library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.3 v dplyr 1.0.7
## v tidyr 1.1.4 v stringr 1.4.0
## v readr 2.0.1 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(dplyr)
library(ggplot2)
library(sf)
## Linking to GEOS 3.9.1, GDAL 3.2.1, PROJ 7.2.1
library(mapview)
library(leaflet.providers)
library(leaflet)
library(RColorBrewer)
library(leafem)
library(readr)
eva_santander <- read_csv("Evaluaciones_Agropecuarias_Municipales_EVA.csv")
## Rows: 14672 Columns: 17
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (11): CODDPTO, DPTO, MUN, GRUPO, SUBGRUPO, CULTIVO, SISTEMAPROD, PERIODO...
## dbl (6): CODMUN, ANO, HASIEMBRA, HACOSECHA, PRODUCCION, RENDIMIENTO
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
View(eva_santander)
## Warning: One or more parsing issues, see `problems()` for details
mun_santander = st_read("C:/Users/JUPA/Documents/geomatica/68_SANTANDER/ADMINISTRATIVO/MGN_MPIO_POLITICO.shp")
## Reading layer `MGN_MPIO_POLITICO' from data source
## `C:\Users\JUPA\Documents\geomatica\68_SANTANDER\ADMINISTRATIVO\MGN_MPIO_POLITICO.shp'
## using driver `ESRI Shapefile'
## Simple feature collection with 87 features and 9 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -74.52895 ymin: 5.707536 xmax: -72.47706 ymax: 8.14501
## Geodetic CRS: WGS 84
mun_santander
## Simple feature collection with 87 features and 9 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -74.52895 ymin: 5.707536 xmax: -72.47706 ymax: 8.14501
## Geodetic CRS: WGS 84
## First 10 features:
## DPTO_CCDGO MPIO_CCDGO MPIO_CNMBR MPIO_CRSLC
## 1 68 68001 BUCARAMANGA 1623
## 2 68 68013 AGUADA 1775
## 3 68 68020 ALBANIA Ordenanza 33 de 1919
## 4 68 68051 ARATOCA 1750
## 5 68 68077 BARBOSA Ordenanza 30 del 25 de Abril de 1936
## 6 68 68079 BARICHARA 1799
## 7 68 68081 BARRANCABERMEJA Ordenanza 13 del 17 de Abril de 1922
## 8 68 68092 BETULIA 1874
## 9 68 68101 BOLIVAR 1844
## 10 68 68121 CABRERA 1869
## MPIO_NAREA MPIO_NANO DPTO_CNMBR Shape_Leng Shape_Area
## 1 152.90497 2017 SANTANDER 0.6922752 0.012513526
## 2 75.23125 2017 SANTANDER 0.4758098 0.006146093
## 3 166.21697 2017 SANTANDER 0.8761299 0.013570466
## 4 169.79155 2017 SANTANDER 0.6746922 0.013882031
## 5 46.66489 2017 SANTANDER 0.2703415 0.003810882
## 6 137.27581 2017 SANTANDER 0.5610888 0.011223345
## 7 1326.83512 2017 SANTANDER 2.7351901 0.108590745
## 8 431.24871 2017 SANTANDER 1.2718180 0.035286963
## 9 1010.11035 2017 SANTANDER 4.3603864 0.082514928
## 10 65.57431 2017 SANTANDER 0.3515706 0.005360404
## geometry
## 1 POLYGON ((-73.08418 7.23063...
## 2 POLYGON ((-73.56261 6.24032...
## 3 POLYGON ((-73.73616 5.87092...
## 4 POLYGON ((-72.98158 6.76065...
## 5 POLYGON ((-73.58988 5.99809...
## 6 POLYGON ((-73.22126 6.73288...
## 7 POLYGON ((-73.6939 7.254447...
## 8 POLYGON ((-73.53993 7.15392...
## 9 POLYGON ((-74.50132 6.27574...
## 10 POLYGON ((-73.25696 6.6213,...
mun_santander$KM2 <- st_area(st_transform(mun_santander, 3116))/1E6
mun_santander$KM2 <- as.numeric(mun_santander$KM2)
mun_santander$KM2 <- round(mun_santander$KM2,3)
min(mun_santander$KM2)
## [1] 19.694
max(mun_santander$KM2)
## [1] 3174.289
mapview(mun_santander, zcol="MPIO_NAREA", col.regions=brewer.pal(9, "YlGn")) %>%
addStaticLabels(., label= mun_santander$MPIO_CNMBR, textsize= "7px",
style= list("color"="black"))
