Sršen asks you to analyze smart device usage data in order to gain insight into how consumers use non-Bellabeat smart devices. She then wants you to select one Bellabeat product to apply these insights to in your presentation. These questions will guide your analysis: What are some trends in smart device usage? How could these trends apply to Bellabeat customers? *How could these trends help influence Bellabeat marketing strategy?
It’s about analyzing any trend concerning Bellabeat customers, and how it will help for growth.
FitBit Fitness Tracker Data (CC0: Public Domain, dataset made available through Mobius).Thirty eligible Fitbit users consented to the submission of personal tracker data, including minute-level output for physical activity, heart rate, and sleep monitoring:
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.5 v dplyr 1.0.7
## v tidyr 1.1.4 v stringr 1.4.0
## v readr 2.0.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(readr)
sleepDay_merged <- read_csv("sleepDay_merged.csv")
## Rows: 413 Columns: 5
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (1): SleepDay
## dbl (4): Id, TotalSleepRecords, TotalMinutesAsleep, TotalTimeInBed
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
as_tibble(sleepDay_merged)
## # A tibble: 413 x 5
## Id SleepDay TotalSleepRecor~ TotalMinutesAsle~ TotalTimeInBed
## <dbl> <chr> <dbl> <dbl> <dbl>
## 1 1503960366 4/12/2016 12:00~ 1 327 346
## 2 1503960366 4/13/2016 12:00~ 2 384 407
## 3 1503960366 4/15/2016 12:00~ 1 412 442
## 4 1503960366 4/16/2016 12:00~ 2 340 367
## 5 1503960366 4/17/2016 12:00~ 1 700 712
## 6 1503960366 4/19/2016 12:00~ 1 304 320
## 7 1503960366 4/20/2016 12:00~ 1 360 377
## 8 1503960366 4/21/2016 12:00~ 1 325 364
## 9 1503960366 4/23/2016 12:00~ 1 361 384
## 10 1503960366 4/24/2016 12:00~ 1 430 449
## # ... with 403 more rows
Excel was used for data cleaning.
library(tidyverse)
library(readr)
Sleep <- read_csv("Sleep.csv")
## Rows: 107 Columns: 3
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (1): ID
## dbl (2): Date, Sleep
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
as_tibble(Sleep)
## # A tibble: 107 x 3
## ID Date Sleep
## <chr> <dbl> <dbl>
## 1 Jason 1 5.45
## 2 Jason 2 6.4
## 3 Jason 4 6.87
## 4 Jason 5 5.67
## 5 Jason 6 11.7
## 6 Jason 8 5.07
## 7 Jason 9 6
## 8 Jason 10 5.42
## 9 Jason 12 6.02
## 10 Jason 13 7.17
## # ... with 97 more rows
R was used for visualizing the data concerning four members sleep hours.
ggplot(data = Sleep)+
geom_point(mapping = aes(x=Date,y=Sleep,color=ID))+
facet_wrap(~ID)+
labs(title = "Hours of sleep",
subtitle = "A comparison of four persons wearing a Bellabeat product during sleep hours")+
xlab("Days")+
ylab("Hours")+
labs(color="Members")
The sleeping hours differ over members, there is no specific attention that the sleeping hours should be between 7-8 hours.
Based on the information that everyone should sleep 7-8 hours daily, my recommendations are: