",err,"\n",sep = "")
n=n+1
if(n==1000){
break
}
}## n=9, result=1.064635, error=0.06497078
## n=10, result=1.05242, error=0.05275531
## n=11, result=1.043343, error=0.04367879
## n=12, result=1.036418, error=0.03675326
## n=13, result=1.031015, error=0.0313503
## n=14, result=1.026719, error=0.0270549
## n=15, result=1.023249, error=0.02358421
## n=16, result=1.020405, error=0.02074012
## n=17, result=1.018045, error=0.01838055
## n=18, result=1.016066, error=0.0164015
## n=19, result=1.01439, error=0.0147254
## n=20, result=1.012958, error=0.01329349
## n=21, result=1.011725, error=0.01206057
## n=22, result=1.010656, error=0.01099142
## n=23, result=1.009723, error=0.01005831
## n=24, result=1.008904, error=0.009239095
## n=25, result=1.00818, error=0.008515985
## n=26, result=1.007539, error=0.00787452
## n=27, result=1.006967, error=0.007302862
## n=28, result=1.006456, error=0.006791242
## n=29, result=1.005996, error=0.006331541
## n=30, result=1.005581, error=0.005916966
## n=31, result=1.005206, error=0.005541802
## n=32, result=1.004866, error=0.005201208
## n=33, result=1.004556, error=0.004891065
## n=34, result=1.004272, error=0.00460785
## n=35, result=1.004013, error=0.004348533
## n=36, result=1.003775, error=0.004110501
## n=37, result=1.003556, error=0.003891487
## n=38, result=1.003354, error=0.003689518
## n=39, result=1.003167, error=0.00350287
## n=40, result=1.002995, error=0.003330033
## n=41, result=1.002834, error=0.003169677
## n=42, result=1.002685, error=0.003020629
## n=43, result=1.002546, error=0.00288185
## n=44, result=1.002417, error=0.002752418
## n=45, result=1.002296, error=0.002631513
## n=46, result=1.002183, error=0.002518402
## n=47, result=1.002077, error=0.002412428
## n=48, result=1.001978, error=0.002313005
## n=49, result=1.001884, error=0.002219603
## n=50, result=1.001796, error=0.002131746
## n=51, result=1.001714, error=0.002049003
## n=52, result=1.001635, error=0.001970985
## n=53, result=1.001562, error=0.001897339
## n=54, result=1.001492, error=0.001827745
## n=55, result=1.001426, error=0.00176191
## n=56, result=1.001364, error=0.001699569
## n=57, result=1.001305, error=0.001640479
## n=58, result=1.001249, error=0.001584417
## n=59, result=1.001196, error=0.001531181
## n=60, result=1.001145, error=0.001480583
## n=61, result=1.001097, error=0.001432452
## n=62, result=1.001051, error=0.001386631
## n=63, result=1.001007, error=0.001342973
## n=64, result=1.000966, error=0.001301345
## n=65, result=1.000926, error=0.001261623
## n=66, result=1.000888, error=0.001223692
## n=67, result=1.000852, error=0.001187446
## n=68, result=1.000817, error=0.001152787
## n=69, result=1.000784, error=0.001119624
## n=70, result=1.000752, error=0.001087871
## n=71, result=1.000722, error=0.00105745
## n=72, result=1.000693, error=0.001028287
## n=73, result=1.000665, error=0.001000315
## n=74, result=1.000638, error=0.000973468
## n=75, result=1.000612, error=0.0009476878
## n=76, result=1.000587, error=0.0009229182
## n=77, result=1.000564, error=0.0008991072
## n=78, result=1.000541, error=0.000876206
## n=79, result=1.000519, error=0.0008541686
## n=80, result=1.000497, error=0.0008329523
## n=81, result=1.000477, error=0.0008125168
## n=82, result=1.000457, error=0.0007928242
## n=83, result=1.000438, error=0.0007738389
## n=84, result=1.00042, error=0.0007555275
## n=85, result=1.000402, error=0.0007378584
## n=86, result=1.000385, error=0.000720802
## n=87, result=1.000369, error=0.0007043303
## n=88, result=1.000353, error=0.0006884168
## n=89, result=1.000338, error=0.0006730365
## n=90, result=1.000323, error=0.000658166
## n=91, result=1.000308, error=0.000643783
## n=92, result=1.000294, error=0.0006298663
## n=93, result=1.000281, error=0.0006163961
## n=94, result=1.000268, error=0.0006033534
## n=95, result=1.000255, error=0.0005907204
## n=96, result=1.000243, error=0.00057848
## n=97, result=1.000231, error=0.0005666162
## n=98, result=1.00022, error=0.0005551136
## n=99, result=1.000208, error=0.0005439578
## n=100, result=1.000198, error=0.0005331349
## n=101, result=1.000187, error=0.0005226319
## n=102, result=1.000177, error=0.0005124362
## n=103, result=1.000167, error=0.000502536
## n=104, result=1.000157, error=0.00049292
## n=105, result=1.000148, error=0.0004835774
## n=106, result=1.000139, error=0.0004744979
## n=107, result=1.00013, error=0.0004656717
## n=108, result=1.000122, error=0.0004570896
## n=109, result=1.000113, error=0.0004487425
## n=110, result=1.000105, error=0.000440622
## n=111, result=1.000097, error=0.00043272
## n=112, result=1.00009, error=0.0004250287
## n=113, result=1.000082, error=0.0004175406
## n=114, result=1.000075, error=0.0004102487
## n=115, result=1.000068, error=0.0004031462
## n=116, result=1.000061, error=0.0003962266
## n=117, result=1.000054, error=0.0003894836
## n=118, result=1.000047, error=0.0003829112
## n=119, result=1.000041, error=0.0003765039
## n=120, result=1.000035, error=0.0003702561
## n=121, result=1.000029, error=0.0003641625
## n=122, result=1.000023, error=0.0003582181
