library(sf)
Linking to GEOS 3.9.1, GDAL 3.2.1, PROJ 7.2.1
library(mapview)
library(dplyr)
Attaching package: ‘dplyr’
The following objects are masked from ‘package:stats’:
filter, lag
The following objects are masked from ‘package:base’:
intersect, setdiff, setequal, union
library(tidyr)
library(ggplot2)
[1] "EVA PUTUMAYO.csv" "eva_putumayo_arroz_2018.csv" "eva_putumayo_cacao_2018.csv"
[4] "eva_putumayo_papa_2018.csv" "eva_putumayo_piña_2018.csv" "eva_putumayo_yuca_2018.csv"
[7] "Evaluaciones_Agropecuarias_Municipales_EVA.csv" "Evaluaciones_Agropecuarias_Putumayo_EVA.csv"
eva <- read.csv("EVA\\Evaluaciones_Agropecuarias_Putumayo_EVA.CSV")
eva
(mocoa = eva %>% filter(MUNIC=="MOCOA"))
(mocoa2 <- mocoa %>% select(MUNIC, CULTIVO, HA_SEMBRADA, HA_COSECHADA, RENDIMIENTO, PRODUCCION))
mocoa2$HA_SEMBRADA = as.numeric(mocoa2$HA_SEMBRADA)
mocoa2$HA_COSECHADA = as.numeric(mocoa2$HA_COSECHADA)
mocoa2$RENDIMIENTO = as.numeric(mocoa2$RENDIMIENTO)
mocoa2$PRODUCCION = as.numeric(mocoa2$PRODUCCION)
mocoa2
(mocoa3 <- mocoa2 %>% mutate(RENDIMIENTO2 = PRODUCCION/HA_SEMBRADA))
eva$HA_SEMBRADA = as.numeric(eva$HA_SEMBRADA)
eva$HA_COSECHADA = as.numeric(eva$HA_COSECHADA)
eva$RENDIMIENTO = as.numeric(eva$RENDIMIENTO)
eva$PRODUCCION = as.numeric(eva$PRODUCCION)
eva$YEAR = as.numeric(eva$YEAR)
Variable para filtrar los cultivos a utilizar
prueba_cultivos= eva %>% filter(SISTEMA=="PLATANO")
prueba_cultivos
eva %>%
group_by(CULTIVO) %>%
summarise(PROM_REND = mean(RENDIMIENTO, na.rm = TRUE)) %>%
arrange(desc(PROM_REND))
eva_putumayo_yuca_2018 <- eva %>% filter(CULTIVO=="YUCA") %>% filter(YEAR==2018)
eva_putumayo_arroz_2018 <- eva %>% filter(CULTIVO=="ARROZ") %>% filter(YEAR==2018)
eva_putumayo_papa_2018 <- eva %>% filter(SISTEMA=="PAPA") %>% filter(YEAR==2018)
eva_putumayo_cacao_2018 <- eva %>% filter(CULTIVO=="CACAO") %>% filter(YEAR==2018)
eva_putumayo_piña_2018 <- eva %>% filter(CULTIVO=="PIÑA") %>% filter(YEAR==2018)
putumayo <- select(eva, MUNIC, CULTIVO, HA_SEMBRADA, HA_COSECHADA, RENDIMIENTO, PRODUCCION, YEAR, SISTEMA)
putumayo
putumayo_platano <- filter(putumayo, CULTIVO == "PLATANO")
putumayo_platano
putumayo_yuca <- filter(putumayo, CULTIVO == "YUCA")
putumayo_yuca
putumayo_maiz <- filter(putumayo, SISTEMA == "MAIZ TRADICIONAL")
putumayo_maiz
eva %>%
filter(CULTIVO == "YUCA") %>%
group_by(CULTIVO, MUNIC, YEAR, SISTEMA) %>%
summarize(max_prod = max(PRODUCCION, na.rm = TRUE)) %>%
slice(which.max(max_prod)) %>%
arrange(desc(max_prod)) -> produccion_max_yuca
`summarise()` has grouped output by 'CULTIVO', 'MUNIC', 'YEAR'. You can override using the `.groups` argument.