## Warning: Found less unique colors (9) than unique zcol values (87)!
## Interpolating color vector to match number of zcol values.
class(mun_santander$MPIO_CCDGO)
## [1] "character"
class(eva_santander$CODMUN)
## [1] "numeric"
mun_santander$CODMUN <- as.double(mun_santander$MPIO_CCDGO)
class(mun_santander$CODMUN)
## [1] "numeric"
palma_santander <- eva_santander %>% filter(CULTIVO== "PALMA DE ACEITE") %>% dplyr::select(MUN, CODMUN, ANO, PERIODO, PRODUCCION, RENDIMIENTO)
palma_santander
## # A tibble: 100 x 6
## MUN CODMUN ANO PERIODO PRODUCCION RENDIMIENTO
## <chr> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 PUERTO WILCHES 68575 2007 2007 111827 3.6
## 2 SABANA DE TORRES 68655 2007 2007 19562 3.3
## 3 SAN VICENTE DE CHUCURI 68689 2007 2007 5925 3.12
## 4 RIONEGRO 68615 2007 2007 6010 3.78
## 5 BARRANCABERMEJA 68081 2007 2007 5240 3.5
## 6 BETULIA 68092 2007 2007 0 NA
## 7 SIMACOTA 68745 2007 2007 75 3.41
## 8 PUERTO WILCHES 68575 2008 2008 121644 3.6
## 9 SABANA DE TORRES 68655 2008 2008 25516 3.74
## 10 SAN VICENTE DE CHUCURI 68689 2008 2008 11025 3.5
## # ... with 90 more rows
cacao_santander <- eva_santander %>% filter(CULTIVO== "CACAO") %>% dplyr::select(MUN, CODMUN, ANO, PERIODO, PRODUCCION, RENDIMIENTO)
cacao_santander
## # A tibble: 476 x 6
## MUN CODMUN ANO PERIODO PRODUCCION RENDIMIENTO
## <chr> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 SAN VICENTE DE CHUCURI 68689 2007 2007 7200 0.6
## 2 EL CARMEN DE CHUCURI 68235 2007 2007 4500 0.6
## 3 LANDAZURI 68385 2007 2007 2993 0.51
## 4 RIONEGRO 68615 2007 2007 2231 0.55
## 5 CIMITARRA 68190 2007 2007 807 0.57
## 6 LEBRIJA 68406 2007 2007 1480 0.8
## 7 EL PLAYON 68255 2007 2007 660 0.51
## 8 LA PAZ 68397 2007 2007 490 0.7
## 9 BETULIA 68092 2007 2007 242 0.7
## 10 SANTA HELENA DEL OPON 68720 2007 2007 198 0.6
## # ... with 466 more rows
unique(cacao_santander$ANO)
## [1] 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
unique(cacao_santander$PERIODO)
## [1] "2007" "2008" "2009" "2010" "2011" "2012" "2013" "2014" "2015" "2016"
## [11] "2017" "2018"
unique(palma_santander$ANO)
## [1] 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
unique(palma_santander$PERIODO)
## [1] "2007" "2008" "2009" "2010" "2011" "2012" "2013" "2014" "2015" "2016"
## [11] "2017" "2018"
cacao_santander %>%
gather("ANO", "PERIODO", "PRODUCCION", "RENDIMIENTO" , key = variable, value = number)
## # A tibble: 1,904 x 4
## MUN CODMUN variable number
## <chr> <dbl> <chr> <chr>
## 1 SAN VICENTE DE CHUCURI 68689 ANO 2007
## 2 EL CARMEN DE CHUCURI 68235 ANO 2007
## 3 LANDAZURI 68385 ANO 2007
## 4 RIONEGRO 68615 ANO 2007
## 5 CIMITARRA 68190 ANO 2007
## 6 LEBRIJA 68406 ANO 2007
## 7 EL PLAYON 68255 ANO 2007
## 8 LA PAZ 68397 ANO 2007
## 9 BETULIA 68092 ANO 2007
## 10 SANTA HELENA DEL OPON 68720 ANO 2007
## # ... with 1,894 more rows
summary(cacao_santander)