## n=123, result=1.000017, error=0.0003524181
## n=124, result=1.000011, error=0.0003467579
## n=125, result=1.000006, error=0.0003412329
## n=126, result=1, error=0.000335839
## n=127, result=0.9999951, error=0.0003305719
## n=128, result=0.9999899, error=0.0003254278
## n=129, result=0.9999849, error=0.0003204029
## n=130, result=0.99998, error=0.0003154935
## n=131, result=0.9999752, error=0.000310696
## n=132, result=0.9999705, error=0.0003060072
## n=133, result=0.9999659, error=0.0003014237
## n=134, result=0.9999614, error=0.0002969424
## n=135, result=0.9999571, error=0.0002925604
## n=136, result=0.9999528, error=0.0002882747
## n=137, result=0.9999486, error=0.0002840824
## n=138, result=0.9999445, error=0.000279981
## n=139, result=0.9999405, error=0.0002759677
## n=140, result=0.9999365, error=0.0002720401
## n=141, result=0.9999327, error=0.0002681958
## n=142, result=0.9999289, error=0.0002644324
## n=143, result=0.9999252, error=0.0002607477
## n=144, result=0.9999216, error=0.0002571395
## n=145, result=0.9999181, error=0.0002536057
## n=146, result=0.9999146, error=0.0002501442
## n=147, result=0.9999113, error=0.0002467531
## n=148, result=0.9999079, error=0.0002434306
## n=149, result=0.9999047, error=0.0002401747
## n=150, result=0.9999015, error=0.0002369837
## n=151, result=0.9998984, error=0.0002338558
## n=152, result=0.9998953, error=0.0002307895
## n=153, result=0.9998923, error=0.0002277832
## n=154, result=0.9998893, error=0.0002248352
## n=155, result=0.9998864, error=0.000221944
## n=156, result=0.9998836, error=0.0002191083
## n=157, result=0.9998808, error=0.0002163266
## n=158, result=0.9998781, error=0.0002135976
## n=159, result=0.9998754, error=0.0002109198
## n=160, result=0.9998728, error=0.0002082921
## n=161, result=0.9998702, error=0.0002057133
## n=162, result=0.9998677, error=0.000203182
## n=163, result=0.9998652, error=0.0002006972
## n=164, result=0.9998628, error=0.0001982577
## n=165, result=0.9998604, error=0.0001958624
## n=166, result=0.999858, error=0.0001935102
## n=167, result=0.9998557, error=0.0001912002
## n=168, result=0.9998534, error=0.0001889313
## n=169, result=0.9998512, error=0.0001867026
## n=170, result=0.999849, error=0.0001845131
## n=171, result=0.9998469, error=0.0001823618
## n=172, result=0.9998447, error=0.000180248
## n=173, result=0.9998427, error=0.0001781708
## n=174, result=0.9998406, error=0.0001761292
## n=175, result=0.9998386, error=0.0001741225
## n=176, result=0.9998366, error=0.00017215
## n=177, result=0.9998347, error=0.0001702108
## n=178, result=0.9998328, error=0.0001683042
## n=179, result=0.9998309, error=0.0001664294
## n=180, result=0.9998291, error=0.0001645858
## n=181, result=0.9998273, error=0.0001627727
## n=182, result=0.9998255, error=0.0001609893
## n=183, result=0.9998237, error=0.0001592352
## n=184, result=0.999822, error=0.0001575095
## n=185, result=0.9998203, error=0.0001558117
## n=186, result=0.9998186, error=0.0001541413
## n=187, result=0.999817, error=0.0001524976
## n=188, result=0.9998154, error=0.00015088
## n=189, result=0.9998138, error=0.0001492881
## n=190, result=0.9998122, error=0.0001477212
## n=191, result=0.9998107, error=0.0001461789
## n=192, result=0.9998092, error=0.0001446606
## n=193, result=0.9998077, error=0.0001431658
## n=194, result=0.9998062, error=0.0001416941
## n=195, result=0.9998047, error=0.000140245
## n=196, result=0.9998033, error=0.000138818
## n=197, result=0.9998019, error=0.0001374127
## n=198, result=0.9998005, error=0.0001360286
## n=199, result=0.9997992, error=0.0001346653
## n=200, result=0.9997978, error=0.0001333224
## n=201, result=0.9997965, error=0.0001319995
## n=202, result=0.9997952, error=0.0001306962
## n=203, result=0.9997939, error=0.0001294122
## n=204, result=0.9997926, error=0.0001281469
## n=205, result=0.9997914, error=0.0001269002
## n=206, result=0.9997902, error=0.0001256715
## n=207, result=0.999789, error=0.0001244606
## n=208, result=0.9997878, error=0.0001232671
## n=209, result=0.9997866, error=0.0001220908
## n=210, result=0.9997854, error=0.0001209311
## n=211, result=0.9997843, error=0.000119788
## n=212, result=0.9997832, error=0.0001186609
## n=213, result=0.999782, error=0.0001175497
## n=214, result=0.999781, error=0.0001164541
## n=215, result=0.9997799, error=0.0001153737
## n=216, result=0.9997788, error=0.0001143083
## n=217, result=0.9997778, error=0.0001132575
## n=218, result=0.9997767, error=0.0001122212
## n=219, result=0.9997757, error=0.0001111991
## n=220, result=0.9997747, error=0.0001101908
## n=221, result=0.9997737, error=0.0001091962
## n=222, result=0.9997727, error=0.0001082151
## n=223, result=0.9997717, error=0.000107247
## n=224, result=0.9997708, error=0.000106292
## n=225, result=0.9997698, error=0.0001053496
## n=226, result=0.9997689, error=0.0001044197
## n=227, result=0.999768, error=0.0001035021
## n=228, result=0.9997671, error=0.0001025965
## n=229, result=0.9997662, error=0.0001017028
## n=230, result=0.9997653, error=0.0001008207
## n=231, result=0.9997644, error=9.995e-05
## n=232, result=0.9997636, error=9.909056e-05
