library(tidyverse)
library(dplyr)
library(ggplot2)
library(sf)
eva_antioquia <- read_csv(file = "EVA.ANTIOQUIA.csv")
mun_antioquia <- sf::st_read("C:/Users/hinca/Documents/(A) Hinca/UNAL/Semestre 5/Geomática/05_ANTIOQUIA/ADMINISTRATIVO/MGN_MPIO_POLITICO.shp")
class(mun_antioquia$MPIO_CCDGO)
class(eva_antioquia$COD.MUN)
mun_antioquia$COD.MUN <- as.double(mun_antioquia$MPIO_CCDGO)
class(mun_antioquia$COD.MUN)
[1] "numeric"
platano_antioquia <- eva_antioquia %>% filter(CULTI == "PLATANO") %>% dplyr::select(MUNI, COD.MUN, ANO, PERIO, PRODUC, RENDI, ASEMB)
Warning: One or more parsing issues, see `problems()` for details
platano_antioquia%>% replace(is.na(.), 0) -> platano_antioquia2
platano_antioquia %>% group_by(MUNI, COD.MUN, ANO,ASEMB ) %>%
summarize(PRODUC=sum(PRODUC)) -> platano_antioquia2
`summarise()` has grouped output by 'MUNI', 'COD.MUN', 'ANO'. You can override using the `.groups` argument.
platano_antioquia2 %>%
group_by(COD.MUN) %>%
gather("PRODUC", key = variable, value = number) %>%
unite(combi, variable, ANO) %>%
pivot_wider(names_from = combi, values_from = number, values_fill = 0) -> platano_antioquia3
mun_antioquia_platano = left_join(mun_antioquia, platano_antioquia3, by="COD.MUN")
mun_antioquia_platano
library(RColorBrewer)
library(leaflet)
bins <- c(0, 500, 1000, 5000, 10000, 15000, 25000, 50000, 75000, 170000)
pal <- colorBin("YlOrRd", domain = mun_antioquia_platano$PRODUC_2018, bins = bins)
mapa <- leaflet(data = mun_antioquia_platano) %>%
addTiles() %>%
addPolygons(label = ~PRODUC_2018,
popup = ~MPIO_CNMBR,
fillColor = ~pal(PRODUC_2018),
color = "#444444",
weight = 1,
smoothFactor = 0.5,
opacity = 1.0,
fillOpacity = 0.5,
highlightOptions = highlightOptions(color = "white", weight = 2, bringToFront = TRUE)
) %>%
addProviderTiles(providers$OpenStreetMap) %>%
addLegend("bottomright", pal = pal, values = ~PRODUC_2018,
title = "Producción de Plátano en Antioquia [Ton] (2018)",
opacity = 1
)
mapa
platano_antioquia2 %>%
group_by(COD.MUN) %>%
gather("ASEMB", key = variable, value = number) %>%
unite(combi, variable, ANO) %>%
pivot_wider(names_from = combi, values_from = number, values_fill = 0) -> platano_antioquia4
mun_antioquia_platanoas = left_join(mun_antioquia, platano_antioquia4, by="COD.MUN")
bins <- c(0, 500, 1000, 1250, 1800, 3000, 6000, 9000, 12000)
pal <- colorBin("YlOrRd", domain = mun_antioquia_platanoas$ASEMB_2018, bins = bins)
mapa <- leaflet(data = mun_antioquia_platanoas) %>%
addTiles() %>%
addPolygons(label = ~ASEMB_2018,
popup = ~MPIO_CNMBR,
fillColor = ~pal(ASEMB_2018),
color = "#444444",
weight = 1,
smoothFactor = 0.5,
opacity = 1.0,
fillOpacity = 0.5,
highlightOptions = highlightOptions(color = "white", weight = 2, bringToFront = TRUE)
) %>%
addProviderTiles(providers$OpenStreetMap) %>%
addLegend("bottomright", pal = pal, values = ~ASEMB_2018,
title = "Área de Plátano sembrada en Antioquia [Ha] (2018)",
opacity = 1
)
mapa
LS0tDQp0aXRsZTogIk1BUEFTIFBMQVRBTk8gQU5USU9RVUlBIg0KQXV0b3JlczogIk1hcsOtYSBTYW50YWZlIHkgQW5kcsOpcyBIaW5jYXBpw6kiDQpGZWNoYTogIjEwLjExLjIwMjEiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCg0KLS0tDQpgYGB7cn0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkoc2YpDQpgYGANCmBgYHtyfQ0KZXZhX2FudGlvcXVpYSA8LSByZWFkX2NzdihmaWxlID0gIkVWQS5BTlRJT1FVSUEuY3N2IikNCmBgYA0KYGBge3J9DQptdW5fYW50aW9xdWlhIDwtIHNmOjpzdF9yZWFkKCJDOi9Vc2Vycy9oaW5jYS9Eb2N1bWVudHMvKEEpIEhpbmNhL1VOQUwvU2VtZXN0cmUgNS9HZW9tw6F0aWNhLzA1X0FOVElPUVVJQS9BRE1JTklTVFJBVElWTy9NR05fTVBJT19QT0xJVElDTy5zaHAiKQ0KYGBgDQpgYGB7cn0NCmNsYXNzKG11bl9hbnRpb3F1aWEkTVBJT19DQ0RHTykNCmBgYA0KYGBge3J9DQpjbGFzcyhldmFfYW50aW9xdWlhJENPRC5NVU4pDQpgYGANCmBgYHtyfQ0KbXVuX2FudGlvcXVpYSRDT0QuTVVOIDwtICBhcy5kb3VibGUobXVuX2FudGlvcXVpYSRNUElPX0NDREdPKQ0KYGBgDQpgYGB7cn0NCiAgY2xhc3MobXVuX2FudGlvcXVpYSRDT0QuTVVOKQ0KYGBgDQpgYGB7cn0NCnBsYXRhbm9fYW50aW9xdWlhIDwtIGV2YV9hbnRpb3F1aWEgJT4lICBmaWx0ZXIoQ1VMVEkgPT0gIlBMQVRBTk8iKSAgJT4lICBkcGx5cjo6c2VsZWN0KE1VTkksIENPRC5NVU4sIEFOTywgUEVSSU8sIFBST0RVQywgUkVOREksIEFTRU1CKSANCg0KYGBgDQpgYGB7cn0NCnBsYXRhbm9fYW50aW9xdWlhJT4lIHJlcGxhY2UoaXMubmEoLiksIDApIC0+IHBsYXRhbm9fYW50aW9xdWlhMg0KYGBgDQpgYGB7cn0NCnBsYXRhbm9fYW50aW9xdWlhICU+JSBncm91cF9ieShNVU5JLCBDT0QuTVVOLCBBTk8sQVNFTUIgKSAlPiUNCiAgIHN1bW1hcml6ZShQUk9EVUM9c3VtKFBST0RVQykpIC0+IHBsYXRhbm9fYW50aW9xdWlhMg0KYGBgDQpgYGB7cn0NCnBsYXRhbm9fYW50aW9xdWlhMiAlPiUgDQogIGdyb3VwX2J5KENPRC5NVU4pICU+JSANCiAgZ2F0aGVyKCJQUk9EVUMiLCBrZXkgPSB2YXJpYWJsZSwgdmFsdWUgPSBudW1iZXIpICAgJT4lIA0KICB1bml0ZShjb21iaSwgdmFyaWFibGUsIEFOTykgJT4lDQogIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSBjb21iaSwgdmFsdWVzX2Zyb20gPSBudW1iZXIsIHZhbHVlc19maWxsID0gMCkgLT4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBsYXRhbm9fYW50aW9xdWlhMw0KYGBgDQpgYGB7cn0NCm11bl9hbnRpb3F1aWFfcGxhdGFubyA9IGxlZnRfam9pbihtdW5fYW50aW9xdWlhLCBwbGF0YW5vX2FudGlvcXVpYTMsIGJ5PSJDT0QuTVVOIikNCmBgYA0KYGBge3J9DQptdW5fYW50aW9xdWlhX3BsYXRhbm8NCg0KYGBge3J9DQpsaWJyYXJ5KFJDb2xvckJyZXdlcikNCmxpYnJhcnkobGVhZmxldCkNCmBgYA0KYGBge3J9DQoNCmJpbnMgPC0gYygwLCA1MDAsIDEwMDAsIDUwMDAsIDEwMDAwLCAxNTAwMCwgMjUwMDAsIDUwMDAwLCA3NTAwMCwgMTcwMDAwKQ0KcGFsIDwtIGNvbG9yQmluKCJZbE9yUmQiLCBkb21haW4gPSBtdW5fYW50aW9xdWlhX3BsYXRhbm8kUFJPRFVDXzIwMTgsIGJpbnMgPSBiaW5zKQ0KDQogIG1hcGEgPC0gbGVhZmxldChkYXRhID0gbXVuX2FudGlvcXVpYV9wbGF0YW5vKSAlPiUNCiAgYWRkVGlsZXMoKSAlPiUNCiAgYWRkUG9seWdvbnMobGFiZWwgPSB+UFJPRFVDXzIwMTgsDQogICAgICAgICAgICAgIHBvcHVwID0gfk1QSU9fQ05NQlIsDQogICAgICAgICAgICAgIGZpbGxDb2xvciA9IH5wYWwoUFJPRFVDXzIwMTgpLA0KICAgICAgICAgICAgICBjb2xvciA9ICIjNDQ0NDQ0IiwNCiAgICAgICAgICAgICAgd2VpZ2h0ID0gMSwNCiAgICAgICAgICAgICAgc21vb3RoRmFjdG9yID0gMC41LA0KICAgICAgICAgICAgICBvcGFjaXR5ID0gMS4wLA0KICAgICAgICAgICAgICBmaWxsT3BhY2l0eSA9IDAuNSwNCiAgICAgICAgICAgICAgaGlnaGxpZ2h0T3B0aW9ucyA9IGhpZ2hsaWdodE9wdGlvbnMoY29sb3IgPSAid2hpdGUiLCB3ZWlnaHQgPSAyLCBicmluZ1RvRnJvbnQgPSBUUlVFKQ0KICAgICAgICAgICAgICApICU+JQ0KICBhZGRQcm92aWRlclRpbGVzKHByb3ZpZGVycyRPcGVuU3RyZWV0TWFwKSAlPiUNCiAgYWRkTGVnZW5kKCJib3R0b21yaWdodCIsIHBhbCA9IHBhbCwgdmFsdWVzID0gflBST0RVQ18yMDE4LA0KICAgIHRpdGxlID0gIlByb2R1Y2Npw7NuIGRlIFBsw6F0YW5vIGVuIEFudGlvcXVpYSBbVG9uXSAoMjAxOCkiLA0KICAgIG9wYWNpdHkgPSAxDQogICkNCg0KYGBgDQpgYGB7cn0NCm1hcGENCmBgYA0KDQpgYGB7cn0NCnBsYXRhbm9fYW50aW9xdWlhMiAlPiUgDQogIGdyb3VwX2J5KENPRC5NVU4pICU+JSANCiAgZ2F0aGVyKCJBU0VNQiIsIGtleSA9IHZhcmlhYmxlLCB2YWx1ZSA9IG51bWJlcikgICAlPiUgDQogIHVuaXRlKGNvbWJpLCB2YXJpYWJsZSwgQU5PKSAlPiUNCiAgcGl2b3Rfd2lkZXIobmFtZXNfZnJvbSA9IGNvbWJpLCB2YWx1ZXNfZnJvbSA9IG51bWJlciwgdmFsdWVzX2ZpbGwgPSAwKSAtPiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGxhdGFub19hbnRpb3F1aWE0DQpgYGANCmBgYHtyfQ0KbXVuX2FudGlvcXVpYV9wbGF0YW5vYXMgPSBsZWZ0X2pvaW4obXVuX2FudGlvcXVpYSwgcGxhdGFub19hbnRpb3F1aWE0LCBieT0iQ09ELk1VTiIpDQpgYGANCmBgYHtyfQ0KYmlucyA8LSBjKDAsIDUwMCwgMTAwMCwgMTI1MCwgMTgwMCwgMzAwMCwgNjAwMCwgOTAwMCwgMTIwMDApDQpwYWwgPC0gY29sb3JCaW4oIllsT3JSZCIsIGRvbWFpbiA9IG11bl9hbnRpb3F1aWFfcGxhdGFub2FzJEFTRU1CXzIwMTgsIGJpbnMgPSBiaW5zKQ0KDQogIG1hcGEgPC0gbGVhZmxldChkYXRhID0gbXVuX2FudGlvcXVpYV9wbGF0YW5vYXMpICU+JQ0KICBhZGRUaWxlcygpICU+JQ0KICBhZGRQb2x5Z29ucyhsYWJlbCA9IH5BU0VNQl8yMDE4LA0KICAgICAgICAgICAgICBwb3B1cCA9IH5NUElPX0NOTUJSLA0KICAgICAgICAgICAgICBmaWxsQ29sb3IgPSB+cGFsKEFTRU1CXzIwMTgpLA0KICAgICAgICAgICAgICBjb2xvciA9ICIjNDQ0NDQ0IiwNCiAgICAgICAgICAgICAgd2VpZ2h0ID0gMSwNCiAgICAgICAgICAgICAgc21vb3RoRmFjdG9yID0gMC41LA0KICAgICAgICAgICAgICBvcGFjaXR5ID0gMS4wLA0KICAgICAgICAgICAgICBmaWxsT3BhY2l0eSA9IDAuNSwNCiAgICAgICAgICAgICAgaGlnaGxpZ2h0T3B0aW9ucyA9IGhpZ2hsaWdodE9wdGlvbnMoY29sb3IgPSAid2hpdGUiLCB3ZWlnaHQgPSAyLCBicmluZ1RvRnJvbnQgPSBUUlVFKQ0KICAgICAgICAgICAgICApICU+JQ0KICBhZGRQcm92aWRlclRpbGVzKHByb3ZpZGVycyRPcGVuU3RyZWV0TWFwKSAlPiUNCiAgYWRkTGVnZW5kKCJib3R0b21yaWdodCIsIHBhbCA9IHBhbCwgdmFsdWVzID0gfkFTRU1CXzIwMTgsDQogICAgdGl0bGUgPSAiw4FyZWEgZGUgUGzDoXRhbm8gc2VtYnJhZGEgZW4gQW50aW9xdWlhIFtIYV0gKDIwMTgpIiwNCiAgICBvcGFjaXR5ID0gMQ0KICApDQoNCmBgYA0KYGBge3J9DQptYXBhDQpgYGANCg0K