library(tidyverse)
-- Attaching packages ------------- tidyverse 1.3.1 --
v ggplot2 3.3.5     v purrr   0.3.4
v tibble  3.1.5     v dplyr   1.0.7
v tidyr   1.1.4     v stringr 1.4.0
v readr   2.0.2     v forcats 0.5.1
-- Conflicts ---------------- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
library(dplyr)
library(ggplot2)
library(sf)
Linking to GEOS 3.9.1, GDAL 3.2.1, PROJ 7.2.1
list.files()
 [1] "Antioquia.nb.html"        
 [2] "Antioquia.Rmd"            
 [3] "EVA.ANTIOQUIA.csv"        
 [4] "mapantioquia.nb.html"     
 [5] "mapantioquia.Rmd"         
 [6] "Mapdef.nb.html"           
 [7] "Mapdef.Rmd"               
 [8] "MGN_MPIO_POLITICO.shp"    
 [9] "MGN_MPIO_POLITICO.shp.xml"
[10] "rsconnect"                
eva_antioquia <- read_csv(file = "EVA.ANTIOQUIA.csv")
Rows: 18759 Columns: 17
-- Column specification ------------------------------
Delimiter: ","
chr (11): COD.DEP, DEPA, MUNI, GCULTI, SCULTI, CUL...
dbl  (6): COD.MUN, ANO, ASEMB, ACOSE, PRODUC, RENDI

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
eva_antioquia
Warning: One or more parsing issues, see `problems()` for details
mun_antioquia <- sf::st_read("C:/Users/hinca/Documents/(A) Hinca/UNAL/Semestre 5/Geomática/05_ANTIOQUIA/ADMINISTRATIVO/MGN_MPIO_POLITICO.shp")
Reading layer `MGN_MPIO_POLITICO' from data source 
  `C:\Users\hinca\Documents\(A) Hinca\UNAL\Semestre 5\Geomática\05_ANTIOQUIA\ADMINISTRATIVO\MGN_MPIO_POLITICO.shp' 
  using driver `ESRI Shapefile'
Simple feature collection with 125 features and 9 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -77.12783 ymin: 5.418558 xmax: -73.88128 ymax: 8.873974
Geodetic CRS:  WGS 84
mun_antioquia
Simple feature collection with 125 features and 9 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -77.12783 ymin: 5.418558 xmax: -73.88128 ymax: 8.873974
Geodetic CRS:  WGS 84
First 10 features:
   DPTO_CCDGO MPIO_CCDGO     MPIO_CNMBR
1          05      05001       MEDELLÍN
2          05      05101 CIUDAD BOLÍVAR
3          05      05107        BRICEÑO
4          05      05113       BURITICÁ
5          05      05120        CÁCERES
6          05      05093        BETULIA
7          05      05091        BETANIA
8          05      05088          BELLO
9          05      05086        BELMIRA
10         05      05079        BARBOSA
                                          MPIO_CRSLC
1                                               1965
2                                               1869
3               Ordenanza 27 de Noviembre 26 de 1980
4                                               1812
5  Decreto departamental 160 del 16 de Marzo de 1903
6  Decreto departamental 629 del 28 de Enero de 1884
7               Ordenanza 42 del 24 de Abril de 1920
8                Ordenanza 48 del 29 deAbril de 1913
9                                               1814
10                                              1812
   MPIO_NAREA MPIO_NANO DPTO_CNMBR Shape_Leng
1    374.8280      2017  ANTIOQUIA  1.0327835
2    260.4461      2017  ANTIOQUIA  0.7085039
3    376.3468      2017  ANTIOQUIA  1.0044720
4    355.2103      2017  ANTIOQUIA  0.9637233
5   1873.8033      2017  ANTIOQUIA  2.9333643
6    262.3675      2017  ANTIOQUIA  0.8476756
7    180.5260      2017  ANTIOQUIA  0.6923058
8    147.7589      2017  ANTIOQUIA  0.6143227
9    296.1532      2017  ANTIOQUIA  1.1730035
10   205.6662      2017  ANTIOQUIA  0.7700180
   Shape_Area                       geometry
1  0.03060723 POLYGON ((-75.66974 6.37359...
2  0.02124224 POLYGON ((-76.04467 5.92774...
3  0.03078496 POLYGON ((-75.45818 7.22284...
4  0.02902757 POLYGON ((-75.90857 6.97378...
5  0.15350440 POLYGON ((-75.20358 7.95716...
6  0.02141352 POLYGON ((-76.00304 6.28171...
7  0.01472138 POLYGON ((-75.95474 5.79522...
8  0.01206804 POLYGON ((-75.58203 6.42510...
9  0.02420036 POLYGON ((-75.69252 6.75917...