## n=233, result=0.9997627, error=9.824215e-05
## n=234, result=0.9997619, error=9.740461e-05
## n=235, result=0.9997611, error=9.657773e-05
## n=236, result=0.9997603, error=9.576134e-05
## n=237, result=0.9997595, error=9.495526e-05
## n=238, result=0.9997587, error=9.415932e-05
## n=239, result=0.9997579, error=9.337335e-05
## n=240, result=0.9997571, error=9.259719e-05
## n=241, result=0.9997563, error=9.183067e-05
## n=242, result=0.9997556, error=9.107362e-05
## n=243, result=0.9997548, error=9.032591e-05
## n=244, result=0.9997541, error=8.958737e-05
## n=245, result=0.9997534, error=8.885785e-05
## n=246, result=0.9997526, error=8.813722e-05
## n=247, result=0.9997519, error=8.742531e-05
## n=248, result=0.9997512, error=8.672201e-05
## n=249, result=0.9997505, error=8.602715e-05
## n=250, result=0.9997498, error=8.534062e-05
## n=251, result=0.9997492, error=8.466228e-05
## n=252, result=0.9997485, error=8.3992e-05
## n=253, result=0.9997478, error=8.332965e-05
## n=254, result=0.9997472, error=8.267511e-05
## n=255, result=0.9997465, error=8.202825e-05
## n=256, result=0.9997459, error=8.138896e-05
## n=257, result=0.9997453, error=8.075711e-05
## n=258, result=0.9997446, error=8.01326e-05
## n=259, result=0.999744, error=7.951531e-05
## n=260, result=0.9997434, error=7.890512e-05
## n=261, result=0.9997428, error=7.830194e-05
## n=262, result=0.9997422, error=7.770565e-05
## n=263, result=0.9997416, error=7.711615e-05
## n=264, result=0.999741, error=7.653333e-05
## n=265, result=0.9997405, error=7.59571e-05
## n=266, result=0.9997399, error=7.538736e-05
## n=267, result=0.9997393, error=7.482401e-05
## n=268, result=0.9997388, error=7.426695e-05
## n=269, result=0.9997382, error=7.371609e-05
## n=270, result=0.9997377, error=7.317134e-05
## n=271, result=0.9997371, error=7.263261e-05
## n=272, result=0.9997366, error=7.209981e-05
## n=273, result=0.9997361, error=7.157285e-05
## n=274, result=0.9997356, error=7.105166e-05
## n=275, result=0.999735, error=7.053614e-05
## n=276, result=0.9997345, error=7.002621e-05
## n=277, result=0.999734, error=6.952179e-05
## n=278, result=0.9997335, error=6.902281e-05
## n=279, result=0.999733, error=6.852918e-05
## n=280, result=0.9997325, error=6.804084e-05
## n=281, result=0.9997321, error=6.755769e-05
## n=282, result=0.9997316, error=6.707968e-05
## n=283, result=0.9997311, error=6.660673e-05
## n=284, result=0.9997306, error=6.613876e-05
## n=285, result=0.9997302, error=6.567571e-05
## n=286, result=0.9997297, error=6.521751e-05
## n=287, result=0.9997293, error=6.476409e-05
## n=288, result=0.9997288, error=6.431539e-05
## n=289, result=0.9997284, error=6.387133e-05
## n=290, result=0.9997279, error=6.343186e-05
## n=291, result=0.9997275, error=6.299691e-05
## n=292, result=0.9997271, error=6.256643e-05
## n=293, result=0.9997266, error=6.214034e-05
## n=294, result=0.9997262, error=6.17186e-05
## n=295, result=0.9997258, error=6.130113e-05
## n=296, result=0.9997254, error=6.088789e-05
## n=297, result=0.999725, error=6.047882e-05
## n=298, result=0.9997246, error=6.007386e-05
## n=299, result=0.9997242, error=5.967295e-05
## n=300, result=0.9997238, error=5.927605e-05
## n=301, result=0.9997234, error=5.88831e-05
## n=302, result=0.999723, error=5.849404e-05
## n=303, result=0.9997226, error=5.810883e-05
## n=304, result=0.9997222, error=5.772741e-05
## n=305, result=0.9997218, error=5.734974e-05
## n=306, result=0.9997215, error=5.697577e-05
## n=307, result=0.9997211, error=5.660544e-05
## n=308, result=0.9997207, error=5.623872e-05
## n=309, result=0.9997204, error=5.587555e-05
## n=310, result=0.99972, error=5.551588e-05
## n=311, result=0.9997197, error=5.515969e-05
## n=312, result=0.9997193, error=5.480691e-05
## n=313, result=0.999719, error=5.445751e-05
## n=314, result=0.9997186, error=5.411144e-05
## n=315, result=0.9997183, error=5.376866e-05
## n=316, result=0.9997179, error=5.342913e-05
## n=317, result=0.9997176, error=5.309281e-05
## n=318, result=0.9997173, error=5.275965e-05
## n=319, result=0.9997169, error=5.242963e-05
## n=320, result=0.9997166, error=5.210269e-05
## n=321, result=0.9997163, error=5.177881e-05
## n=322, result=0.999716, error=5.145793e-05
## n=323, result=0.9997156, error=5.114003e-05
## n=324, result=0.9997153, error=5.082508e-05
## n=325, result=0.999715, error=5.051302e-05
## n=326, result=0.9997147, error=5.020383e-05
## n=327, result=0.9997144, error=4.989748e-05
## n=328, result=0.9997141, error=4.959392e-05
## n=329, result=0.9997138, error=4.929312e-05
## n=330, result=0.9997135, error=4.899506e-05
## n=331, result=0.9997132, error=4.869969e-05
## n=332, result=0.9997129, error=4.840699e-05
## n=333, result=0.9997126, error=4.811692e-05
## n=334, result=0.9997123, error=4.782945e-05
## n=335, result=0.999712, error=4.754455e-05
## n=336, result=0.9997118, error=4.72622e-05
## n=337, result=0.9997115, error=4.698235e-05
## n=338, result=0.9997112, error=4.670498e-05
## n=339, result=0.9997109, error=4.643007e-05
## n=340, result=0.9997107, error=4.615757e-05