## MUN CODMUN ANO PERIODO
## Length:476 Min. :68001 Min. :2007 Length:476
## Class :character 1st Qu.:68245 1st Qu.:2010 Class :character
## Mode :character Median :68377 Median :2013 Mode :character
## Mean :68415 Mean :2013
## 3rd Qu.:68584 3rd Qu.:2016
## Max. :68895 Max. :2018
##
## PRODUCCION RENDIMIENTO
## Min. : 0.0 Min. :0.200
## 1st Qu.: 25.0 1st Qu.:0.500
## Median : 85.0 Median :0.580
## Mean : 542.3 Mean :0.611
## 3rd Qu.: 251.0 3rd Qu.:0.700
## Max. :7490.0 Max. :1.160
## NA's :13
summary(palma_santander)
## MUN CODMUN ANO PERIODO
## Length:100 Min. :68081 Min. :2007 Length:100
## Class :character 1st Qu.:68190 1st Qu.:2010 Class :character
## Mode :character Median :68575 Median :2013 Mode :character
## Mean :68472 Mean :2013
## 3rd Qu.:68655 3rd Qu.:2016
## Max. :68745 Max. :2018
##
## PRODUCCION RENDIMIENTO
## Min. : 0 Min. :1.800
## 1st Qu.: 148 1st Qu.:2.688
## Median : 8371 Median :3.280
## Mean : 22839 Mean :3.116
## 3rd Qu.: 18669 3rd Qu.:3.500
## Max. :123050 Max. :4.100
## NA's :8
cacao_santander %>% replace(is.na(.), 0) -> cacao_santander2
palma_santander %>% replace(is.na(.), 0) -> palma_santander2
cacao_santander %>% group_by(MUN, CODMUN, ANO) %>%
summarize(PRODUCCION=sum(PRODUCCION)) -> cacao_santander2
## `summarise()` has grouped output by 'MUN', 'CODMUN'. You can override using the `.groups` argument.
palma_santander %>% group_by(MUN, CODMUN, ANO) %>%
summarize(PRODUCCION=sum(PRODUCCION)) -> palma_santander2
## `summarise()` has grouped output by 'MUN', 'CODMUN'. You can override using the `.groups` argument.
cacao_santander2
## # A tibble: 476 x 4
## # Groups: MUN, CODMUN [47]
## MUN CODMUN ANO PRODUCCION
## <chr> <dbl> <dbl> <dbl>
## 1 BARRANCABERMEJA 68081 2007 35
## 2 BARRANCABERMEJA 68081 2008 42
## 3 BARRANCABERMEJA 68081 2009 110
## 4 BARRANCABERMEJA 68081 2010 57
## 5 BARRANCABERMEJA 68081 2011 61
## 6 BARRANCABERMEJA 68081 2012 85
## 7 BARRANCABERMEJA 68081 2013 87
## 8 BARRANCABERMEJA 68081 2014 70
## 9 BARRANCABERMEJA 68081 2015 70
## 10 BARRANCABERMEJA 68081 2016 77
## # ... with 466 more rows
palma_santander2
## # A tibble: 100 x 4
## # Groups: MUN, CODMUN [10]
## MUN CODMUN ANO PRODUCCION
## <chr> <dbl> <dbl> <dbl>
## 1 BARRANCABERMEJA 68081 2007 5240
## 2 BARRANCABERMEJA 68081 2008 5576
## 3 BARRANCABERMEJA 68081 2009 5687
## 4 BARRANCABERMEJA 68081 2010 6120
## 5 BARRANCABERMEJA 68081 2011 6363
## 6 BARRANCABERMEJA 68081 2012 15058
## 7 BARRANCABERMEJA 68081 2013 15744
## 8 BARRANCABERMEJA 68081 2014 15080
## 9 BARRANCABERMEJA 68081 2015 16900
## 10 BARRANCABERMEJA 68081 2016 13560
## # ... with 90 more rows
cacao_santander2 %>%
group_by(CODMUN) %>%
gather("PRODUCCION", key = variable, value = number) %>%
unite(combi, variable, ANO) %>%
pivot_wider(names_from = combi, values_from = number, values_fill = 0) -> cacao_santander3
palma_santander2 %>%
group_by(CODMUN) %>%
gather("PRODUCCION", key = variable, value = number) %>%
unite(combi, variable, ANO) %>%
pivot_wider(names_from = combi, values_from = number, values_fill = 0) -> palma_santander3
cacao_santander3
## # A tibble: 47 x 14
## # Groups: CODMUN [47]
## MUN CODMUN PRODUCCION_2007 PRODUCCION_2008 PRODUCCION_2009 PRODUCCION_2010
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 BARRANCABERMEJA 68081 35 42 110 57
## 2 BETULIA 68092 242 364 466 569
## 3 BOLIVAR 68101 45 80 102 114
## 4 BUCARAMANGA 68001 18 6 7 10
## 5 CEPITA 68160 0 0 0 0
## 6 CHARTA 68169 0 0 0 1
## 7 CHIMA 68176 7 0 10 18
## 8 CHIPATA 68179 0 0 0 0
## 9 CIMITARRA 68190 807 1208 1426 2025
## 10 CONTRATACION 68211 18 16 20 23
## # ... with 37 more rows, and 8 more variables: PRODUCCION_2011 <dbl>,
## # PRODUCCION_2012 <dbl>, PRODUCCION_2013 <dbl>, PRODUCCION_2014 <dbl>,
## # PRODUCCION_2015 <dbl>, PRODUCCION_2016 <dbl>, PRODUCCION_2017 <dbl>,
## # PRODUCCION_2018 <dbl>
palma_santander3
## # A tibble: 10 x 14
## # Groups: CODMUN [10]
## MUN CODMUN PRODUCCION_2007 PRODUCCION_2008 PRODUCCION_2009 PRODUCCION_2010
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 BARRA~ 68081 5240 5576 5687 6120
## 2 BETUL~ 68092 0 0 148 148
## 3 CIMIT~ 68190 0 0 0 0
## 4 EL CA~ 68235 0 0 0 0
## 5 PUERT~ 68573 0 0 0 50
## 6 PUERT~ 68575 111827 121644 123050 123050
## 7 RIONE~ 68615 6010 6460 6653 9020
## 8 SABAN~ 68655 19562 25516 28684 39161
## 9 SAN V~ 68689 5925 11025 11900 12250
## 10 SIMAC~ 68745 75 103 117 0
## # ... with 8 more variables: PRODUCCION_2011 <dbl>, PRODUCCION_2012 <dbl>,
## # PRODUCCION_2013 <dbl>, PRODUCCION_2014 <dbl>, PRODUCCION_2015 <dbl>,
## # PRODUCCION_2016 <dbl>, PRODUCCION_2017 <dbl>, PRODUCCION_2018 <dbl>
mun_cacao_santander = left_join(mun_santander, cacao_santander3, by="CODMUN")
summary(mun_cacao_santander)
## DPTO_CCDGO MPIO_CCDGO MPIO_CNMBR MPIO_CRSLC
## Length:87 Length:87 Length:87 Length:87
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## MPIO_NAREA MPIO_NANO DPTO_CNMBR Shape_Leng
## Min. : 19.69 Min. :2017 Length:87 Min. :0.2700
## 1st Qu.: 91.01 1st Qu.:2017 Class :character 1st Qu.:0.4765
## Median : 201.73 Median :2017 Mode :character Median :0.7392
## Mean : 351.28 Mean :2017 Mean :1.0298
## 3rd Qu.: 426.17 3rd Qu.:2017 3rd Qu.:1.2240
## Max. :3174.28 Max. :2017 Max. :4.3604
##
## Shape_Area KM2 CODMUN MUN
## Min. :0.00161 Min. : 19.69 Min. :68001 Length:87
## 1st Qu.:0.00744 1st Qu.: 91.01 1st Qu.:68210 Class :character
## Median :0.01649 Median : 201.73 Median :68370 Mode :character
## Mean :0.02873 Mean : 351.28 Mean :68409
## 3rd Qu.:0.03486 3rd Qu.: 426.17 3rd Qu.:68595
## Max. :0.25946 Max. :3174.29 Max. :68895
##
## PRODUCCION_2007 PRODUCCION_2008 PRODUCCION_2009 PRODUCCION_2010
## Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 2.0
## Median : 18.0 Median : 16.0 Median : 28.0 Median : 35.0
## Mean : 463.7 Mean : 454.6 Mean : 406.4 Mean : 441.2
## 3rd Qu.: 100.0 3rd Qu.: 100.0 3rd Qu.: 107.5 3rd Qu.: 124.5
## Max. :7200.0 Max. :7490.0 Max. :5640.0 Max. :5350.0
## NA's :40 NA's :40 NA's :40 NA's :40
## PRODUCCION_2011 PRODUCCION_2012 PRODUCCION_2013 PRODUCCION_2014
## Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 6.5 1st Qu.: 11.0 1st Qu.: 12.0 1st Qu.: 17.0
## Median : 42.0 Median : 49.0 Median : 69.0 Median : 57.0
## Mean : 455.4 Mean : 431.1 Mean : 458.4 Mean : 400.6
## 3rd Qu.: 124.0 3rd Qu.: 184.0 3rd Qu.: 243.5 3rd Qu.: 199.5
## Max. :5014.0 Max. :4993.0 Max. :5145.0 Max. :5000.0
## NA's :40 NA's :40 NA's :40 NA's :40
## PRODUCCION_2015 PRODUCCION_2016 PRODUCCION_2017 PRODUCCION_2018
## Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 16.5 1st Qu.: 23.5 1st Qu.: 27.0 1st Qu.: 30.0
## Median : 95.0 Median : 95.0 Median : 77.0 Median : 94.0
## Mean : 465.1 Mean : 498.6 Mean : 487.0 Mean : 529.6
## 3rd Qu.: 226.5 3rd Qu.: 240.0 3rd Qu.: 232.5 3rd Qu.: 334.0
## Max. :5400.0 Max. :6625.0 Max. :6540.0 Max. :6540.0
## NA's :40 NA's :40 NA's :40 NA's :40
## geometry
## POLYGON :87
## epsg:4326 : 0
## +proj=long...: 0
##
##
##
##
m_p_santander = left_join(mun_santander, palma_santander3, by="CODMUN")
summary(m_p_santander)
## DPTO_CCDGO MPIO_CCDGO MPIO_CNMBR MPIO_CRSLC
## Length:87 Length:87 Length:87 Length:87
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## MPIO_NAREA MPIO_NANO DPTO_CNMBR Shape_Leng
## Min. : 19.69 Min. :2017 Length:87 Min. :0.2700
## 1st Qu.: 91.01 1st Qu.:2017 Class :character 1st Qu.:0.4765
## Median : 201.73 Median :2017 Mode :character Median :0.7392
## Mean : 351.28 Mean :2017 Mean :1.0298
## 3rd Qu.: 426.17 3rd Qu.:2017 3rd Qu.:1.2240
## Max. :3174.28 Max. :2017 Max. :4.3604
##
## Shape_Area KM2 CODMUN MUN
## Min. :0.00161 Min. : 19.69 Min. :68001 Length:87
## 1st Qu.:0.00744 1st Qu.: 91.01 1st Qu.:68210 Class :character
## Median :0.01649 Median : 201.73 Median :68370 Mode :character
## Mean :0.02873 Mean : 351.28 Mean :68409
## 3rd Qu.:0.03486 3rd Qu.: 426.17 3rd Qu.:68595
## Max. :0.25946 Max. :3174.29 Max. :68895
##
## PRODUCCION_2007 PRODUCCION_2008 PRODUCCION_2009 PRODUCCION_2010
## Min. : 0 Min. : 0 Min. : 0.00 Min. : 0.0
## 1st Qu.: 0 1st Qu.: 0 1st Qu.: 29.25 1st Qu.: 12.5
## Median : 2658 Median : 2840 Median : 2917.50 Median : 3134.0
## Mean : 14864 Mean : 17032 Mean : 17623.90 Mean : 18979.9
## 3rd Qu.: 5989 3rd Qu.: 9884 3rd Qu.: 10588.25 3rd Qu.: 11442.5
## Max. :111827 Max. :121644 Max. :123050.00 Max. :123050.0
## NA's :77 NA's :77 NA's :77 NA's :77
## PRODUCCION_2011 PRODUCCION_2012 PRODUCCION_2013 PRODUCCION_2014
## Min. : 0 Min. : 0.00 Min. : 0 Min. : 0.0
## 1st Qu.: 12 1st Qu.: 12.75 1st Qu.: 37 1st Qu.: 333.8
## Median : 3256 Median : 6724.00 Median : 8112 Median : 3406.0
## Mean : 19057 Mean : 20812.40 Mean :15975 Mean :18181.3
## 3rd Qu.: 12291 3rd Qu.: 17804.50 3rd Qu.:15674 3rd Qu.:15007.5
## Max. :119340 Max. :119340.00 Max. :71167 Max. :72775.0
## NA's :77 NA's :77 NA's :77 NA's :77
## PRODUCCION_2015 PRODUCCION_2016 PRODUCCION_2017 PRODUCCION_2018
## Min. : 107.0 Min. : 102.0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 573.8 1st Qu.: 426.8 1st Qu.: 377.5 1st Qu.: 691.2
## Median :12311.0 Median : 9677.5 Median : 9390.0 Median : 10555.0
## Mean :22332.2 Mean :19391.3 Mean :20869.5 Mean : 23274.7
## 3rd Qu.:18444.0 3rd Qu.:14629.5 3rd Qu.:15172.0 3rd Qu.: 14274.5
## Max. :95468.0 Max. :87234.0 Max. :91000.0 Max. :109307.0
## NA's :77 NA's :77 NA's :77 NA's :77
## geometry
## POLYGON :87
## epsg:4326 : 0
## +proj=long...: 0
##
##
##
##
head(mun_cacao_santander[,1:10])
## Simple feature collection with 6 features and 10 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -73.96194 ymin: 5.707536 xmax: -72.93536 ymax: 7.266616
## Geodetic CRS: WGS 84
## DPTO_CCDGO MPIO_CCDGO MPIO_CNMBR MPIO_CRSLC
## 1 68 68001 BUCARAMANGA 1623
## 2 68 68013 AGUADA 1775
## 3 68 68020 ALBANIA Ordenanza 33 de 1919
## 4 68 68051 ARATOCA 1750
## 5 68 68077 BARBOSA Ordenanza 30 del 25 de Abril de 1936
## 6 68 68079 BARICHARA 1799
## MPIO_NAREA MPIO_NANO DPTO_CNMBR Shape_Leng Shape_Area KM2
## 1 152.90497 2017 SANTANDER 0.6922752 0.012513526 152.905
## 2 75.23125 2017 SANTANDER 0.4758098 0.006146093 75.231
## 3 166.21697 2017 SANTANDER 0.8761299 0.013570466 166.217
## 4 169.79155 2017 SANTANDER 0.6746922 0.013882031 169.792
## 5 46.66489 2017 SANTANDER 0.2703415 0.003810882 46.665
## 6 137.27581 2017 SANTANDER 0.5610888 0.011223345 137.276
## geometry
## 1 POLYGON ((-73.08418 7.23063...
## 2 POLYGON ((-73.56261 6.24032...
## 3 POLYGON ((-73.73616 5.87092...
## 4 POLYGON ((-72.98158 6.76065...
## 5 POLYGON ((-73.58988 5.99809...
## 6 POLYGON ((-73.22126 6.73288...
head(m_p_santander[,1:10])
## Simple feature collection with 6 features and 10 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -73.96194 ymin: 5.707536 xmax: -72.93536 ymax: 7.266616
## Geodetic CRS: WGS 84
## DPTO_CCDGO MPIO_CCDGO MPIO_CNMBR MPIO_CRSLC
## 1 68 68001 BUCARAMANGA 1623
## 2 68 68013 AGUADA 1775
## 3 68 68020 ALBANIA Ordenanza 33 de 1919
## 4 68 68051 ARATOCA 1750
## 5 68 68077 BARBOSA Ordenanza 30 del 25 de Abril de 1936
## 6 68 68079 BARICHARA 1799
## MPIO_NAREA MPIO_NANO DPTO_CNMBR Shape_Leng Shape_Area KM2
## 1 152.90497 2017 SANTANDER 0.6922752 0.012513526 152.905
## 2 75.23125 2017 SANTANDER 0.4758098 0.006146093 75.231
## 3 166.21697 2017 SANTANDER 0.8761299 0.013570466 166.217
## 4 169.79155 2017 SANTANDER 0.6746922 0.013882031 169.792
## 5 46.66489 2017 SANTANDER 0.2703415 0.003810882 46.665
## 6 137.27581 2017 SANTANDER 0.5610888 0.011223345 137.276
## geometry
## 1 POLYGON ((-73.08418 7.23063...
## 2 POLYGON ((-73.56261 6.24032...
## 3 POLYGON ((-73.73616 5.87092...
## 4 POLYGON ((-72.98158 6.76065...
## 5 POLYGON ((-73.58988 5.99809...
## 6 POLYGON ((-73.22126 6.73288...
mapview(mun_cacao_santander, zcol= "PRODUCCION_2017", col.regions=brewer.pal(9, "YlGn")) %>%
addStaticLabels(., label= mun_cacao_santander$MPIO_CNMBR, textsize= "7px",
style= list("color"="black"))
## Warning: Found less unique colors (9) than unique zcol values (39)!
## Interpolating color vector to match number of zcol values.
mapview(m_p_santander, zcol= "PRODUCCION_2017", col.regions=brewer.pal(9, "YlGn")) %>%
addStaticLabels(., label= m_p_santander$MPIO_CNMBR, textsize= "7px",
style= list("color"="black"))