10 0.01680390 POLYGON ((-75.32148 6.51265...
mun_antioquia$KM2 <- st_area(st_transform(mun_antioquia, 3116))/1E6
mun_antioquia$KM2 <- as.numeric(mun_antioquia$KM2)
mun_antioquia$KM2 <- round(mun_antioquia$KM2,3)
min(mun_antioquia$KM2)
[1] 15.836
max(mun_antioquia$KM2)
[1] 2919.535
library(leaflet)
bins <- c(0, 150, 300, 450, 600, 750, 900, 1200, 1600, 2000, 2400, 2920)
pal <- colorBin("RdYlGn", domain = mun_antioquia$KM2, bins = bins)

  mapa <- leaflet(data = mun_antioquia) %>%
  addTiles() %>%
  addPolygons(label = ~KM2,
              popup = ~MPIO_CNMBR,
              fillColor = ~pal(KM2),
              color = "#444444",
              weight = 1,
              smoothFactor = 0.5,
              opacity = 1.0,
              fillOpacity = 0.5,
              highlightOptions = highlightOptions(color = "white", weight = 2, bringToFront = TRUE)
              ) %>%
  addProviderTiles(providers$OpenStreetMap) %>%
  addLegend("bottomright", pal = pal, values = ~KM2,
    title = "Municipalities extent [Km2] (DANE, 2018)",
    opacity = 1
  )
mapa
LS0tDQp0aXRsZTogIkVzdHVkaW8gRVZBIEFudGlvcXVpYSINCkF1dG9yZXM6ICJNYXLDrWEgU2FudGFmZSB5IEFuZHLDqXMgSGluY2FwacOpIg0KRmVjaGE6ICIxMC4xMS4yMDIxIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCmBgYHtyfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KGRwbHlyKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShzZikNCmBgYA0KYGBge3J9DQpsaXN0LmZpbGVzKCkNCmBgYA0KYGBge3J9DQpldmFfYW50aW9xdWlhIDwtIHJlYWRfY3N2KGZpbGUgPSAiRVZBLkFOVElPUVVJQS5jc3YiKQ0KYGBgDQpgYGB7cn0NCmV2YV9hbnRpb3F1aWENCmBgYA0KDQpgYGB7cn0NCm11bl9hbnRpb3F1aWEgPC0gc2Y6OnN0X3JlYWQoIkM6L1VzZXJzL2hpbmNhL0RvY3VtZW50cy8oQSkgSGluY2EvVU5BTC9TZW1lc3RyZSA1L0dlb23DoXRpY2EvMDVfQU5USU9RVUlBL0FETUlOSVNUUkFUSVZPL01HTl9NUElPX1BPTElUSUNPLnNocCIpDQpgYGANCg0KYGBge3J9DQptdW5fYW50aW9xdWlhDQpgYGANCmBgYHtyfQ0KbXVuX2FudGlvcXVpYSRLTTIgPC0gc3RfYXJlYShzdF90cmFuc2Zvcm0obXVuX2FudGlvcXVpYSwgMzExNikpLzFFNg0KYGBgDQpgYGB7cn0NCm11bl9hbnRpb3F1aWEkS00yIDwtIGFzLm51bWVyaWMobXVuX2FudGlvcXVpYSRLTTIpDQpgYGANCmBgYHtyfQ0KbXVuX2FudGlvcXVpYSRLTTIgPC0gcm91bmQobXVuX2FudGlvcXVpYSRLTTIsMykNCmBgYA0KYGBge3J9DQptaW4obXVuX2FudGlvcXVpYSRLTTIpDQpgYGANCmBgYHtyfQ0KbWF4KG11bl9hbnRpb3F1aWEkS00yKQ0KYGBgDQpgYGB7cn0NCmxpYnJhcnkobGVhZmxldCkNCmJpbnMgPC0gYygwLCAxNTAsIDMwMCwgNDUwLCA2MDAsIDc1MCwgOTAwLCAxMjAwLCAxNjAwLCAyMDAwLCAyNDAwLCAyOTIwKQ0KcGFsIDwtIGNvbG9yQmluKCJSZFlsR24iLCBkb21haW4gPSBtdW5fYW50aW9xdWlhJEtNMiwgYmlucyA9IGJpbnMpDQoNCiAgbWFwYSA8LSBsZWFmbGV0KGRhdGEgPSBtdW5fYW50aW9xdWlhKSAlPiUNCiAgYWRkVGlsZXMoKSAlPiUNCiAgYWRkUG9seWdvbnMobGFiZWwgPSB+S00yLA0KICAgICAgICAgICAgICBwb3B1cCA9IH5NUElPX0NOTUJSLA0KICAgICAgICAgICAgICBmaWxsQ29sb3IgPSB+cGFsKEtNMiksDQogICAgICAgICAgICAgIGNvbG9yID0gIiM0NDQ0NDQiLA0KICAgICAgICAgICAgICB3ZWlnaHQgPSAxLA0KICAgICAgICAgICAgICBzbW9vdGhGYWN0b3IgPSAwLjUsDQogICAgICAgICAgICAgIG9wYWNpdHkgPSAxLjAsDQogICAgICAgICAgICAgIGZpbGxPcGFjaXR5ID0gMC41LA0KICAgICAgICAgICAgICBoaWdobGlnaHRPcHRpb25zID0gaGlnaGxpZ2h0T3B0aW9ucyhjb2xvciA9ICJ3aGl0ZSIsIHdlaWdodCA9IDIsIGJyaW5nVG9Gcm9udCA9IFRSVUUpDQogICAgICAgICAgICAgICkgJT4lDQogIGFkZFByb3ZpZGVyVGlsZXMocHJvdmlkZXJzJE9wZW5TdHJlZXRNYXApICU+JQ0KICBhZGRMZWdlbmQoImJvdHRvbXJpZ2h0IiwgcGFsID0gcGFsLCB2YWx1ZXMgPSB+S00yLA0KICAgIHRpdGxlID0gIk11bmljaXBhbGl0aWVzIGV4dGVudCBbS20yXSAoREFORSwgMjAxOCkiLA0KICAgIG9wYWNpdHkgPSAxDQogICkNCmBgYA0KYGBge3J9DQptYXBhDQpgYGANCg0K