## n=341, result=0.9997104, error=4.588747e-05
## n=342, result=0.9997101, error=4.561974e-05
## n=343, result=0.9997099, error=4.535434e-05
## n=344, result=0.9997096, error=4.509125e-05
## n=345, result=0.9997093, error=4.483045e-05
## n=346, result=0.9997091, error=4.457191e-05
## n=347, result=0.9997088, error=4.43156e-05
## n=348, result=0.9997086, error=4.406149e-05
## n=349, result=0.9997083, error=4.380957e-05
## n=350, result=0.9997081, error=4.35598e-05
## n=351, result=0.9997078, error=4.331217e-05
## n=352, result=0.9997076, error=4.306664e-05
## n=353, result=0.9997073, error=4.282319e-05
## n=354, result=0.9997071, error=4.258181e-05
## n=355, result=0.9997068, error=4.234246e-05
## n=356, result=0.9997066, error=4.210513e-05
## n=357, result=0.9997064, error=4.186979e-05
## n=358, result=0.9997061, error=4.163642e-05
## n=359, result=0.9997059, error=4.140499e-05
## n=360, result=0.9997057, error=4.117549e-05
## n=361, result=0.9997054, error=4.09479e-05
## n=362, result=0.9997052, error=4.072219e-05
## n=363, result=0.999705, error=4.049834e-05
## n=364, result=0.9997048, error=4.027633e-05
## n=365, result=0.9997046, error=4.005615e-05
## n=366, result=0.9997043, error=3.983777e-05
## n=367, result=0.9997041, error=3.962117e-05
## n=368, result=0.9997039, error=3.940633e-05
## n=369, result=0.9997037, error=3.919324e-05
## n=370, result=0.9997035, error=3.898188e-05
## n=371, result=0.9997033, error=3.877222e-05
## n=372, result=0.9997031, error=3.856425e-05
## n=373, result=0.9997029, error=3.835795e-05
## n=374, result=0.9997027, error=3.81533e-05
## n=375, result=0.9997025, error=3.795029e-05
## n=376, result=0.9997022, error=3.774889e-05
## n=377, result=0.999702, error=3.75491e-05
## n=378, result=0.9997019, error=3.735089e-05
## n=379, result=0.9997017, error=3.715424e-05
## n=380, result=0.9997015, error=3.695915e-05
## n=381, result=0.9997013, error=3.676559e-05
## n=382, result=0.9997011, error=3.657355e-05
## n=383, result=0.9997009, error=3.638301e-05
## n=384, result=0.9997007, error=3.619396e-05
## n=385, result=0.9997005, error=3.600638e-05
## n=386, result=0.9997003, error=3.582025e-05
## n=387, result=0.9997001, error=3.563557e-05
## n=388, result=0.9997, error=3.545231e-05
## n=389, result=0.9996998, error=3.527046e-05
## n=390, result=0.9996996, error=3.509001e-05
## n=391, result=0.9996994, error=3.491095e-05
## n=392, result=0.9996992, error=3.473325e-05
## n=393, result=0.9996991, error=3.455691e-05
## n=394, result=0.9996989, error=3.43819e-05
## n=395, result=0.9996987, error=3.420823e-05
## n=396, result=0.9996985, error=3.403587e-05
## n=397, result=0.9996984, error=3.386481e-05
## n=398, result=0.9996982, error=3.369503e-05
## n=399, result=0.999698, error=3.352654e-05
## n=400, result=0.9996979, error=3.33593e-05
## n=401, result=0.9996977, error=3.319332e-05
## n=402, result=0.9996975, error=3.302857e-05
## n=403, result=0.9996974, error=3.286504e-05
## n=404, result=0.9996972, error=3.270273e-05
## n=405, result=0.999697, error=3.254162e-05
## n=406, result=0.9996969, error=3.23817e-05
## n=407, result=0.9996967, error=3.222296e-05
## n=408, result=0.9996966, error=3.206538e-05
## n=409, result=0.9996964, error=3.190895e-05
## n=410, result=0.9996963, error=3.175367e-05
## n=411, result=0.9996961, error=3.159953e-05
## n=412, result=0.9996959, error=3.14465e-05
## n=413, result=0.9996958, error=3.129458e-05
## n=414, result=0.9996956, error=3.114376e-05
## n=415, result=0.9996955, error=3.099403e-05
## n=416, result=0.9996953, error=3.084538e-05
## n=417, result=0.9996952, error=3.06978e-05
## n=418, result=0.9996951, error=3.055128e-05
## n=419, result=0.9996949, error=3.04058e-05
## n=420, result=0.9996948, error=3.026136e-05
## n=421, result=0.9996946, error=3.011795e-05
## n=422, result=0.9996945, error=2.997556e-05
## n=423, result=0.9996943, error=2.983418e-05
## n=424, result=0.9996942, error=2.969379e-05
## n=425, result=0.9996941, error=2.95544e-05
## n=426, result=0.9996939, error=2.941598e-05
## n=427, result=0.9996938, error=2.927854e-05
## n=428, result=0.9996936, error=2.914206e-05
## n=429, result=0.9996935, error=2.900653e-05
## n=430, result=0.9996934, error=2.887195e-05
## n=431, result=0.9996932, error=2.87383e-05
## n=432, result=0.9996931, error=2.860558e-05
## n=433, result=0.999693, error=2.847378e-05
## n=434, result=0.9996928, error=2.834289e-05
## n=435, result=0.9996927, error=2.82129e-05
## n=436, result=0.9996926, error=2.80838e-05
## n=437, result=0.9996925, error=2.795559e-05
## n=438, result=0.9996923, error=2.782826e-05
## n=439, result=0.9996922, error=2.770179e-05
## n=440, result=0.9996921, error=2.757619e-05
## n=441, result=0.999692, error=2.745144e-05
## n=442, result=0.9996918, error=2.732753e-05
## n=443, result=0.9996917, error=2.720447e-05
## n=444, result=0.9996916, error=2.708223e-05
## n=445, result=0.9996915, error=2.696082e-05
## n=446, result=0.9996913, error=2.684022e-05
## n=447, result=0.9996912, error=2.672043e-05
## n=448, result=0.9996911, error=2.660145e-05
## n=449, result=0.999691, error=2.648325e-05
## n=450, result=0.9996909, error=2.636585e-05
