library(tidyverse)
library(dplyr)
library(ggplot2)
library(sf)
eva_antioquia <- read_csv(file = "EVA.ANTIOQUIA.csv")
Rows: 18759 Columns: 17
-- Column specification -------------------------------
Delimiter: ","
chr (11): COD.DEP, DEPA, MUNI, GCULTI, SCULTI, CULT...
dbl  (6): COD.MUN, ANO, ASEMB, ACOSE, PRODUC, RENDI

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
mun_antioquia <- sf::st_read("C:/Users/hinca/Documents/(A) Hinca/UNAL/Semestre 5/Geomática/05_ANTIOQUIA/ADMINISTRATIVO/MGN_MPIO_POLITICO.shp")
Reading layer `MGN_MPIO_POLITICO' from data source 
  `C:\Users\hinca\Documents\(A) Hinca\UNAL\Semestre 5\Geomática\05_ANTIOQUIA\ADMINISTRATIVO\MGN_MPIO_POLITICO.shp' 
  using driver `ESRI Shapefile'
Simple feature collection with 125 features and 9 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -77.12783 ymin: 5.418558 xmax: -73.88128 ymax: 8.873974
Geodetic CRS:  WGS 84
mun_antioquia$COD.MUN <-  as.double(mun_antioquia$MPIO_CCDGO)
aguacate_antioquia <- eva_antioquia %>%  filter(CULTI == "AGUACATE")  %>%  dplyr::select(MUNI, COD.MUN, ANO, PERIO, PRODUC, RENDI, ASEMB) 
Warning: One or more parsing issues, see `problems()` for details
aguacate_antioquia%>% replace(is.na(.), 0) -> aguacate_antioquia2
aguacate_antioquia %>% group_by(MUNI, COD.MUN, ANO,ASEMB ) %>%
   summarize(PRODUC=sum(PRODUC)) -> aguacate_antioquia2
`summarise()` has grouped output by 'MUNI', 'COD.MUN', 'ANO'. You can override using the `.groups` argument.
aguacate_antioquia2 %>% 
  group_by(COD.MUN) %>% 
  gather("PRODUC", key = variable, value = number)   %>% 
  unite(combi, variable, ANO) %>%
  pivot_wider(names_from = combi, values_from = number, values_fill = 0) ->                                                                    aguacate_antioquia3
mun_antioquia_aguacate = left_join(mun_antioquia, aguacate_antioquia3, by="COD.MUN")
library(RColorBrewer)
library(leaflet)

bins <- c(0, 200, 400, 800, 1800, 3000, 8000, 12000, 54000 )
pal <- colorBin("YlOrRd", domain = mun_antioquia_aguacate$PRODUC_2018, bins = bins)

  mapa <- leaflet(data = mun_antioquia_aguacate) %>%
  addTiles() %>%
  addPolygons(label = ~PRODUC_2018,
              popup = ~MPIO_CNMBR,
              fillColor = ~pal(PRODUC_2018),
              color = "#444444",
              weight = 1,
              smoothFactor = 0.5,
              opacity = 1.0,
              fillOpacity = 0.5,
              highlightOptions = highlightOptions(color = "white", weight = 2, bringToFront = TRUE)
              ) %>%
  addProviderTiles(providers$OpenStreetMap) %>%
  addLegend("bottomright", pal = pal, values = ~PRODUC_2018,
    title = "Producción de Aguacate en Antioquia [Ton] (2018)",
    opacity = 1
  )
mapa
aguacate_antioquia2 %>% 
  group_by(COD.MUN) %>% 
  gather("ASEMB", key = variable, value = number)   %>% 
  unite(combi, variable, ANO) %>%
  pivot_wider(names_from = combi, values_from = number, values_fill = 0) ->                                                                    aguacate_antioquia4
mun_antioquia_aguacateas = left_join(mun_antioquia, aguacate_antioquia4, by="COD.MUN")
bins <- c(0, 250, 500, 750, 1000, 1500, 2000, 2500)
pal <- colorBin("YlOrRd", domain = mun_antioquia_aguacateas$ASEMB_2018, bins = bins)

  mapa <- leaflet(data = mun_antioquia_aguacateas) %>%
  addTiles() %>%
  addPolygons(label = ~ASEMB_2018,
              popup = ~MPIO_CNMBR,
              fillColor = ~pal(ASEMB_2018),
              color = "#444444",
              weight = 1,
              smoothFactor = 0.5,
              opacity = 1.0,
              fillOpacity = 0.5,
              highlightOptions = highlightOptions(color = "white", weight = 2, bringToFront = TRUE)
              ) %>%
  addProviderTiles(providers$OpenStreetMap) %>%
  addLegend("bottomright", pal = pal, values = ~ASEMB_2018,
    title = "Área de aguacate sembrada en Antioquia [Ha] (2018)",
    opacity = 1
  )
mapa
LS0tDQp0aXRsZTogIk1BUEFTIENBRsOJIEFOVElPUVVJQSINCkF1dG9yZXM6ICJNYXLDrWEgU2FudGFmZSB5IEFuZHLDqXMgSGluY2FwacOpIg0KRmVjaGE6ICIxMC4xMS4yMDIxIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KYGBge3J9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KHNmKQ0KYGBgDQpgYGB7cn0NCmV2YV9hbnRpb3F1aWEgPC0gcmVhZF9jc3YoZmlsZSA9ICJFVkEuQU5USU9RVUlBLmNzdiIpDQpgYGANCmBgYHtyfQ0KbXVuX2FudGlvcXVpYSA8LSBzZjo6c3RfcmVhZCgiQzovVXNlcnMvaGluY2EvRG9jdW1lbnRzLyhBKSBIaW5jYS9VTkFML1NlbWVzdHJlIDUvR2VvbcOhdGljYS8wNV9BTlRJT1FVSUEvQURNSU5JU1RSQVRJVk8vTUdOX01QSU9fUE9MSVRJQ08uc2hwIikNCmBgYA0KYGBge3J9DQptdW5fYW50aW9xdWlhJENPRC5NVU4gPC0gIGFzLmRvdWJsZShtdW5fYW50aW9xdWlhJE1QSU9fQ0NER08pDQpgYGANCmBgYHtyfQ0KYWd1YWNhdGVfYW50aW9xdWlhIDwtIGV2YV9hbnRpb3F1aWEgJT4lICBmaWx0ZXIoQ1VMVEkgPT0gIkFHVUFDQVRFIikgICU+JSAgZHBseXI6OnNlbGVjdChNVU5JLCBDT0QuTVVOLCBBTk8sIFBFUklPLCBQUk9EVUMsIFJFTkRJLCBBU0VNQikgDQoNCmBgYA0KYGBge3J9DQphZ3VhY2F0ZV9hbnRpb3F1aWElPiUgcmVwbGFjZShpcy5uYSguKSwgMCkgLT4gYWd1YWNhdGVfYW50aW9xdWlhMg0KYGBgDQpgYGB7cn0NCmFndWFjYXRlX2FudGlvcXVpYSAlPiUgZ3JvdXBfYnkoTVVOSSwgQ09ELk1VTiwgQU5PLEFTRU1CICkgJT4lDQogICBzdW1tYXJpemUoUFJPRFVDPXN1bShQUk9EVUMpKSAtPiBhZ3VhY2F0ZV9hbnRpb3F1aWEyDQpgYGANCmBgYHtyfQ0KYWd1YWNhdGVfYW50aW9xdWlhMiAlPiUgDQogIGdyb3VwX2J5KENPRC5NVU4pICU+JSANCiAgZ2F0aGVyKCJQUk9EVUMiLCBrZXkgPSB2YXJpYWJsZSwgdmFsdWUgPSBudW1iZXIpICAgJT4lIA0KICB1bml0ZShjb21iaSwgdmFyaWFibGUsIEFOTykgJT4lDQogIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSBjb21iaSwgdmFsdWVzX2Zyb20gPSBudW1iZXIsIHZhbHVlc19maWxsID0gMCkgLT4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFndWFjYXRlX2FudGlvcXVpYTMNCmBgYA0KYGBge3J9DQptdW5fYW50aW9xdWlhX2FndWFjYXRlID0gbGVmdF9qb2luKG11bl9hbnRpb3F1aWEsIGFndWFjYXRlX2FudGlvcXVpYTMsIGJ5PSJDT0QuTVVOIikNCmBgYA0KYGBge3J9DQpsaWJyYXJ5KFJDb2xvckJyZXdlcikNCmxpYnJhcnkobGVhZmxldCkNCmBgYA0KYGBge3J9DQoNCmJpbnMgPC0gYygwLCAyMDAsIDQwMCwgODAwLCAxODAwLCAzMDAwLCA4MDAwLCAxMjAwMCwgNTQwMDAgKQ0KcGFsIDwtIGNvbG9yQmluKCJZbE9yUmQiLCBkb21haW4gPSBtdW5fYW50aW9xdWlhX2FndWFjYXRlJFBST0RVQ18yMDE4LCBiaW5zID0gYmlucykNCg0KICBtYXBhIDwtIGxlYWZsZXQoZGF0YSA9IG11bl9hbnRpb3F1aWFfYWd1YWNhdGUpICU+JQ0KICBhZGRUaWxlcygpICU+JQ0KICBhZGRQb2x5Z29ucyhsYWJlbCA9IH5QUk9EVUNfMjAxOCwNCiAgICAgICAgICAgICAgcG9wdXAgPSB+TVBJT19DTk1CUiwNCiAgICAgICAgICAgICAgZmlsbENvbG9yID0gfnBhbChQUk9EVUNfMjAxOCksDQogICAgICAgICAgICAgIGNvbG9yID0gIiM0NDQ0NDQiLA0KICAgICAgICAgICAgICB3ZWlnaHQgPSAxLA0KICAgICAgICAgICAgICBzbW9vdGhGYWN0b3IgPSAwLjUsDQogICAgICAgICAgICAgIG9wYWNpdHkgPSAxLjAsDQogICAgICAgICAgICAgIGZpbGxPcGFjaXR5ID0gMC41LA0KICAgICAgICAgICAgICBoaWdobGlnaHRPcHRpb25zID0gaGlnaGxpZ2h0T3B0aW9ucyhjb2xvciA9ICJ3aGl0ZSIsIHdlaWdodCA9IDIsIGJyaW5nVG9Gcm9udCA9IFRSVUUpDQogICAgICAgICAgICAgICkgJT4lDQogIGFkZFByb3ZpZGVyVGlsZXMocHJvdmlkZXJzJE9wZW5TdHJlZXRNYXApICU+JQ0KICBhZGRMZWdlbmQoImJvdHRvbXJpZ2h0IiwgcGFsID0gcGFsLCB2YWx1ZXMgPSB+UFJPRFVDXzIwMTgsDQogICAgdGl0bGUgPSAiUHJvZHVjY2nDs24gZGUgQWd1YWNhdGUgZW4gQW50aW9xdWlhIFtUb25dICgyMDE4KSIsDQogICAgb3BhY2l0eSA9IDENCiAgKQ0KDQpgYGANCmBgYHtyfQ0KbWFwYQ0KYGBgDQpgYGB7cn0NCmFndWFjYXRlX2FudGlvcXVpYTIgJT4lIA0KICBncm91cF9ieShDT0QuTVVOKSAlPiUgDQogIGdhdGhlcigiQVNFTUIiLCBrZXkgPSB2YXJpYWJsZSwgdmFsdWUgPSBudW1iZXIpICAgJT4lIA0KICB1bml0ZShjb21iaSwgdmFyaWFibGUsIEFOTykgJT4lDQogIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSBjb21iaSwgdmFsdWVzX2Zyb20gPSBudW1iZXIsIHZhbHVlc19maWxsID0gMCkgLT4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFndWFjYXRlX2FudGlvcXVpYTQNCmBgYA0KYGBge3J9DQptdW5fYW50aW9xdWlhX2FndWFjYXRlYXMgPSBsZWZ0X2pvaW4obXVuX2FudGlvcXVpYSwgYWd1YWNhdGVfYW50aW9xdWlhNCwgYnk9IkNPRC5NVU4iKQ0KYGBgDQpgYGB7cn0NCmJpbnMgPC0gYygwLCAyNTAsIDUwMCwgNzUwLCAxMDAwLCAxNTAwLCAyMDAwLCAyNTAwKQ0KcGFsIDwtIGNvbG9yQmluKCJZbE9yUmQiLCBkb21haW4gPSBtdW5fYW50aW9xdWlhX2FndWFjYXRlYXMkQVNFTUJfMjAxOCwgYmlucyA9IGJpbnMpDQoNCiAgbWFwYSA8LSBsZWFmbGV0KGRhdGEgPSBtdW5fYW50aW9xdWlhX2FndWFjYXRlYXMpICU+JQ0KICBhZGRUaWxlcygpICU+JQ0KICBhZGRQb2x5Z29ucyhsYWJlbCA9IH5BU0VNQl8yMDE4LA0KICAgICAgICAgICAgICBwb3B1cCA9IH5NUElPX0NOTUJSLA0KICAgICAgICAgICAgICBmaWxsQ29sb3IgPSB+cGFsKEFTRU1CXzIwMTgpLA0KICAgICAgICAgICAgICBjb2xvciA9ICIjNDQ0NDQ0IiwNCiAgICAgICAgICAgICAgd2VpZ2h0ID0gMSwNCiAgICAgICAgICAgICAgc21vb3RoRmFjdG9yID0gMC41LA0KICAgICAgICAgICAgICBvcGFjaXR5ID0gMS4wLA0KICAgICAgICAgICAgICBmaWxsT3BhY2l0eSA9IDAuNSwNCiAgICAgICAgICAgICAgaGlnaGxpZ2h0T3B0aW9ucyA9IGhpZ2hsaWdodE9wdGlvbnMoY29sb3IgPSAid2hpdGUiLCB3ZWlnaHQgPSAyLCBicmluZ1RvRnJvbnQgPSBUUlVFKQ0KICAgICAgICAgICAgICApICU+JQ0KICBhZGRQcm92aWRlclRpbGVzKHByb3ZpZGVycyRPcGVuU3RyZWV0TWFwKSAlPiUNCiAgYWRkTGVnZW5kKCJib3R0b21yaWdodCIsIHBhbCA9IHBhbCwgdmFsdWVzID0gfkFTRU1CXzIwMTgsDQogICAgdGl0bGUgPSAiw4FyZWEgZGUgYWd1YWNhdGUgc2VtYnJhZGEgZW4gQW50aW9xdWlhIFtIYV0gKDIwMTgpIiwNCiAgICBvcGFjaXR5ID0gMQ0KICApDQoNCmBgYA0KYGBge3J9DQptYXBhDQpgYGANCg==