library(tidyverse)
library(dplyr)
library(ggplot2)
library(sf)
list.files()
 [1] "Atlantico"                   "Bogotá D.C"                  "Ciudades"                    "Ciudades_Ciudadesxd.nb.html" "Ciudades_Ciudadesxd.Rmd"    
 [6] "co.csv"                      "Colombia.qgz"                "EjemploQGISXD.qgz"           "EVA"                         "MapaPutumayo.Rmd"           
[11] "MGN2017_08_ATLANTICO.rar"    "MGN2017_11_BOGOTA.rar"       "MGN2017_86_PUTUMAYO.rar"     "Putumayo"                    "PutumayoEVA.nb.html"        
[16] "PutumayoEVA.Rmd"             "QGIS"                        "rsconnect"                  
eva_putumayo <- read_csv("EVA/Evaluaciones_Agropecuarias_Putumayo_EVA.csv")
Rows: 1776 Columns: 17
-- Column specification ----------------------------------------------------------------------------------------------------------------------------------
Delimiter: ","
chr (10): DEPART, MUNIC, GRUPO_DE_CULTIVO, SUBGRUPO_DE_CULTIVO, CULTIVO, SISTEMA, PERIODO, ESTADO_FISICO_PRODUCCION, NOMBRE_
CIENTIFICO, CICLO_DE_CUL...
dbl  (6): COD_DEPT, YEAR, HA_SEMBRADA, HA_COSECHADA, PRODUCCION, RENDIMIENTO

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
eva_putumayo
mun_putumayo <- sf::st_read("E:/Descargas en el disco duro/4to Semestre/Geomatica/Putumayo/ADMINISTRATIVO/MGN_MPIO_POLITICO.shp")
Reading layer `MGN_MPIO_POLITICO' from data source `E:\Descargas en el disco duro\4to Semestre\Geomatica\Putumayo\ADMINISTRATIVO\MGN_MPIO_POLITICO.shp' using driver `ESRI Shapefile'
Simple feature collection with 13 features and 9 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -77.18681 ymin: -0.5622776 xmax: -73.84132 ymax: 1.467315
Geodetic CRS:  WGS 84
mun_putumayo$KM2 <- st_area(st_transform(mun_putumayo, 3116))/1E6
mun_putumayo$KM2 <- as.numeric(mun_putumayo$KM2)
mun_putumayo$KM2 <- round(mun_putumayo$KM2,3)
min(mun_putumayo$KM2)
[1] 64.275
max(mun_putumayo$KM2)
[1] 10906.88
library(leaflet)
bins <- c(60, 150, 500, 1000, 2500, 5000, 7500, 10000, 11000)
pal <- colorBin("RdYlGn", domain = mun_putumayo$KM2, bins = bins)

  mapa <- leaflet(data = mun_putumayo) %>%
  addTiles() %>%
  addPolygons(label = ~KM2,
              popup = ~MPIO_CNMBR,
              fillColor = ~pal(KM2),
              color = "#444444",
              weight = 1,
              smoothFactor = 0.5,
              opacity = 1.0,
              fillOpacity = 0.5,
              highlightOptions = highlightOptions(color = "white", weight = 2, bringToFront = TRUE)
              ) %>%
  addProviderTiles(providers$OpenStreetMap) %>%
  addLegend("bottomright", pal = pal, values = ~KM2,
    title = "Extensión Municipal [Km2] (DANE, 2018)",
    opacity = 1
  )
mapa
class(mun_putumayo$MPIO_CCDGO)
[1] "character"
class(eva_putumayo$COD_MUN)
[1] "numeric"
mun_putumayo$COD_MUN <-  as.double(mun_putumayo$MPIO_CCDGO)
class(mun_putumayo$COD_MUN)
[1] "numeric"
platano_putumayo <- eva_putumayo %>%  filter(CULTIVO == "PLATANO")  %>%  dplyr::select(MUNIC, COD_MUN, YEAR, PERIODO, PRODUCCION, RENDIMIENTO) 
platano_putumayo
yuca_putumayo <- eva_putumayo %>%  filter(CULTIVO == "YUCA")  %>%  dplyr::select(MUNIC, COD_MUN, YEAR, PERIODO, PRODUCCION, RENDIMIENTO)

yuca_putumayo
maiz_putumayo <- eva_putumayo %>%  filter(SISTEMA == "MAIZ TRADICIONAL")  %>%  dplyr::select(MUNIC, COD_MUN, YEAR, PERIODO, PRODUCCION, RENDIMIENTO)

maiz_putumayo
summary(platano_putumayo)
    MUNIC              COD_MUN           YEAR        PERIODO            PRODUCCION     RENDIMIENTO   
 Length:108         Min.   :86001   Min.   :2007   Length:108         Min.   :  250   Min.   :2.200  
 Class :character   1st Qu.:86568   1st Qu.:2010   Class :character   1st Qu.: 1150   1st Qu.:4.600  
 Mode  :character   Median :86571   Median :2012   Mode  :character   Median : 1788   Median :5.260  
                    Mean   :86568   Mean   :2012                      Mean   : 4128   Mean   :5.555  
                    3rd Qu.:86757   3rd Qu.:2015                      3rd Qu.: 6262   3rd Qu.:6.133  
                    Max.   :86885   Max.   :2018                      Max.   :17600   Max.   :9.780  
summary(yuca_putumayo)
    MUNIC              COD_MUN           YEAR        PERIODO            PRODUCCION      RENDIMIENTO   
 Length:108         Min.   :86001   Min.   :2007   Length:108         Min.   :  75.0   Min.   : 4.00  
 Class :character   1st Qu.:86568   1st Qu.:2010   Class :character   1st Qu.: 932.2   1st Qu.: 7.00  
 Mode  :character   Median :86571   Median :2012   Mode  :character   Median :1586.5   Median : 8.50  
                    Mean   :86568   Mean   :2012                      Mean   :2377.2   Mean   : 8.77  
                    3rd Qu.:86757   3rd Qu.:2015                      3rd Qu.:3375.0   3rd Qu.:10.00  
                    Max.   :86885   Max.   :2018                      Max.   :8730.0   Max.   :13.00  
summary(maiz_putumayo)
    MUNIC              COD_MUN           YEAR        PERIODO            PRODUCCION      RENDIMIENTO   
 Length:251         Min.   :86001   Min.   :2006   Length:251         Min.   :   4.0   Min.   :0.600  
 Class :character   1st Qu.:86568   1st Qu.:2009   Class :character   1st Qu.: 132.0   1st Qu.:1.000  
 Mode  :character   Median :86571   Median :2012   Mode  :character   Median : 270.0   Median :1.200  
                    Mean   :86572   Mean   :2012                      Mean   : 380.4   Mean   :1.247  
                    3rd Qu.:86757   3rd Qu.:2015                      3rd Qu.: 405.0   3rd Qu.:1.400  
                    Max.   :86885   Max.   :2018                      Max.   :2000.0   Max.   :3.000  
platano_putumayo %>% replace(is.na(.), 0) -> platano_putumayo2
platano_putumayo %>% group_by(MUNIC, COD_MUN, YEAR) %>%
   summarize(PRODUCCION=sum(PRODUCCION)) -> platano_putumayo2
head(platano_putumayo2)
tail(platano_putumayo2)
platano_putumayo2 %>% 
  group_by(COD_MUN) %>% 
  gather("PRODUCCION", key = variable, value = number)   %>% 
  unite(combi, variable, YEAR) %>%
  pivot_wider(names_from = combi, values_from = number, values_fill = 0) -> platano_putumayo3                                                                   
head(platano_putumayo3)
tail(platano_putumayo3)
mun_putumayo_platano = left_join(mun_putumayo, platano_putumayo3, by="COD_MUN")
summary(mun_putumayo_platano)
  DPTO_CCDGO         MPIO_CCDGO         MPIO_CNMBR         MPIO_CRSLC          MPIO_NAREA         MPIO_NANO     DPTO_CNMBR          Shape_Leng       Shape_Area      
 Length:13          Length:13          Length:13          Length:13          Min.   :   64.28   Min.   :2017   Length:13          Min.   :0.4549   Min.   :0.005209  
 Class :character   Class :character   Class :character   Class :character   1st Qu.:  379.74   1st Qu.:2017   Class :character   1st Qu.:1.1755   1st Qu.:0.030778  
 Mode  :character   Mode  :character   Mode  :character   Mode  :character   Median :  926.47   Median :2017   Mode  :character   Median :1.7197   Median :0.075139  
                                                                             Mean   : 1998.18   Mean   :2017                      Mean   :2.3357   Mean   :0.162151  
                                                                             3rd Qu.: 1939.39   3rd Qu.:2017                      3rd Qu.:2.4752   3rd Qu.:0.157171  
                                                                             Max.   :10906.88   Max.   :2017                      Max.   :7.5377   Max.   :0.885758  
                                                                                                                                                                     
      KM2              COD_MUN         MUNIC           PRODUCCION_2007 PRODUCCION_2008 PRODUCCION_2009 PRODUCCION_2010 PRODUCCION_2011 PRODUCCION_2012 PRODUCCION_2013
 Min.   :   64.28   Min.   :86001   Length:13          Min.   :  510   Min.   :  445   Min.   :  250   Min.   :  507   Min.   :  450   Min.   :  500   Min.   :  737  
 1st Qu.:  379.74   1st Qu.:86568   Class :character   1st Qu.: 1431   1st Qu.: 1328   1st Qu.:  920   1st Qu.: 1380   1st Qu.: 1290   1st Qu.: 1450   1st Qu.: 1260  
 Median :  926.47   Median :86573   Mode  :character   Median : 2360   Median : 2400   Median : 2750   Median : 2835   Median : 2790   Median : 2010   Median : 1500  
 Mean   : 1998.18   Mean   :86584                      Mean   : 4230   Mean   : 4543   Mean   : 4130   Mean   : 4581   Mean   : 4410   Mean   : 4412   Mean   : 4176  
 3rd Qu.: 1939.39   3rd Qu.:86757                      3rd Qu.: 5070   3rd Qu.: 4450   3rd Qu.: 5460   3rd Qu.: 4995   3rd Qu.: 6250   3rd Qu.: 5670   3rd Qu.: 6300  
 Max.   :10906.88   Max.   :86885                      Max.   :13773   Max.   :17600   Max.   :17280   Max.   :17280   Max.   :17184   Max.   :17280   Max.   :16320  
                                                       NA's   :4       NA's   :4       NA's   :4       NA's   :4       NA's   :4       NA's   :4       NA's   :4      
 PRODUCCION_2014 PRODUCCION_2015 PRODUCCION_2016 PRODUCCION_2017 PRODUCCION_2018          geometry 
 Min.   :  787   Min.   : 1095   Min.   :  388   Min.   :  260   Min.   :  321   POLYGON      :13  
 1st Qu.: 1300   1st Qu.: 1148   1st Qu.: 1080   1st Qu.:  847   1st Qu.:  935   epsg:4326    : 0  
 Median : 1664   Median : 1400   Median : 1150   Median : 1508   Median : 1775   +proj=long...: 0  
 Mean   : 4359   Mean   : 4159   Mean   : 4220   Mean   : 3064   Mean   : 3250                     
 3rd Qu.: 6400   3rd Qu.: 6400   3rd Qu.: 6448   3rd Qu.: 2924   3rd Qu.: 3910                     
 Max.   :16320   Max.   :16320   Max.   :16320   Max.   :10610   Max.   :10750                     
 NA's   :4       NA's   :4       NA's   :4       NA's   :4       NA's   :4                         
head(mun_putumayo_platano[,1:10])
Simple feature collection with 6 features and 10 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -77.18681 ymin: 0.2391261 xmax: -76.41003 ymax: 1.467315
Geodetic CRS:  WGS 84
  DPTO_CCDGO MPIO_CCDGO             MPIO_CNMBR                           MPIO_CRSLC MPIO_NAREA MPIO_NANO DPTO_CNMBR Shape_Leng  Shape_Area      KM2
1         86      86001                  MOCOA                                 1958 1304.63835      2017   PUTUMAYO  2.4752281 0.105792947 1304.638
2         86      86219                  COLÓN  Decreto 2830 de Diciembre 2 de 1989   64.27462      2017   PUTUMAYO  0.4548864 0.005209533   64.275
3         86      86320                  ORITO Decreto 2891 de Diciembre 28 de 1978 1939.39517      2017   PUTUMAYO  2.1520883 0.157171417 1939.391
4         86      86749               SIBUNDOY      Decreto 1871 de Julio 1 de 1982   97.73462      2017   PUTUMAYO  0.5113819 0.007922269   97.735
5         86      86755          SAN FRANCISCO  Decreto 2830 de Diciembre 2 de 1989  407.35674      2017   PUTUMAYO  1.1754950 0.033022563  407.357
6         86      86757 SAN MIGUEL (La Dorada)     Ordenanza 45 de Abril 29 de 1994  379.74249      2017   PUTUMAYO  1.3275843 0.030777834  379.743
                        geometry
1 POLYGON ((-76.6705 1.467315...
2 POLYGON ((-76.96835 1.28631...
3 POLYGON ((-77.07275 0.94231...
4 POLYGON ((-76.9043 1.299191...
5 POLYGON ((-76.87345 1.28986...
6 POLYGON ((-76.99677 0.37418...
tail(mun_putumayo_platano[,1:10])
Simple feature collection with 6 features and 10 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -77.11293 ymin: -0.5622776 xmax: -73.84132 ymax: 1.075532
Geodetic CRS:  WGS 84
   DPTO_CCDGO MPIO_CCDGO        MPIO_CNMBR                                  MPIO_CRSLC MPIO_NAREA MPIO_NANO DPTO_CNMBR Shape_Leng Shape_Area       KM2
8          86      86865 VALLE DEL GUAMUEZ Decreto DAINCO 3293 de Noviembre 12 de 1985   815.1590      2017   PUTUMAYO   1.715066 0.06606599   815.162
9          86      86885       VILLAGARZÓN             Decreto 574 de Marzo 14 de 1977  1396.9664      2017   PUTUMAYO   1.928017 0.11325718  1396.972
10         86      86569    PUERTO CAICEDO        Ordenanza 12 de Noviembre 24 de 1992   926.4672      2017   PUTUMAYO   1.719718 0.07513926   926.466
11         86      86568       PUERTO ASÍS          Decreto 1951 de Octubre 24 de 1967  2819.1573      2017   PUTUMAYO   3.644402 0.22867909  2819.154
12         86      86571     PUERTO GUZMÁN        Ordenanza 13 de Noviembre 24 de 1992  4576.5912      2017   PUTUMAYO   4.734632 0.37145875  4576.592
13         86      86573  PUERTO LEGUÍZAMO         Decreto 698 de Noviembre 13 de 1953 10906.8838      2017   PUTUMAYO   7.537728 0.88575793 10906.878
                         geometry
8  POLYGON ((-77.00282 0.50363...
9  POLYGON ((-76.63426 1.06411...
10 POLYGON ((-76.41069 0.86694...
11 POLYGON ((-76.2263 0.638888...
12 POLYGON ((-75.94095 1.02942...
13 POLYGON ((-75.20032 0.47930...
library(RColorBrewer)
library(leaflet)
bins <- c(0, 500, 1000, 2500, 5000, 10000, 15000, 20000)
pal <- colorBin("YlOrRd", domain = mun_putumayo_platano$PRODUCCION_2018, bins = bins)

  mapa1 <- leaflet(data = mun_putumayo_platano) %>%
  addTiles() %>%
  addPolygons(label = ~PRODUCCION_2018,
              popup = ~MPIO_CNMBR,
              fillColor = ~pal(PRODUCCION_2018),
              color = "#444444",
              weight = 1,
              smoothFactor = 0.5,
              opacity = 1.0,
              fillOpacity = 0.5,
              highlightOptions = highlightOptions(color = "white", weight = 2, bringToFront = TRUE)
              ) %>%
  addProviderTiles(providers$OpenStreetMap) %>%
  addLegend("bottomright", pal = pal, values = ~PRODUCCION_2018,
    title = "Producción del cultivo de Platano [Ton] (2018)",
    opacity = 1
  )
mapa1
yuca_putumayo %>% replace(is.na(.), 0) -> yuca_putumayo2
yuca_putumayo %>% group_by(MUNIC, COD_MUN, YEAR) %>%
   summarize(PRODUCCION=sum(PRODUCCION)) -> yuca_putumayo2
yuca_putumayo2 %>% 
  group_by(COD_MUN) %>% 
  gather("PRODUCCION", key = variable, value = number)   %>% 
  unite(combi, variable, YEAR) %>%
  pivot_wider(names_from = combi, values_from = number, values_fill = 0) -> yuca_putumayo3  
head(yuca_putumayo3)
tail(yuca_putumayo3)
mun_putumayo_yuca = left_join(mun_putumayo, yuca_putumayo3, by="COD_MUN")
summary(mun_putumayo_yuca)
  DPTO_CCDGO         MPIO_CCDGO         MPIO_CNMBR         MPIO_CRSLC          MPIO_NAREA         MPIO_NANO     DPTO_CNMBR          Shape_Leng       Shape_Area      
 Length:13          Length:13          Length:13          Length:13          Min.   :   64.28   Min.   :2017   Length:13          Min.   :0.4549   Min.   :0.005209  
 Class :character   Class :character   Class :character   Class :character   1st Qu.:  379.74   1st Qu.:2017   Class :character   1st Qu.:1.1755   1st Qu.:0.030778  
 Mode  :character   Mode  :character   Mode  :character   Mode  :character   Median :  926.47   Median :2017   Mode  :character   Median :1.7197   Median :0.075139  
                                                                             Mean   : 1998.18   Mean   :2017                      Mean   :2.3357   Mean   :0.162151  
                                                                             3rd Qu.: 1939.39   3rd Qu.:2017                      3rd Qu.:2.4752   3rd Qu.:0.157171  
                                                                             Max.   :10906.88   Max.   :2017                      Max.   :7.5377   Max.   :0.885758  
                                                                                                                                                                     
      KM2              COD_MUN         MUNIC           PRODUCCION_2007 PRODUCCION_2008 PRODUCCION_2009 PRODUCCION_2010 PRODUCCION_2011 PRODUCCION_2012 PRODUCCION_2013
 Min.   :   64.28   Min.   :86001   Length:13          Min.   : 882    Min.   :1140    Min.   :1102    Min.   : 770    Min.   : 812    Min.   : 585    Min.   : 666   
 1st Qu.:  379.74   1st Qu.:86568   Class :character   1st Qu.:3190    1st Qu.:2000    1st Qu.:1534    1st Qu.:1120    1st Qu.:1132    1st Qu.:1235    1st Qu.: 935   
 Median :  926.47   Median :86573   Mode  :character   Median :3360    Median :3200    Median :2700    Median :1534    Median :1564    Median :2025    Median :1770   
 Mean   : 1998.18   Mean   :86584                      Mean   :4108    Mean   :3518    Mean   :2976    Mean   :2110    Mean   :1872    Mean   :2259    Mean   :2036   
 3rd Qu.: 1939.39   3rd Qu.:86757                      3rd Qu.:4500    3rd Qu.:6000    3rd Qu.:4560    3rd Qu.:2700    3rd Qu.:2880    3rd Qu.:3060    3rd Qu.:2970   
 Max.   :10906.88   Max.   :86885                      Max.   :8412    Max.   :6160    Max.   :6120    Max.   :6120    Max.   :3500    Max.   :4800    Max.   :4500   
                                                       NA's   :4       NA's   :4       NA's   :4       NA's   :4       NA's   :4       NA's   :4       NA's   :4      
 PRODUCCION_2014 PRODUCCION_2015 PRODUCCION_2016 PRODUCCION_2017 PRODUCCION_2018          geometry 
 Min.   : 544    Min.   : 280    Min.   : 105    Min.   : 140    Min.   :  75    POLYGON      :13  
 1st Qu.: 978    1st Qu.: 954    1st Qu.: 420    1st Qu.: 424    1st Qu.: 480    epsg:4326    : 0  
 Median :1280    Median :1375    Median : 797    Median : 686    Median : 910    +proj=long...: 0  
 Mean   :2221    Mean   :2309    Mean   :2129    Mean   :1508    Mean   :1480                      
 3rd Qu.:3105    3rd Qu.:3420    3rd Qu.:3500    3rd Qu.:1600    3rd Qu.:1200                      
 Max.   :5850    Max.   :6305    Max.   :8730    Max.   :6510    Max.   :7000                      
 NA's   :4       NA's   :4       NA's   :4       NA's   :4       NA's   :4                         
bins <- c(0, 500, 1000, 2500, 5000, 8000, 10000)
pal <- colorBin("YlOrRd", domain = mun_putumayo_yuca$PRODUCCION_2018, bins = bins)

  mapa2 <- leaflet(data = mun_putumayo_yuca) %>%
  addTiles() %>%
  addPolygons(label = ~PRODUCCION_2018,
              popup = ~MPIO_CNMBR,
              fillColor = ~pal(PRODUCCION_2018),
              color = "#777777",
              weight = 1,
              smoothFactor = 0.5,
              opacity = 1.0,
              fillOpacity = 0.5,
              highlightOptions = highlightOptions(color = "white", weight = 2, bringToFront = TRUE)
              ) %>%
  addProviderTiles(providers$OpenStreetMap) %>%
  addLegend("bottomright", pal = pal, values = ~PRODUCCION_2018,