## n=451, result=0.9996907, error=2.624922e-05
## n=452, result=0.9996906, error=2.613337e-05
## n=453, result=0.9996905, error=2.601828e-05
## n=454, result=0.9996904, error=2.590396e-05
## n=455, result=0.9996903, error=2.579038e-05
## n=456, result=0.9996902, error=2.567755e-05
## n=457, result=0.9996901, error=2.556547e-05
## n=458, result=0.99969, error=2.545411e-05
## n=459, result=0.9996898, error=2.534349e-05
## n=460, result=0.9996897, error=2.523358e-05
## n=461, result=0.9996896, error=2.512439e-05
## n=462, result=0.9996895, error=2.50159e-05
## n=463, result=0.9996894, error=2.490812e-05
## n=464, result=0.9996893, error=2.480104e-05
## n=465, result=0.9996892, error=2.469464e-05
## n=466, result=0.9996891, error=2.458893e-05
## n=467, result=0.999689, error=2.44839e-05
## n=468, result=0.9996889, error=2.437954e-05
## n=469, result=0.9996888, error=2.427584e-05
## n=470, result=0.9996887, error=2.417281e-05
## n=471, result=0.9996886, error=2.407043e-05
## n=472, result=0.9996885, error=2.396871e-05
## n=473, result=0.9996884, error=2.386763e-05
## n=474, result=0.9996883, error=2.376718e-05
## n=475, result=0.9996882, error=2.366737e-05
## n=476, result=0.9996881, error=2.356819e-05
## n=477, result=0.999688, error=2.346963e-05
## n=478, result=0.9996879, error=2.337169e-05
## n=479, result=0.9996878, error=2.327437e-05
## n=480, result=0.9996877, error=2.317765e-05
## n=481, result=0.9996876, error=2.308153e-05
## n=482, result=0.9996875, error=2.298601e-05
## n=483, result=0.9996874, error=2.289108e-05
## n=484, result=0.9996873, error=2.279675e-05
## n=485, result=0.9996872, error=2.270299e-05
## n=486, result=0.9996871, error=2.260981e-05
## n=487, result=0.999687, error=2.251721e-05
## n=488, result=0.9996869, error=2.242517e-05
## n=489, result=0.9996868, error=2.23337e-05
## n=490, result=0.9996867, error=2.224279e-05
## n=491, result=0.9996867, error=2.215243e-05
## n=492, result=0.9996866, error=2.206262e-05
## n=493, result=0.9996865, error=2.197336e-05
## n=494, result=0.9996864, error=2.188464e-05
## n=495, result=0.9996863, error=2.179646e-05
## n=496, result=0.9996862, error=2.170881e-05
## n=497, result=0.9996861, error=2.162169e-05
## n=498, result=0.999686, error=2.153509e-05
## n=499, result=0.9996859, error=2.144902e-05
## n=500, result=0.9996859, error=2.136346e-05
## n=501, result=0.9996858, error=2.127841e-05
## n=502, result=0.9996857, error=2.119387e-05
## n=503, result=0.9996856, error=2.110983e-05
## n=504, result=0.9996855, error=2.102629e-05
## n=505, result=0.9996854, error=2.094325e-05
## n=506, result=0.9996854, error=2.08607e-05
## n=507, result=0.9996853, error=2.077864e-05
## n=508, result=0.9996852, error=2.069706e-05
## n=509, result=0.9996851, error=2.061596e-05
## n=510, result=0.999685, error=2.053534e-05
## n=511, result=0.999685, error=2.04552e-05
## n=512, result=0.9996849, error=2.037552e-05
## n=513, result=0.9996848, error=2.02963e-05
## n=514, result=0.9996847, error=2.021755e-05
## n=515, result=0.9996846, error=2.013926e-05
## n=516, result=0.9996846, error=2.006142e-05
## n=517, result=0.9996845, error=1.998403e-05
## n=518, result=0.9996844, error=1.990709e-05
## n=519, result=0.9996843, error=1.98306e-05
## n=520, result=0.9996843, error=1.975454e-05
## n=521, result=0.9996842, error=1.967893e-05
## n=522, result=0.9996841, error=1.960374e-05
## n=523, result=0.999684, error=1.952899e-05
## n=524, result=0.999684, error=1.945467e-05
## n=525, result=0.9996839, error=1.938077e-05
## n=526, result=0.9996838, error=1.930729e-05
## n=527, result=0.9996837, error=1.923423e-05
## n=528, result=0.9996837, error=1.916158e-05
## n=529, result=0.9996836, error=1.908935e-05
## n=530, result=0.9996835, error=1.901752e-05
## n=531, result=0.9996834, error=1.89461e-05
## n=532, result=0.9996834, error=1.887508e-05
## n=533, result=0.9996833, error=1.880446e-05
## n=534, result=0.9996832, error=1.873424e-05
## n=535, result=0.9996832, error=1.866441e-05
## n=536, result=0.9996831, error=1.859497e-05
## n=537, result=0.999683, error=1.852592e-05
## n=538, result=0.999683, error=1.845725e-05
## n=539, result=0.9996829, error=1.838897e-05
## n=540, result=0.9996828, error=1.832106e-05
## n=541, result=0.9996828, error=1.825353e-05
## n=542, result=0.9996827, error=1.818638e-05
## n=543, result=0.9996826, error=1.811959e-05
## n=544, result=0.9996826, error=1.805318e-05
## n=545, result=0.9996825, error=1.798712e-05
## n=546, result=0.9996824, error=1.792143e-05
## n=547, result=0.9996824, error=1.78561e-05
## n=548, result=0.9996823, error=1.779113e-05
## n=549, result=0.9996822, error=1.772651e-05
## n=550, result=0.9996822, error=1.766225e-05
## n=551, result=0.9996821, error=1.759833e-05
## n=552, result=0.999682, error=1.753476e-05
## n=553, result=0.999682, error=1.747154e-05
## n=554, result=0.9996819, error=1.740866e-05
## n=555, result=0.9996818, error=1.734612e-05
## n=556, result=0.9996818, error=1.728391e-05
## n=557, result=0.9996817, error=1.722204e-05
## n=558, result=0.9996817, error=1.71605e-05
## n=559, result=0.9996816, error=1.709929e-05
## n=560, result=0.9996815, error=1.703841e-05
## n=561, result=0.9996815, error=1.697786e-05
## n=562, result=0.9996814, error=1.691762e-05
## n=563, result=0.9996814, error=1.685771e-05
## n=564, result=0.9996813, error=1.679812e-05
## n=565, result=0.9996812, error=1.673884e-05
## n=566, result=0.9996812, error=1.667988e-05
## n=567, result=0.9996811, error=1.662123e-05
## n=568, result=0.9996811, error=1.656288e-05
## n=569, result=0.999681, error=1.650485e-05
## n=570, result=0.9996809, error=1.644712e-05
## n=571, result=0.9996809, error=1.638969e-05
## n=572, result=0.9996808, error=1.633257e-05
## n=573, result=0.9996808, error=1.627574e-05
## n=574, result=0.9996807, error=1.621921e-05
## n=575, result=0.9996807, error=1.616297e-05
## n=576, result=0.9996806, error=1.610703e-05
## n=577, result=0.9996806, error=1.605138e-05
## n=578, result=0.9996805, error=1.599601e-05
## n=579, result=0.9996804, error=1.594094e-05
## n=580, result=0.9996804, error=1.588615e-05
## n=581, result=0.9996803, error=1.583164e-05
## n=582, result=0.9996803, error=1.577741e-05
## n=583, result=0.9996802, error=1.572346e-05
## n=584, result=0.9996802, error=1.566978e-05
## n=585, result=0.9996801, error=1.561638e-05
## n=586, result=0.9996801, error=1.556326e-05
## n=587, result=0.99968, error=1.551041e-05
## n=588, result=0.99968, error=1.545782e-05
## n=589, result=0.9996799, error=1.54055e-05
## n=590, result=0.9996799, error=1.535345e-05
## n=591, result=0.9996798, error=1.530167e-05
## n=592, result=0.9996798, error=1.525014e-05
## n=593, result=0.9996797, error=1.519888e-05
## n=594, result=0.9996796, error=1.514787e-05
## n=595, result=0.9996796, error=1.509712e-05
## n=596, result=0.9996795, error=1.504663e-05
## n=597, result=0.9996795, error=1.499639e-05
## n=598, result=0.9996794, error=1.49464e-05
## n=599, result=0.9996794, error=1.489666e-05
## n=600, result=0.9996793, error=1.484717e-05
## n=601, result=0.9996793, error=1.479793e-05
## n=602, result=0.9996792, error=1.474893e-05
## n=603, result=0.9996792, error=1.470018e-05
## n=604, result=0.9996792, error=1.465167e-05
## n=605, result=0.9996791, error=1.46034e-05
## n=606, result=0.9996791, error=1.455536e-05
## n=607, result=0.999679, error=1.450757e-05
## n=608, result=0.999679, error=1.446001e-05
## n=609, result=0.9996789, error=1.441268e-05
## n=610, result=0.9996789, error=1.436559e-05
## n=611, result=0.9996788, error=1.431873e-05
## n=612, result=0.9996788, error=1.427209e-05
## n=613, result=0.9996787, error=1.422569e-05
## n=614, result=0.9996787, error=1.417951e-05
## n=615, result=0.9996786, error=1.413356e-05
## n=616, result=0.9996786, error=1.408783e-05
## n=617, result=0.9996785, error=1.404232e-05
## n=618, result=0.9996785, error=1.399703e-05
## n=619, result=0.9996785, error=1.395197e-05
## n=620, result=0.9996784, error=1.390712e-05
## n=621, result=0.9996784, error=1.386248e-05
## n=622, result=0.9996783, error=1.381806e-05
## n=623, result=0.9996783, error=1.377386e-05
## n=624, result=0.9996782, error=1.372987e-05
## n=625, result=0.9996782, error=1.368609e-05
## n=626, result=0.9996781, error=1.364252e-05
## n=627, result=0.9996781, error=1.359915e-05
## n=628, result=0.9996781, error=1.3556e-05
## n=629, result=0.999678, error=1.351305e-05
## n=630, result=0.999678, error=1.34703e-05
## n=631, result=0.9996779, error=1.342776e-05
## n=632, result=0.9996779, error=1.338542e-05
## n=633, result=0.9996778, error=1.334328e-05
## n=634, result=0.9996778, error=1.330134e-05
## n=635, result=0.9996778, error=1.325959e-05
## n=636, result=0.9996777, error=1.321805e-05
## n=637, result=0.9996777, error=1.31767e-05
## n=638, result=0.9996776, error=1.313554e-05
## n=639, result=0.9996776, error=1.309458e-05
## n=640, result=0.9996776, error=1.30538e-05
## n=641, result=0.9996775, error=1.301322e-05
## n=642, result=0.9996775, error=1.297283e-05
## n=643, result=0.9996774, error=1.293263e-05
## n=644, result=0.9996774, error=1.289261e-05
## n=645, result=0.9996774, error=1.285278e-05
## n=646, result=0.9996773, error=1.281314e-05
## n=647, result=0.9996773, error=1.277367e-05
## n=648, result=0.9996772, error=1.273439e-05
## n=649, result=0.9996772, error=1.26953e-05
## n=650, result=0.9996772, error=1.265638e-05
## n=651, result=0.9996771, error=1.261764e-05
## n=652, result=0.9996771, error=1.257908e-05
## n=653, result=0.999677, error=1.25407e-05
## n=654, result=0.999677, error=1.250249e-05
## n=655, result=0.999677, error=1.246446e-05
## n=656, result=0.9996769, error=1.24266e-05
## n=657, result=0.9996769, error=1.238891e-05
## n=658, result=0.9996769, error=1.23514e-05
## n=659, result=0.9996768, error=1.231406e-05
## n=660, result=0.9996768, error=1.227688e-05
## n=661, result=0.9996767, error=1.223988e-05
## n=662, result=0.9996767, error=1.220304e-05
## n=663, result=0.9996767, error=1.216637e-05
## n=664, result=0.9996766, error=1.212986e-05
## n=665, result=0.9996766, error=1.209352e-05
## n=666, result=0.9996766, error=1.205735e-05
## n=667, result=0.9996765, error=1.202133e-05
## n=668, result=0.9996765, error=1.198548e-05
## n=669, result=0.9996764, error=1.194979e-05
## n=670, result=0.9996764, error=1.191425e-05
## n=671, result=0.9996764, error=1.187888e-05
## n=672, result=0.9996763, error=1.184366e-05
## n=673, result=0.9996763, error=1.18086e-05
## n=674, result=0.9996763, error=1.17737e-05
## n=675, result=0.9996762, error=1.173895e-05
## n=676, result=0.9996762, error=1.170436e-05
## n=677, result=0.9996762, error=1.166992e-05
## n=678, result=0.9996761, error=1.163563e-05
## n=679, result=0.9996761, error=1.160149e-05
## n=680, result=0.9996761, error=1.15675e-05
## n=681, result=0.999676, error=1.153366e-05
## n=682, result=0.999676, error=1.149998e-05
## n=683, result=0.999676, error=1.146643e-05
## n=684, result=0.9996759, error=1.143304e-05
## n=685, result=0.9996759, error=1.139979e-05
## n=686, result=0.9996759, error=1.136669e-05
## n=687, result=0.9996758, error=1.133373e-05
## n=688, result=0.9996758, error=1.130092e-05
## n=689, result=0.9996758, error=1.126825e-05
## n=690, result=0.9996757, error=1.123572e-05
## n=691, result=0.9996757, error=1.120333e-05
## n=692, result=0.9996757, error=1.117108e-05
## n=693, result=0.9996756, error=1.113897e-05
## n=694, result=0.9996756, error=1.1107e-05
## n=695, result=0.9996756, error=1.107517e-05
## n=696, result=0.9996755, error=1.104348e-05
## n=697, result=0.9996755, error=1.101192e-05
## n=698, result=0.9996755, error=1.098049e-05
## n=699, result=0.9996754, error=1.094921e-05
## n=700, result=0.9996754, error=1.091805e-05
## n=701, result=0.9996754, error=1.088703e-05
## n=702, result=0.9996754, error=1.085614e-05
## n=703, result=0.9996753, error=1.082538e-05
## n=704, result=0.9996753, error=1.079476e-05
## n=705, result=0.9996753, error=1.076426e-05
## n=706, result=0.9996752, error=1.07339e-05
## n=707, result=0.9996752, error=1.070366e-05
## n=708, result=0.9996752, error=1.067355e-05
## n=709, result=0.9996751, error=1.064357e-05
## n=710, result=0.9996751, error=1.061371e-05
## n=711, result=0.9996751, error=1.058398e-05
## n=712, result=0.9996751, error=1.055438e-05
## n=713, result=0.999675, error=1.05249e-05
## n=714, result=0.999675, error=1.049554e-05
## n=715, result=0.999675, error=1.046631e-05
## n=716, result=0.9996749, error=1.04372e-05
## n=717, result=0.9996749, error=1.040821e-05
## n=718, result=0.9996749, error=1.037934e-05
## n=719, result=0.9996749, error=1.035059e-05
## n=720, result=0.9996748, error=1.032197e-05
## n=721, result=0.9996748, error=1.029346e-05
## n=722, result=0.9996748, error=1.026507e-05
## n=723, result=0.9996747, error=1.023679e-05
## n=724, result=0.9996747, error=1.020864e-05
## n=725, result=0.9996747, error=1.01806e-05
## n=726, result=0.9996747, error=1.015268e-05
## n=727, result=0.9996746, error=1.012487e-05
## n=728, result=0.9996746, error=1.009717e-05
## n=729, result=0.9996746, error=1.006959e-05
## n=730, result=0.9996745, error=1.004213e-05
## n=731, result=0.9996745, error=1.001477e-05
## n=732, result=0.9996745, error=9.98753e-06
untuk metode Trapezoida diperoleh nilai CDF yaitu 1.064635, dengan dimasukan nilai toleransi yaitu 0,00001 dan iterasi sebanyak 1000, nilai dengan metode ini mendekati nilai exact nya dengan erro yang juga semakin mengecil.
Metode simpson
simpson_n(f1,0,4,n = 4)## [1] 1.058815
exact_value=0.9996645
tol <- 0.00001
err <- 1
n = 9
while(err>tol){
res_simp <- simpson_n(f1,0,4,n = n)
err <- abs(res_simp-exact_value)
cat("n=",n,", result=",res_simp,", error=",err,"\n",sep = "")
n=n+1
if(n==1000){
break
}
}## n=9, result=1.00462, error=0.004955555
## n=10, result=1.001777, error=0.002112444
## n=11, result=1.001777, error=0.002112444
## n=12, result=1.000706, error=0.00104161
## n=13, result=1.000706, error=0.00104161
## n=14, result=1.000234, error=0.0005699298
## n=15, result=1.000234, error=0.0005699298
## n=16, result=1.000002, error=0.000337077
## n=17, result=1.000002, error=0.000337077
## n=18, result=0.9998762, error=0.0002117416
## n=19, result=0.9998762, error=0.0002117416
## n=20, result=0.999804, error=0.0001395486
## n=21, result=0.999804, error=0.0001395486
## n=22, result=0.9997601, error=9.563677e-05
## n=23, result=0.9997601, error=9.563677e-05
## n=24, result=0.9997322, error=6.7705e-05
## n=25, result=0.9997322, error=6.7705e-05
## n=26, result=0.9997138, error=4.926109e-05
## n=27, result=0.9997138, error=4.926109e-05
## n=28, result=0.9997012, error=3.668996e-05
## n=29, result=0.9997012, error=3.668996e-05
## n=30, result=0.9996924, error=2.788524e-05
## n=31, result=0.9996924, error=2.788524e-05
## n=32, result=0.9996861, error=2.157112e-05
## n=33, result=0.9996861, error=2.157112e-05
## n=34, result=0.9996814, error=1.694843e-05
## n=35, result=0.9996814, error=1.694843e-05
## n=36, result=0.999678, error=1.350169e-05
## n=37, result=0.999678, error=1.350169e-05
## n=38, result=0.9996754, error=1.088964e-05
## n=39, result=0.9996754, error=1.088964e-05
## n=40, result=0.9996734, error=8.881142e-06
dengan metode simpson diperoleh nilai yaitu 1.058815, dengan toleransi 0,00001 maka hasil iterasi semakin mendekati nilai exact dari CDF.