produccion_max_yuca
eva %>%
filter(CULTIVO == "PLATANO") %>%
group_by(CULTIVO, MUNIC, YEAR, SISTEMA) %>%
summarize(max_prod = max(PRODUCCION, na.rm = TRUE)) %>%
slice(which.max(max_prod)) %>%
arrange(desc(max_prod)) -> produccion_max_platano
`summarise()` has grouped output by 'CULTIVO', 'MUNIC', 'YEAR'. You can override using the `.groups` argument.
produccion_max_platano
eva %>%
filter(SISTEMA == "MAIZ TRADICIONAL") %>%
group_by(MUNIC, YEAR, SISTEMA) %>%
summarize(max_prod = max(PRODUCCION, na.rm = TRUE)) %>%
slice(which.max(max_prod)) %>%
arrange(desc(max_prod)) -> produccion_max_maiz
`summarise()` has grouped output by 'MUNIC', 'YEAR'. You can override using the `.groups` argument.
produccion_max_maiz
eva %>%
filter(MUNIC=="PUERTO GUZMAN" & CULTIVO=="PLATANO") %>%
group_by(YEAR, CULTIVO) %>%
select(MUNIC, CULTIVO, PRODUCCION, YEAR) -> puerto_guzman_platano
puerto_guzman_platano
eva %>%
filter(MUNIC=="PUERTO GUZMAN" & CULTIVO=="YUCA") %>%
group_by(YEAR, CULTIVO) %>%
select(MUNIC, CULTIVO, PRODUCCION, YEAR) -> puerto_guzman_yuca
puerto_guzman_yuca
eva %>%
filter(MUNIC=="PUERTO GUZMAN" & SISTEMA=="MAIZ TRADICIONAL") %>%
group_by(YEAR, SISTEMA) %>%
select(MUNIC, SISTEMA, PRODUCCION, YEAR) -> puerto_guzman_maiz
puerto_guzman_maiz
grafico_platano <- ggplot(aes(x=YEAR, y=PRODUCCION), data = puerto_guzman_platano) + geom_bar(stat='identity') + labs(y='Produccion de Platano (Ton)')
grafico_platano + ggtitle("Variación de la Producción de Platano en Puerto Guzmán del 2007 a 2018") + labs(caption = "Sacado de los datos de EVA (Minagricultura, 2019)")

grafico_yuca <- ggplot(aes(x=YEAR, y=PRODUCCION), data = puerto_guzman_yuca) + geom_bar(stat='identity') + labs(y='Produccion de Yuca (Ton)')
grafico_yuca + ggtitle("Variación de la Producción de Yuca en Puerto Guzmán del 2007 a 2018") + labs(caption = "Sacado de los datos de EVA (Minagricultura, 2019)")

grafico_maiz <- ggplot(aes(x=YEAR, y=PRODUCCION), data = puerto_guzman_maiz) + geom_bar(stat='identity') + labs(y='Produccion de Maiz (Ton)')
grafico_maiz + ggtitle("Variación de la Producción de Maiz en Puerto Guzmán del 2007 a 2018") + labs(caption = "Sacado de los datos de EVA (Minagricultura, 2019)")

eva %>%
group_by(SISTEMA) %>%
summarise(PROM_PROD = mean(PRODUCCION, na.rm = TRUE)) %>%
arrange(desc(PROM_PROD))
LS0tDQp0aXRsZTogIlB1dHVtYXlvRVZBIg0KYXV0aG9yOiAiR2FicmllbCBkZSBKZXN1cyBSb21lcm8gRGlheiINCmRhdGU6ICIyNi1vY3QvMjAyMSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCmBgYHtyIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KHNmKQ0KbGlicmFyeShtYXB2aWV3KQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkodGlkeXIpDQpsaWJyYXJ5KGdncGxvdDIpDQpgYGANCg0KYGBge3IgZWNobz1GQUxTRX0NCmxpc3QuZmlsZXMoIkVWQSIpDQpgYGANCg0KYGBge3Igd2FybmluZz1GQUxTRX0NCmV2YSA8LSByZWFkLmNzdigiRVZBXFxFdmFsdWFjaW9uZXNfQWdyb3BlY3Vhcmlhc19QdXR1bWF5b19FVkEuQ1NWIikNCmBgYA0KDQpgYGB7cn0NCmV2YQ0KYGBgDQoNCmBgYHtyfQ0KKG1vY29hID0gZXZhICU+JSBmaWx0ZXIoTVVOSUM9PSJNT0NPQSIpKQ0KYGBgDQoNCmBgYHtyfQ0KKG1vY29hMiA8LSBtb2NvYSAlPiUgc2VsZWN0KE1VTklDLCBDVUxUSVZPLCBIQV9TRU1CUkFEQSwgSEFfQ09TRUNIQURBLCBSRU5ESU1JRU5UTywgUFJPRFVDQ0lPTikpDQpgYGANCg0KYGBge3J9DQptb2NvYTIkSEFfU0VNQlJBREEgPSBhcy5udW1lcmljKG1vY29hMiRIQV9TRU1CUkFEQSkNCm1vY29hMiRIQV9DT1NFQ0hBREEgPSBhcy5udW1lcmljKG1vY29hMiRIQV9DT1NFQ0hBREEpDQptb2NvYTIkUkVORElNSUVOVE8gPSBhcy5udW1lcmljKG1vY29hMiRSRU5ESU1JRU5UTykNCm1vY29hMiRQUk9EVUNDSU9OID0gYXMubnVtZXJpYyhtb2NvYTIkUFJPRFVDQ0lPTikNCmBgYA0KDQpgYGB7cn0NCm1vY29hMg0KYGBgDQoNCg0KYGBge3J9DQoobW9jb2EzIDwtIG1vY29hMiAlPiUgbXV0YXRlKFJFTkRJTUlFTlRPMiA9IFBST0RVQ0NJT04vSEFfU0VNQlJBREEpKQ0KYGBgDQoNCmBgYHtyfQ0KZXZhJEhBX1NFTUJSQURBID0gYXMubnVtZXJpYyhldmEkSEFfU0VNQlJBREEpDQpldmEkSEFfQ09TRUNIQURBID0gYXMubnVtZXJpYyhldmEkSEFfQ09TRUNIQURBKQ0KZXZhJFJFTkRJTUlFTlRPID0gYXMubnVtZXJpYyhldmEkUkVORElNSUVOVE8pDQpldmEkUFJPRFVDQ0lPTiA9IGFzLm51bWVyaWMoZXZhJFBST0RVQ0NJT04pDQpldmEkWUVBUiA9IGFzLm51bWVyaWMoZXZhJFlFQVIpDQpgYGANCg0KVmFyaWFibGUgcGFyYSBmaWx0cmFyIGxvcyBjdWx0aXZvcyBhIHV0aWxpemFyDQoNCmBgYHtyfQ0KcHJ1ZWJhX2N1bHRpdm9zPSBldmEgJT4lIGZpbHRlcihTSVNURU1BPT0iUExBVEFOTyIpIA0KDQpgYGANCg0KYGBge3J9DQpwcnVlYmFfY3VsdGl2b3MNCmBgYA0KDQoNCmBgYHtyfQ0KZXZhICU+JQ0KICBncm91cF9ieShDVUxUSVZPKSAlPiUNCiAgc3VtbWFyaXNlKFBST01fUkVORCA9IG1lYW4oUkVORElNSUVOVE8sIG5hLnJtID0gVFJVRSkpICU+JQ0KICBhcnJhbmdlKGRlc2MoUFJPTV9SRU5EKSkNCmBgYA0KDQoNCg0KYGBge3J9DQpldmFfcHV0dW1heW9feXVjYV8yMDE4IDwtICBldmEgJT4lIGZpbHRlcihDVUxUSVZPPT0iWVVDQSIpICU+JSBmaWx0ZXIoWUVBUj09MjAxOCkNCmBgYA0KDQpgYGB7cn0NCmV2YV9wdXR1bWF5b19hcnJvel8yMDE4IDwtICBldmEgJT4lIGZpbHRlcihDVUxUSVZPPT0iQVJST1oiKSAlPiUgZmlsdGVyKFlFQVI9PTIwMTgpDQpgYGANCg0KYGBge3J9DQpldmFfcHV0dW1heW9fcGFwYV8yMDE4IDwtICBldmEgJT4lIGZpbHRlcihTSVNURU1BPT0iUEFQQSIpICU+JSBmaWx0ZXIoWUVBUj09MjAxOCkNCmBgYA0KDQpgYGB7cn0NCmV2YV9wdXR1bWF5b19jYWNhb18yMDE4IDwtICBldmEgJT4lIGZpbHRlcihDVUxUSVZPPT0iQ0FDQU8iKSAlPiUgZmlsdGVyKFlFQVI9PTIwMTgpDQpgYGANCg0KYGBge3J9DQpldmFfcHV0dW1heW9fcGnDsWFfMjAxOCA8LSAgZXZhICU+JSBmaWx0ZXIoQ1VMVElWTz09IlBJw5FBIikgJT4lIGZpbHRlcihZRUFSPT0yMDE4KQ0KYGBgDQoNCmBgYHtyfQ0KcHV0dW1heW8gPC0gc2VsZWN0KGV2YSwgTVVOSUMsIENVTFRJVk8sIEhBX1NFTUJSQURBLCBIQV9DT1NFQ0hBREEsIFJFTkRJTUlFTlRPLCBQUk9EVUNDSU9OLCBZRUFSLCBTSVNURU1BKQ0KYGBgDQoNCmBgYHtyfQ0KcHV0dW1heW8NCmBgYA0KYGBge3J9DQpwdXR1bWF5b19wbGF0YW5vIDwtIGZpbHRlcihwdXR1bWF5bywgQ1VMVElWTyA9PSAiUExBVEFOTyIpDQpgYGANCg0KYGBge3J9DQpwdXR1bWF5b19wbGF0YW5vDQpgYGANCmBgYHtyfQ0KcHV0dW1heW9feXVjYSA8LSBmaWx0ZXIocHV0dW1heW8sIENVTFRJVk8gPT0gIllVQ0EiKQ0KYGBgDQoNCmBgYHtyfQ0KcHV0dW1heW9feXVjYQ0KYGBgDQoNCmBgYHtyfQ0KcHV0dW1heW9fbWFpeiA8LSBmaWx0ZXIocHV0dW1heW8sIFNJU1RFTUEgPT0gIk1BSVogVFJBRElDSU9OQUwiKQ0KYGBgDQoNCmBgYHtyfQ0KcHV0dW1heW9fbWFpeg0KYGBgDQoNCmBgYHtyfQ0KZXZhICU+JSANCiAgZmlsdGVyKENVTFRJVk8gPT0gIllVQ0EiKSAlPiUNCiAgZ3JvdXBfYnkoQ1VMVElWTywgTVVOSUMsIFlFQVIsIFNJU1RFTUEpICU+JQ0KICBzdW1tYXJpemUobWF4X3Byb2QgPSBtYXgoUFJPRFVDQ0lPTiwgbmEucm0gPSBUUlVFKSkgJT4lDQogICAgc2xpY2Uod2hpY2gubWF4KG1heF9wcm9kKSkgJT4lDQogICAgYXJyYW5nZShkZXNjKG1heF9wcm9kKSkgLT4gcHJvZHVjY2lvbl9tYXhfeXVjYQ0KDQpwcm9kdWNjaW9uX21heF95dWNhDQpgYGANCmBgYHtyfQ0KZXZhICU+JSANCiAgZmlsdGVyKENVTFRJVk8gPT0gIlBMQVRBTk8iKSAlPiUNCiAgZ3JvdXBfYnkoQ1VMVElWTywgTVVOSUMsIFlFQVIsIFNJU1RFTUEpICU+JQ0KICBzdW1tYXJpemUobWF4X3Byb2QgPSBtYXgoUFJPRFVDQ0lPTiwgbmEucm0gPSBUUlVFKSkgJT4lDQogICAgc2xpY2Uod2hpY2gubWF4KG1heF9wcm9kKSkgJT4lDQogICAgYXJyYW5nZShkZXNjKG1heF9wcm9kKSkgLT4gcHJvZHVjY2lvbl9tYXhfcGxhdGFubw0KDQpwcm9kdWNjaW9uX21heF9wbGF0YW5vDQpgYGANCmBgYHtyfQ0KZXZhICU+JSANCiAgZmlsdGVyKFNJU1RFTUEgPT0gIk1BSVogVFJBRElDSU9OQUwiKSAlPiUNCiAgZ3JvdXBfYnkoTVVOSUMsIFlFQVIsIFNJU1RFTUEpICU+JQ0KICBzdW1tYXJpemUobWF4X3Byb2QgPSBtYXgoUFJPRFVDQ0lPTiwgbmEucm0gPSBUUlVFKSkgJT4lDQogICAgc2xpY2Uod2hpY2gubWF4KG1heF9wcm9kKSkgJT4lDQogICAgYXJyYW5nZShkZXNjKG1heF9wcm9kKSkgLT4gcHJvZHVjY2lvbl9tYXhfbWFpeg0KDQpwcm9kdWNjaW9uX21heF9tYWl6DQpgYGANCmBgYHtyfQ0KZXZhICU+JSANCiAgZmlsdGVyKE1VTklDPT0iUFVFUlRPIEdVWk1BTiIgJiBDVUxUSVZPPT0iUExBVEFOTyIpICU+JSANCiAgZ3JvdXBfYnkoWUVBUiwgQ1VMVElWTykgJT4lDQogIHNlbGVjdChNVU5JQywgQ1VMVElWTywgUFJPRFVDQ0lPTiwgWUVBUikgLT4gIHB1ZXJ0b19ndXptYW5fcGxhdGFubw0KDQpwdWVydG9fZ3V6bWFuX3BsYXRhbm8NCmBgYA0KDQpgYGB7cn0NCmV2YSAlPiUgDQogIGZpbHRlcihNVU5JQz09IlBVRVJUTyBHVVpNQU4iICYgQ1VMVElWTz09IllVQ0EiKSAlPiUgDQogIGdyb3VwX2J5KFlFQVIsIENVTFRJVk8pICU+JQ0KICBzZWxlY3QoTVVOSUMsIENVTFRJVk8sIFBST0RVQ0NJT04sIFlFQVIpIC0+ICBwdWVydG9fZ3V6bWFuX3l1Y2ENCg0KcHVlcnRvX2d1em1hbl95dWNhDQpgYGANCg0KYGBge3J9DQpldmEgJT4lIA0KICBmaWx0ZXIoTVVOSUM9PSJQVUVSVE8gR1VaTUFOIiAmIFNJU1RFTUE9PSJNQUlaIFRSQURJQ0lPTkFMIikgJT4lIA0KICBncm91cF9ieShZRUFSLCBTSVNURU1BKSAlPiUNCiAgc2VsZWN0KE1VTklDLCBTSVNURU1BLCBQUk9EVUNDSU9OLCBZRUFSKSAtPiAgcHVlcnRvX2d1em1hbl9tYWl6DQoNCnB1ZXJ0b19ndXptYW5fbWFpeg0KYGBgDQoNCmBgYHtyfQ0KZ3JhZmljb19wbGF0YW5vIDwtIGdncGxvdChhZXMoeD1ZRUFSLCB5PVBST0RVQ0NJT04pLCBkYXRhID0gcHVlcnRvX2d1em1hbl9wbGF0YW5vKSArIGdlb21fYmFyKHN0YXQ9J2lkZW50aXR5JykgKyBsYWJzKHk9J1Byb2R1Y2Npb24gZGUgUGxhdGFubyAoVG9uKScpDQpgYGANCg0KYGBge3J9DQpncmFmaWNvX3BsYXRhbm8gKyBnZ3RpdGxlKCJWYXJpYWNpw7NuIGRlIGxhIFByb2R1Y2Npw7NuIGRlIFBsYXRhbm8gZW4gUHVlcnRvIEd1em3DoW4gZGVsIDIwMDcgYSAyMDE4IikgKyBsYWJzKGNhcHRpb24gPSAiU2FjYWRvIGRlIGxvcyBkYXRvcyBkZSBFVkEgKE1pbmFncmljdWx0dXJhLCAyMDE5KSIpDQpgYGANCg0KYGBge3J9DQpncmFmaWNvX3l1Y2EgPC0gZ2dwbG90KGFlcyh4PVlFQVIsIHk9UFJPRFVDQ0lPTiksIGRhdGEgPSBwdWVydG9fZ3V6bWFuX3l1Y2EpICsgZ2VvbV9iYXIoc3RhdD0naWRlbnRpdHknKSArIGxhYnMoeT0nUHJvZHVjY2lvbiBkZSBZdWNhIChUb24pJykNCmBgYA0KDQoNCmBgYHtyfQ0KZ3JhZmljb195dWNhICsgZ2d0aXRsZSgiVmFyaWFjacOzbiBkZSBsYSBQcm9kdWNjacOzbiBkZSBZdWNhIGVuIFB1ZXJ0byBHdXptw6FuIGRlbCAyMDA3IGEgMjAxOCIpICsgbGFicyhjYXB0aW9uID0gIlNhY2FkbyBkZSBsb3MgZGF0b3MgZGUgRVZBIChNaW5hZ3JpY3VsdHVyYSwgMjAxOSkiKQ0KYGBgDQoNCmBgYHtyfQ0KZ3JhZmljb19tYWl6IDwtIGdncGxvdChhZXMoeD1ZRUFSLCB5PVBST0RVQ0NJT04pLCBkYXRhID0gcHVlcnRvX2d1em1hbl9tYWl6KSArIGdlb21fYmFyKHN0YXQ9J2lkZW50aXR5JykgKyBsYWJzKHk9J1Byb2R1Y2Npb24gZGUgTWFpeiAoVG9uKScpDQpgYGANCg0KDQpgYGB7cn0NCmdyYWZpY29fbWFpeiArIGdndGl0bGUoIlZhcmlhY2nDs24gZGUgbGEgUHJvZHVjY2nDs24gZGUgTWFpeiBlbiBQdWVydG8gR3V6bcOhbiBkZWwgMjAwNyBhIDIwMTgiKSArIGxhYnMoY2FwdGlvbiA9ICJTYWNhZG8gZGUgbG9zIGRhdG9zIGRlIEVWQSAoTWluYWdyaWN1bHR1cmEsIDIwMTkpIikNCmBgYA0KDQpgYGB7cn0NCmV2YSAlPiUNCiAgZ3JvdXBfYnkoU0lTVEVNQSkgJT4lDQogIHN1bW1hcmlzZShQUk9NX1BST0QgPSBtZWFuKFBST0RVQ0NJT04sIG5hLnJtID0gVFJVRSkpICU+JQ0KICBhcnJhbmdlKGRlc2MoUFJPTV9QUk9EKSkNCmBgYA0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg==