# Example 1
#::::::::::::::::::::::::::::::::::::::::::
library(reshape)
library(report)
id<-c(1:15)
before <-c(2.3,2.5,2.1,1.4,1.6,3.3,1.7,2.7,1.2,2.1,1.6,2.3,1.4,3.1,1.5)
after <-c(2.8,3.0,2.7,2.2,2.1,3.7,2.3,3.3,2.1,2.6,2.8,2.9,1.9,3.8,2.7)
#2.3,2.5,2.1,1.4,1.6,3.5,1.7,2.7,1.2,2.1,1.6,2.3,1.4,2.7,3.1,1.5
d <- data.frame(id=id,before = before, after= after)
library(ggpubr)
## Loading required package: ggplot2
ggpaired(d, cond1 = "before", cond2 = "after",
fill = "condition",palette = "jco")
cor.test(d$before, d$after) %>%
report()
## Registered S3 methods overwritten by 'parameters':
## method from
## as.double.parameters_kurtosis datawizard
## as.double.parameters_skewness datawizard
## as.double.parameters_smoothness datawizard
## as.numeric.parameters_kurtosis datawizard
## as.numeric.parameters_skewness datawizard
## as.numeric.parameters_smoothness datawizard
## print.parameters_distribution datawizard
## print.parameters_kurtosis datawizard
## print.parameters_skewness datawizard
## summary.parameters_kurtosis datawizard
## summary.parameters_skewness datawizard
## Effect sizes were labelled following Funder's (2019) recommendations.
##
## The Pearson's product-moment correlation between d$before and d$after is positive, statistically significant, and very large (r = 0.92, 95% CI [0.78, 0.97], t(13) = 8.67, p < .001)
socialwork<-melt(d,id.vars=c("id"))
library(ggstatsplot)
## You can cite this package as:
## Patil, I. (2021). Visualizations with statistical details: The 'ggstatsplot' approach.
## Journal of Open Source Software, 6(61), 3167, doi:10.21105/joss.03167
library(tidyverse)
## Found more than one class "atomicVector" in cache; using the first, from namespace 'Matrix'
## Also defined by 'Rmpfr'
## Found more than one class "atomicVector" in cache; using the first, from namespace 'Matrix'
## Also defined by 'Rmpfr'
## Found more than one class "atomicVector" in cache; using the first, from namespace 'Matrix'
## Also defined by 'Rmpfr'
## Found more than one class "atomicVector" in cache; using the first, from namespace 'Matrix'
## Also defined by 'Rmpfr'
## Found more than one class "atomicVector" in cache; using the first, from namespace 'Matrix'
## Also defined by 'Rmpfr'
## Found more than one class "atomicVector" in cache; using the first, from namespace 'Matrix'
## Also defined by 'Rmpfr'
## Found more than one class "atomicVector" in cache; using the first, from namespace 'Matrix'
## Also defined by 'Rmpfr'
## Found more than one class "atomicVector" in cache; using the first, from namespace 'Matrix'
## Also defined by 'Rmpfr'
## Found more than one class "atomicVector" in cache; using the first, from namespace 'Matrix'
## Also defined by 'Rmpfr'
## Found more than one class "atomicVector" in cache; using the first, from namespace 'Matrix'
## Also defined by 'Rmpfr'
## Found more than one class "atomicVector" in cache; using the first, from namespace 'Matrix'
## Also defined by 'Rmpfr'
## Found more than one class "atomicVector" in cache; using the first, from namespace 'Matrix'
## Also defined by 'Rmpfr'
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v tibble 3.1.4 v dplyr 1.0.7
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 2.0.1 v forcats 0.5.1
## v purrr 0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x tidyr::expand() masks reshape::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x dplyr::rename() masks reshape::rename()
library(gtsummary)
socialwork%<>%
rename(group = variable)
#remotes::install_github("ashenoy-cmbi/grafify@*release")
socialwork %>%
select(group, value) %>%
tbl_summary(
by = group, # split table by group
missing = "no" ,# don't list missing data separately ,
statistic = all_continuous() ~ c(
"{median}/{mean}({p25}, {p75})")
) %>%
add_n() %>% # add column with total number of non-missing observations
add_p(test = list(all_continuous() ~ "t.test"))%>% # test for a difference between groups
modify_header(label = "**Variable**") %>% # update the column header
bold_labels()
| Variable | N | before, N = 151 | after, N = 151 | p-value2 |
|---|---|---|---|---|
| value | 30 | 2.10/2.05(1.55, 2.40) | 2.70/2.73(2.25, 2.95) | 0.005 |
|
1
Median/Mean(IQR)
2
Welch Two Sample t-test
|
||||
library(grafify)
## Loading required package: emmeans
## Loading required package: lmerTest
## Loading required package: lme4
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
## The following object is masked from 'package:reshape':
##
## expand
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
plot_befafter_colours(data = socialwork,
xcol = group,
ycol = value,
groups = id,
symsize = 5,
ColPal = "light",
ColRev = T)+
labs(title = "Comparison")
socialwork %>%
ggbetweenstats(
x = group,
y = value,
type = "parametric",
pairwise.comparisons = TRUE,
pairwise.display = "s",
#results.subtitle = FALSE,
messages = FALSE,
var.equal = FALSE,
bf.messages = FALSE
)