Metode n-point gaussian
Sebelum kita menggunakan nilai-nilai koefisien dan titik gauss, perlu dilakukan transformasi sehingga domain integral menjadi [−1,1].
\(x= \frac {1}{2}[t(b-a)+a+b]=\frac {1}{2} [t(4-0)+4+0]=\frac {4t+4}{2} = 2(t+1)\)
dan
\(dx= \frac {1}{2}(b-a)dt = \frac{1}{2} (4-0) dt = 2 dt\)
sehingga diperoleh intergralnya dengan batas [-1,1]
\(\int_{0}^{1}2exp^{-2x}dx =\int_{-1}^{1} 2exp^{-2(2t+2)} 2dt=\int_{-1}^{1} 4exp^{-4t-4} dt\) \(\approx I= C_1 f(t_1)+C_2 f(t_2) + C_3 f(t_3)+C_4 f(t_4)\)
dengan batas [-1,1] maka nilai dengan R diperoleh adalah sebagai berikut;
fx <- function(x){
4*exp(-4*x-4)
}
gL <- gaussLegendre(n = 9,a = -1,1)
gL## $x
## [1] -9.681602e-01 -8.360311e-01 -6.133714e-01 -3.242534e-01 -2.220446e-16
## [6] 3.242534e-01 6.133714e-01 8.360311e-01 9.681602e-01
##
## $w
## [1] 0.08127439 0.18064816 0.26061070 0.31234708 0.33023936 0.31234708 0.26061070
## [8] 0.18064816 0.08127439
Ci <- gL$w # koefisien
Ci## [1] 0.08127439 0.18064816 0.26061070 0.31234708 0.33023936 0.31234708 0.26061070
## [8] 0.18064816 0.08127439
xi <- gL$x # gauss point
xi## [1] -9.681602e-01 -8.360311e-01 -6.133714e-01 -3.242534e-01 -2.220446e-16
## [6] 3.242534e-01 6.133714e-01 8.360311e-01 9.681602e-01
I <- sum(Ci * fx(xi))
I## [1] 0.9996645
jika batas asli a=0,b=4 sebagai berikut ;
gL <- gaussLegendre(n = 9,a = 0,4)
Ci <- gL$w # koefisien
Ci## [1] 0.1625488 0.3612963 0.5212214 0.6246942 0.6604787 0.6246942 0.5212214
## [8] 0.3612963 0.1625488
xi <- gL$x # gauss point
xi## [1] 0.06367952 0.32793779 0.77325713 1.35149315 2.00000000 2.64850685 3.22674287
## [8] 3.67206221 3.93632048
I <- sum(Ci * f1(xi))
I## [1] 0.9996645
exact_value=0.9996645
tol <- 0.00001
err <- 1
n = 9
while(err>tol){
gL <- gaussLegendre(n = n,a = 0,4)
Ci <- gL$w # koefisien
xi <- gL$x # gauss point
res_gl <- sum(Ci * f1(xi))
err <- abs(res_gl-exact_value)
cat("n=",n,", result=",res_gl,", error=",err,"\n",sep = "")
n=n+1
if(n==1000){
break
}
}## n=9, result=0.9996645, error=3.73609e-08
dengan menggunakan metode n-point gaussian dan dipilih n=9 maka hasil yang diperoleh sama dengan nilai exact dari CDF nya, dan dengan toleransi 0,00001.
Metode Monte Carlo
diketahui fungsi PDF dari suatu fungsi exponensial sebagai berikut :
\(f(x=4| \lambda = 2)=\lambda exp-\lambda x\) , dimana \(x \epsilon (0,\infty)\)
\(f(x=4| \lambda = 2)=2 exp-2x\)
maka, CDF dari suatu fungsi yaitu
\(F(x)=\int_{-\infty}^\infty f(t)dt\)
sehingga CDF dari fungsi \(f(x)\) diatas yaitu
\(F(x=4| \lambda = 2)=\int_{0}^4 2 exp-2t dt\)
dengan nilai \(x=4\) maka batas atas dan bawah adalah keduanya positif sehingga dapat di lakukan perhitungan nilai CDF dengan metode monte carlo, sebagai berikut :
x <- 4
Fm <- function(x){
2 * exp(-2*x)
}mc_integral <- function(ftn, a, b,m){
#Membangkitkan x berdistribusi U(a,b)
x <- runif(m,a,b)
# Menghitung rata-rata dari output fungsi
Gx <- ftn(x)
Gx_m <- mean(Gx)
theta.hat <- (b-a)*Gx_m
return(theta.hat)
}set.seed(8)
int_g <- mc_integral(Fm,0, 4,m = 2114)
int_g## [1] 0.9993944
untuk metode monte carlo ddiperoleh nilai yaitu 0,9993944 yang mendekati nilai exactnya, digunakan trial and error berapa m yang digunakan sehingga benar-benar mendekati nilai exact CDF dan diperoleh nilai m=2114 yang paling mendekati menggunakan metode monte carlo ini.
Kesimpulan
Dari 4 metode yang digunakan untuk soal nomor 2 untuk mencari nilai CDF yang paling mendekati dengan nilai exact yaitu 0.9996645, maka di pilih metode terbaik dengan nilai yang sama yaitu metode gauss quadratur dengan n=9 dan toleransi 0,00001 yang digunakan. Diperoleh bahwa berdasarkan soal 2 semakin besar n yang digunakan maka nilai semakin mendekati nilai exact dari CDF.
Referensi
Dito, Gerry Alfa. 2021. Metode Integral Numerik dengan R. Retrieved from https://gerrydito.github.io/Metode-Integral-Numerik-dengan-R/