    title = "Producción del cultivo de Yuca [Ton] (2018)",
    opacity = 1
  )
mapa2
maiz_putumayo %>% replace(is.na(.), 0) -> maiz_putumayo2
maiz_putumayo %>% group_by(MUNIC, COD_MUN, YEAR) %>%
   summarize(PRODUCCION=sum(PRODUCCION)) -> maiz_putumayo2
`summarise()` has grouped output by 'MUNIC', 'COD_MUN'. You can override using the `.groups` argument.
maiz_putumayo2 %>% 
  group_by(COD_MUN) %>% 
  gather("PRODUCCION", key = variable, value = number)   %>% 
  unite(combi, variable, YEAR) %>%
  pivot_wider(names_from = combi, values_from = number, values_fill = 0) -> maiz_putumayo3  
head(maiz_putumayo3)
head(maiz_putumayo3)
mun_putumayo_maiz = left_join(mun_putumayo, maiz_putumayo3, by="COD_MUN")
summary(mun_putumayo_maiz)
  DPTO_CCDGO         MPIO_CCDGO         MPIO_CNMBR         MPIO_CRSLC          MPIO_NAREA         MPIO_NANO     DPTO_CNMBR          Shape_Leng       Shape_Area      
 Length:13          Length:13          Length:13          Length:13          Min.   :   64.28   Min.   :2017   Length:13          Min.   :0.4549   Min.   :0.005209  
 Class :character   Class :character   Class :character   Class :character   1st Qu.:  379.74   1st Qu.:2017   Class :character   1st Qu.:1.1755   1st Qu.:0.030778  
 Mode  :character   Mode  :character   Mode  :character   Mode  :character   Median :  926.47   Median :2017   Mode  :character   Median :1.7197   Median :0.075139  
                                                                             Mean   : 1998.18   Mean   :2017                      Mean   :2.3357   Mean   :0.162151  
                                                                             3rd Qu.: 1939.39   3rd Qu.:2017                      3rd Qu.:2.4752   3rd Qu.:0.157171  
                                                                             Max.   :10906.88   Max.   :2017                      Max.   :7.5377   Max.   :0.885758  
      KM2              COD_MUN         MUNIC           PRODUCCION_2007 PRODUCCION_2008  PRODUCCION_2009 PRODUCCION_2010  PRODUCCION_2011  PRODUCCION_2012
 Min.   :   64.28   Min.   :86001   Length:13          Min.   :  80    Min.   :  81.0   Min.   : 132    Min.   :   0.0   Min.   :   0.0   Min.   :  0.0  
 1st Qu.:  379.74   1st Qu.:86568   Class :character   1st Qu.: 378    1st Qu.: 253.0   1st Qu.: 276    1st Qu.: 250.0   1st Qu.: 291.0   1st Qu.: 60.0  
 Median :  926.47   Median :86573   Mode  :character   Median : 515    Median : 417.0   Median : 704    Median : 440.0   Median : 634.0   Median :291.0  
 Mean   : 1998.18   Mean   :86584                      Mean   :1015    Mean   : 763.7   Mean   : 930    Mean   : 775.6   Mean   : 864.2   Mean   :297.1  
 3rd Qu.: 1939.39   3rd Qu.:86757                      3rd Qu.: 904    3rd Qu.: 820.0   3rd Qu.:1127    3rd Qu.: 795.0   3rd Qu.: 803.0   3rd Qu.:387.0  
 Max.   :10906.88   Max.   :86885                      Max.   :3784    Max.   :2730.0   Max.   :2677    Max.   :2677.0   Max.   :3150.0   Max.   :772.0  
 PRODUCCION_2013  PRODUCCION_2014 PRODUCCION_2015 PRODUCCION_2016  PRODUCCION_2017  PRODUCCION_2018  PRODUCCION_2006           geometry 
 Min.   :   0.0   Min.   :107.0   Min.   :170     Min.   :  44.0   Min.   :  54.0   Min.   :   6.0   Min.   :   0.0   POLYGON      :13  
 1st Qu.:  92.0   1st Qu.:176.0   1st Qu.:223     1st Qu.: 132.0   1st Qu.: 175.0   1st Qu.: 114.0   1st Qu.:   0.0   epsg:4326    : 0  
 Median : 236.0   Median :236.0   Median :264     Median : 230.0   Median : 240.0   Median : 268.0   Median : 386.0   +proj=long...: 0  
 Mean   : 323.6   Mean   :309.1   Mean   :357     Mean   : 408.2   Mean   : 480.1   Mean   : 372.1   Mean   : 448.8                     
 3rd Qu.: 407.0   3rd Qu.:390.0   3rd Qu.:428     3rd Qu.: 350.0   3rd Qu.: 549.0   3rd Qu.: 385.0   3rd Qu.: 513.0                     
 Max.   :1295.0   Max.   :855.0   Max.   :918     Max.   :2486.0   Max.   :2557.0   Max.   :2000.0   Max.   :1706.0                     
bins <- c(0, 50, 100, 250, 500, 1000, 1500, 2000)
pal <- colorBin("YlOrRd", domain = mun_putumayo_maiz$PRODUCCION_2018, bins = bins)

  mapa3 <- leaflet(data = mun_putumayo_maiz) %>%
  addTiles() %>%
  addPolygons(label = ~PRODUCCION_2018,
              popup = ~MPIO_CNMBR,
              fillColor = ~pal(PRODUCCION_2018),
              color = "#444444",
              weight = 1,
              smoothFactor = 0.5,
              opacity = 1.0,
              fillOpacity = 0.5,
              highlightOptions = highlightOptions(color = "white", weight = 2, bringToFront = TRUE)
              ) %>%
  addProviderTiles(providers$OpenStreetMap) %>%
  addLegend("bottomright", pal = pal, values = ~PRODUCCION_2018,
    title = "Producción del cultivo de Maiz Tradicional [Ton] (2018)",
    opacity = 1
  )
mapa3
LS0tDQp0aXRsZTogIlB1dHVtYXlvRVZBIg0KYXV0aG9yOiAiR2FicmllbCBkZSBKZXN1cyBSb21lcm8gRGlheiINCmRhdGU6ICIyNi1vY3QvMjAyMSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCmBgYHtyIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KHNmKQ0KYGBgDQoNCmBgYHtyfQ0KbGlzdC5maWxlcygpDQpgYGANCg0KDQoNCmBgYHtyIHNob3dfY29sX3R5cGVzPUZBTFNFfQ0KZXZhX3B1dHVtYXlvIDwtIHJlYWRfY3N2KCJFVkEvRXZhbHVhY2lvbmVzX0Fncm9wZWN1YXJpYXNfUHV0dW1heW9fRVZBLmNzdiIpDQpgYGANCg0KDQpgYGB7cn0NCmV2YV9wdXR1bWF5bw0KYGBgDQpgYGB7cn0NCm11bl9wdXR1bWF5byA8LSBzZjo6c3RfcmVhZCgiRTovRGVzY2FyZ2FzIGVuIGVsIGRpc2NvIGR1cm8vNHRvIFNlbWVzdHJlL0dlb21hdGljYS9QdXR1bWF5by9BRE1JTklTVFJBVElWTy9NR05fTVBJT19QT0xJVElDTy5zaHAiKQ0KYGBgDQoNCmBgYHtyfQ0KbXVuX3B1dHVtYXlvJEtNMiA8LSBzdF9hcmVhKHN0X3RyYW5zZm9ybShtdW5fcHV0dW1heW8sIDMxMTYpKS8xRTYNCmBgYA0KDQpgYGB7cn0NCm11bl9wdXR1bWF5byRLTTIgPC0gYXMubnVtZXJpYyhtdW5fcHV0dW1heW8kS00yKQ0KYGBgDQoNCmBgYHtyfQ0KbXVuX3B1dHVtYXlvJEtNMiA8LSByb3VuZChtdW5fcHV0dW1heW8kS00yLDMpDQpgYGANCg0KYGBge3J9DQptaW4obXVuX3B1dHVtYXlvJEtNMikNCmBgYA0KYGBge3J9DQptYXgobXVuX3B1dHVtYXlvJEtNMikNCmBgYA0KYGBge3J9DQpsaWJyYXJ5KGxlYWZsZXQpDQpiaW5zIDwtIGMoNjAsIDE1MCwgNTAwLCAxMDAwLCAyNTAwLCA1MDAwLCA3NTAwLCAxMDAwMCwgMTEwMDApDQpwYWwgPC0gY29sb3JCaW4oIlJkWWxHbiIsIGRvbWFpbiA9IG11bl9wdXR1bWF5byRLTTIsIGJpbnMgPSBiaW5zKQ0KDQogIG1hcGEgPC0gbGVhZmxldChkYXRhID0gbXVuX3B1dHVtYXlvKSAlPiUNCiAgYWRkVGlsZXMoKSAlPiUNCiAgYWRkUG9seWdvbnMobGFiZWwgPSB+S00yLA0KICAgICAgICAgICAgICBwb3B1cCA9IH5NUElPX0NOTUJSLA0KICAgICAgICAgICAgICBmaWxsQ29sb3IgPSB+cGFsKEtNMiksDQogICAgICAgICAgICAgIGNvbG9yID0gIiM0NDQ0NDQiLA0KICAgICAgICAgICAgICB3ZWlnaHQgPSAxLA0KICAgICAgICAgICAgICBzbW9vdGhGYWN0b3IgPSAwLjUsDQogICAgICAgICAgICAgIG9wYWNpdHkgPSAxLjAsDQogICAgICAgICAgICAgIGZpbGxPcGFjaXR5ID0gMC41LA0KICAgICAgICAgICAgICBoaWdobGlnaHRPcHRpb25zID0gaGlnaGxpZ2h0T3B0aW9ucyhjb2xvciA9ICJ3aGl0ZSIsIHdlaWdodCA9IDIsIGJyaW5nVG9Gcm9udCA9IFRSVUUpDQogICAgICAgICAgICAgICkgJT4lDQogIGFkZFByb3ZpZGVyVGlsZXMocHJvdmlkZXJzJE9wZW5TdHJlZXRNYXApICU+JQ0KICBhZGRMZWdlbmQoImJvdHRvbXJpZ2h0IiwgcGFsID0gcGFsLCB2YWx1ZXMgPSB+S00yLA0KICAgIHRpdGxlID0gIkV4dGVuc2nDs24gTXVuaWNpcGFsIFtLbTJdIChEQU5FLCAyMDE4KSIsDQogICAgb3BhY2l0eSA9IDENCiAgKQ0KYGBgDQoNCmBgYHtyfQ0KbWFwYQ0KYGBgDQpgYGB7cn0NCmNsYXNzKG11bl9wdXR1bWF5byRNUElPX0NDREdPKQ0KYGBgDQpgYGB7cn0NCmNsYXNzKGV2YV9wdXR1bWF5byRDT0RfTVVOKQ0KYGBgDQpgYGB7cn0NCm11bl9wdXR1bWF5byRDT0RfTVVOIDwtICBhcy5kb3VibGUobXVuX3B1dHVtYXlvJE1QSU9fQ0NER08pDQpgYGANCg0KYGBge3J9DQpjbGFzcyhtdW5fcHV0dW1heW8kQ09EX01VTikNCmBgYA0KDQpgYGB7cn0NCnBsYXRhbm9fcHV0dW1heW8gPC0gZXZhX3B1dHVtYXlvICU+JSAgZmlsdGVyKENVTFRJVk8gPT0gIlBMQVRBTk8iKSAgJT4lICBkcGx5cjo6c2VsZWN0KE1VTklDLCBDT0RfTVVOLCBZRUFSLCBQRVJJT0RPLCBQUk9EVUNDSU9OLCBSRU5ESU1JRU5UTykgDQpgYGANCg0KDQpgYGB7cn0NCnBsYXRhbm9fcHV0dW1heW8NCmBgYA0KYGBge3J9DQp5dWNhX3B1dHVtYXlvIDwtIGV2YV9wdXR1bWF5byAlPiUgIGZpbHRlcihDVUxUSVZPID09ICJZVUNBIikgICU+JSAgZHBseXI6OnNlbGVjdChNVU5JQywgQ09EX01VTiwgWUVBUiwgUEVSSU9ETywgUFJPRFVDQ0lPTiwgUkVORElNSUVOVE8pDQoNCnl1Y2FfcHV0dW1heW8NCmBgYA0KDQpgYGB7cn0NCm1haXpfcHV0dW1heW8gPC0gZXZhX3B1dHVtYXlvICU+JSAgZmlsdGVyKFNJU1RFTUEgPT0gIk1BSVogVFJBRElDSU9OQUwiKSAgJT4lICBkcGx5cjo6c2VsZWN0KE1VTklDLCBDT0RfTVVOLCBZRUFSLCBQRVJJT0RPLCBQUk9EVUNDSU9OLCBSRU5ESU1JRU5UTykNCg0KbWFpel9wdXR1bWF5bw0KYGBgDQpgYGB7cn0NCnN1bW1hcnkocGxhdGFub19wdXR1bWF5bykNCmBgYA0KYGBge3J9DQpzdW1tYXJ5KHl1Y2FfcHV0dW1heW8pDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KG1haXpfcHV0dW1heW8pDQpgYGANCg0KYGBge3J9DQpwbGF0YW5vX3B1dHVtYXlvICU+JSByZXBsYWNlKGlzLm5hKC4pLCAwKSAtPiBwbGF0YW5vX3B1dHVtYXlvMg0KYGBgDQoNCmBgYHtyfQ0KcGxhdGFub19wdXR1bWF5byAlPiUgZ3JvdXBfYnkoTVVOSUMsIENPRF9NVU4sIFlFQVIpICU+JQ0KICAgc3VtbWFyaXplKFBST0RVQ0NJT049c3VtKFBST0RVQ0NJT04pKSAtPiBwbGF0YW5vX3B1dHVtYXlvMg0KYGBgDQoNCmBgYHtyfQ0KaGVhZChwbGF0YW5vX3B1dHVtYXlvMikNCmBgYA0KDQpgYGB7cn0NCnRhaWwocGxhdGFub19wdXR1bWF5bzIpDQpgYGANCg0KYGBge3J9DQpwbGF0YW5vX3B1dHVtYXlvMiAlPiUgDQogIGdyb3VwX2J5KENPRF9NVU4pICU+JSANCiAgZ2F0aGVyKCJQUk9EVUNDSU9OIiwga2V5ID0gdmFyaWFibGUsIHZhbHVlID0gbnVtYmVyKSAgICU+JSANCiAgdW5pdGUoY29tYmksIHZhcmlhYmxlLCBZRUFSKSAlPiUNCiAgcGl2b3Rfd2lkZXIobmFtZXNfZnJvbSA9IGNvbWJpLCB2YWx1ZXNfZnJvbSA9IG51bWJlciwgdmFsdWVzX2ZpbGwgPSAwKSAtPiBwbGF0YW5vX3B1dHVtYXlvMyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICANCmBgYA0KDQpgYGB7cn0NCmhlYWQocGxhdGFub19wdXR1bWF5bzMpDQpgYGANCiANCmBgYHtyfQ0KdGFpbChwbGF0YW5vX3B1dHVtYXlvMykNCmBgYA0KDQpgYGB7cn0NCm11bl9wdXR1bWF5b19wbGF0YW5vID0gbGVmdF9qb2luKG11bl9wdXR1bWF5bywgcGxhdGFub19wdXR1bWF5bzMsIGJ5PSJDT0RfTVVOIikNCmBgYA0KDQpgYGB7cn0NCnN1bW1hcnkobXVuX3B1dHVtYXlvX3BsYXRhbm8pDQpgYGANCmBgYHtyfQ0KaGVhZChtdW5fcHV0dW1heW9fcGxhdGFub1ssMToxMF0pDQpgYGANCg0KYGBge3J9DQp0YWlsKG11bl9wdXR1bWF5b19wbGF0YW5vWywxOjEwXSkNCmBgYA0KDQoNCmBgYHtyfQ0KbGlicmFyeShSQ29sb3JCcmV3ZXIpDQpsaWJyYXJ5KGxlYWZsZXQpDQpgYGANCg0KYGBge3J9DQpiaW5zIDwtIGMoMCwgNTAwLCAxMDAwLCAyNTAwLCA1MDAwLCAxMDAwMCwgMTUwMDAsIDIwMDAwKQ0KcGFsIDwtIGNvbG9yQmluKCJZbE9yUmQiLCBkb21haW4gPSBtdW5fcHV0dW1heW9fcGxhdGFubyRQUk9EVUNDSU9OXzIwMTgsIGJpbnMgPSBiaW5zKQ0KDQogIG1hcGExIDwtIGxlYWZsZXQoZGF0YSA9IG11bl9wdXR1bWF5b19wbGF0YW5vKSAlPiUNCiAgYWRkVGlsZXMoKSAlPiUNCiAgYWRkUG9seWdvbnMobGFiZWwgPSB+UFJPRFVDQ0lPTl8yMDE4LA0KICAgICAgICAgICAgICBwb3B1cCA9IH5NUElPX0NOTUJSLA0KICAgICAgICAgICAgICBmaWxsQ29sb3IgPSB+cGFsKFBST0RVQ0NJT05fMjAxOCksDQogICAgICAgICAgICAgIGNvbG9yID0gIiM0NDQ0NDQiLA0KICAgICAgICAgICAgICB3ZWlnaHQgPSAxLA0KICAgICAgICAgICAgICBzbW9vdGhGYWN0b3IgPSAwLjUsDQogICAgICAgICAgICAgIG9wYWNpdHkgPSAxLjAsDQogICAgICAgICAgICAgIGZpbGxPcGFjaXR5ID0gMC41LA0KICAgICAgICAgICAgICBoaWdobGlnaHRPcHRpb25zID0gaGlnaGxpZ2h0T3B0aW9ucyhjb2xvciA9ICJ3aGl0ZSIsIHdlaWdodCA9IDIsIGJyaW5nVG9Gcm9udCA9IFRSVUUpDQogICAgICAgICAgICAgICkgJT4lDQogIGFkZFByb3ZpZGVyVGlsZXMocHJvdmlkZXJzJE9wZW5TdHJlZXRNYXApICU+JQ0KICBhZGRMZWdlbmQoImJvdHRvbXJpZ2h0IiwgcGFsID0gcGFsLCB2YWx1ZXMgPSB+UFJPRFVDQ0lPTl8yMDE4LA0KICAgIHRpdGxlID0gIlByb2R1Y2Npw7NuIGRlbCBjdWx0aXZvIGRlIFBsYXRhbm8gW1Rvbl0gKDIwMTgpIiwNCiAgICBvcGFjaXR5ID0gMQ0KICApDQpgYGANCg0KYGBge3J9DQptYXBhMQ0KYGBgDQoNCmBgYHtyfQ0KeXVjYV9wdXR1bWF5byAlPiUgcmVwbGFjZShpcy5uYSguKSwgMCkgLT4geXVjYV9wdXR1bWF5bzINCmBgYA0KDQpgYGB7cn0NCnl1Y2FfcHV0dW1heW8gJT4lIGdyb3VwX2J5KE1VTklDLCBDT0RfTVVOLCBZRUFSKSAlPiUNCiAgIHN1bW1hcml6ZShQUk9EVUNDSU9OPXN1bShQUk9EVUNDSU9OKSkgLT4geXVjYV9wdXR1bWF5bzINCmBgYA0KDQpgYGB7cn0NCnl1Y2FfcHV0dW1heW8yICU+JSANCiAgZ3JvdXBfYnkoQ09EX01VTikgJT4lIA0KICBnYXRoZXIoIlBST0RVQ0NJT04iLCBrZXkgPSB2YXJpYWJsZSwgdmFsdWUgPSBudW1iZXIpICAgJT4lIA0KICB1bml0ZShjb21iaSwgdmFyaWFibGUsIFlFQVIpICU+JQ0KICBwaXZvdF93aWRlcihuYW1lc19mcm9tID0gY29tYmksIHZhbHVlc19mcm9tID0gbnVtYmVyLCB2YWx1ZXNfZmlsbCA9IDApIC0+IHl1Y2FfcHV0dW1heW8zICANCmBgYA0KDQpgYGB7cn0NCmhlYWQoeXVjYV9wdXR1bWF5bzMpDQpgYGANCg0KYGBge3J9DQpoZWFkKHl1Y2FfcHV0dW1heW8zKQ0KYGBgDQoNCmBgYHtyfQ0KbXVuX3B1dHVtYXlvX3l1Y2EgPSBsZWZ0X2pvaW4obXVuX3B1dHVtYXlvLCB5dWNhX3B1dHVtYXlvMywgYnk9IkNPRF9NVU4iKQ0KYGBgDQoNCmBgYHtyfQ0Kc3VtbWFyeShtdW5fcHV0dW1heW9feXVjYSkNCmBgYA0KDQpgYGB7cn0NCmJpbnMgPC0gYygwLCA1MDAsIDEwMDAsIDI1MDAsIDUwMDAsIDgwMDAsIDEwMDAwKQ0KcGFsIDwtIGNvbG9yQmluKCJZbE9yUmQiLCBkb21haW4gPSBtdW5fcHV0dW1heW9feXVjYSRQUk9EVUNDSU9OXzIwMTgsIGJpbnMgPSBiaW5zKQ0KDQogIG1hcGEyIDwtIGxlYWZsZXQoZGF0YSA9IG11bl9wdXR1bWF5b195dWNhKSAlPiUNCiAgYWRkVGlsZXMoKSAlPiUNCiAgYWRkUG9seWdvbnMobGFiZWwgPSB+UFJPRFVDQ0lPTl8yMDE4LA0KICAgICAgICAgICAgICBwb3B1cCA9IH5NUElPX0NOTUJSLA0KICAgICAgICAgICAgICBmaWxsQ29sb3IgPSB+cGFsKFBST0RVQ0NJT05fMjAxOCksDQogICAgICAgICAgICAgIGNvbG9yID0gIiM3Nzc3NzciLA0KICAgICAgICAgICAgICB3ZWlnaHQgPSAxLA0KICAgICAgICAgICAgICBzbW9vdGhGYWN0b3IgPSAwLjUsDQogICAgICAgICAgICAgIG9wYWNpdHkgPSAxLjAsDQogICAgICAgICAgICAgIGZpbGxPcGFjaXR5ID0gMC41LA0KICAgICAgICAgICAgICBoaWdobGlnaHRPcHRpb25zID0gaGlnaGxpZ2h0T3B0aW9ucyhjb2xvciA9ICJ3aGl0ZSIsIHdlaWdodCA9IDIsIGJyaW5nVG9Gcm9udCA9IFRSVUUpDQogICAgICAgICAgICAgICkgJT4lDQogIGFkZFByb3ZpZGVyVGlsZXMocHJvdmlkZXJzJE9wZW5TdHJlZXRNYXApICU+JQ0KICBhZGRMZWdlbmQoImJvdHRvbXJpZ2h0IiwgcGFsID0gcGFsLCB2YWx1ZXMgPSB+UFJPRFVDQ0lPTl8yMDE4LA0KICAgIHRpdGxlID0gIlByb2R1Y2Npw7NuIGRlbCBjdWx0aXZvIGRlIFl1Y2EgW1Rvbl0gKDIwMTgpIiwNCiAgICBvcGFjaXR5ID0gMQ0KICApDQpgYGANCg0KYGBge3J9DQptYXBhMg0KYGBgDQoNCmBgYHtyfQ0KbWFpel9wdXR1bWF5byAlPiUgcmVwbGFjZShpcy5uYSguKSwgMCkgLT4gbWFpel9wdXR1bWF5bzINCmBgYA0KDQpgYGB7cn0NCm1haXpfcHV0dW1heW8gJT4lIGdyb3VwX2J5KE1VTklDLCBDT0RfTVVOLCBZRUFSKSAlPiUNCiAgIHN1bW1hcml6ZShQUk9EVUNDSU9OPXN1bShQUk9EVUNDSU9OKSkgLT4gbWFpel9wdXR1bWF5bzINCmBgYA0KYGBge3J9DQptYWl6X3B1dHVtYXlvMiAlPiUgDQogIGdyb3VwX2J5KENPRF9NVU4pICU+JSANCiAgZ2F0aGVyKCJQUk9EVUNDSU9OIiwga2V5ID0gdmFyaWFibGUsIHZhbHVlID0gbnVtYmVyKSAgICU+JSANCiAgdW5pdGUoY29tYmksIHZhcmlhYmxlLCBZRUFSKSAlPiUNCiAgcGl2b3Rfd2lkZXIobmFtZXNfZnJvbSA9IGNvbWJpLCB2YWx1ZXNfZnJvbSA9IG51bWJlciwgdmFsdWVzX2ZpbGwgPSAwKSAtPiBtYWl6X3B1dHVtYXlvMyAgDQpgYGANCg0KYGBge3J9DQpoZWFkKG1haXpfcHV0dW1heW8zKQ0KYGBgDQoNCmBgYHtyfQ0KaGVhZChtYWl6X3B1dHVtYXlvMykNCmBgYA0KDQpgYGB7cn0NCm11bl9wdXR1bWF5b19tYWl6ID0gbGVmdF9qb2luKG11bl9wdXR1bWF5bywgbWFpel9wdXR1bWF5bzMsIGJ5PSJDT0RfTVVOIikNCmBgYA0KDQpgYGB7cn0NCnN1bW1hcnkobXVuX3B1dHVtYXlvX21haXopDQpgYGANCmBgYHtyfQ0KYmlucyA8LSBjKDAsIDUwLCAxMDAsIDI1MCwgNTAwLCAxMDAwLCAxNTAwLCAyMDAwKQ0KcGFsIDwtIGNvbG9yQmluKCJZbE9yUmQiLCBkb21haW4gPSBtdW5fcHV0dW1heW9fbWFpeiRQUk9EVUNDSU9OXzIwMTgsIGJpbnMgPSBiaW5zKQ0KDQogIG1hcGEzIDwtIGxlYWZsZXQoZGF0YSA9IG11bl9wdXR1bWF5b19tYWl6KSAlPiUNCiAgYWRkVGlsZXMoKSAlPiUNCiAgYWRkUG9seWdvbnMobGFiZWwgPSB+UFJPRFVDQ0lPTl8yMDE4LA0KICAgICAgICAgICAgICBwb3B1cCA9IH5NUElPX0NOTUJSLA0KICAgICAgICAgICAgICBmaWxsQ29sb3IgPSB+cGFsKFBST0RVQ0NJT05fMjAxOCksDQogICAgICAgICAgICAgIGNvbG9yID0gIiM0NDQ0NDQiLA0KICAgICAgICAgICAgICB3ZWlnaHQgPSAxLA0KICAgICAgICAgICAgICBzbW9vdGhGYWN0b3IgPSAwLjUsDQogICAgICAgICAgICAgIG9wYWNpdHkgPSAxLjAsDQogICAgICAgICAgICAgIGZpbGxPcGFjaXR5ID0gMC41LA0KICAgICAgICAgICAgICBoaWdobGlnaHRPcHRpb25zID0gaGlnaGxpZ2h0T3B0aW9ucyhjb2xvciA9ICJ3aGl0ZSIsIHdlaWdodCA9IDIsIGJyaW5nVG9Gcm9udCA9IFRSVUUpDQogICAgICAgICAgICAgICkgJT4lDQogIGFkZFByb3ZpZGVyVGlsZXMocHJvdmlkZXJzJE9wZW5TdHJlZXRNYXApICU+JQ0KICBhZGRMZWdlbmQoImJvdHRvbXJpZ2h0IiwgcGFsID0gcGFsLCB2YWx1ZXMgPSB+UFJPRFVDQ0lPTl8yMDE4LA0KICAgIHRpdGxlID0gIlByb2R1Y2Npw7NuIGRlbCBjdWx0aXZvIGRlIE1haXogVHJhZGljaW9uYWwgW1Rvbl0gKDIwMTgpIiwNCiAgICBvcGFjaXR5ID0gMQ0KICApDQpgYGANCg0KYGBge3J9DQptYXBhMw0KYGBgDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg==