Feedback use

## Loading required package: bitops

Methods details

how many students in the cohort each semester

## BIOL1040 Sem1 BIOL1040 Sem2 BIOM2011 Sem1 BIOM2011 Sem2 
##           733           972           251            92

How many students looked at their reports?

How long do students leave their feedback open?

as mean +/- SEM in minutes

as mean +/- SEM in hours

##                projects   ls.mean       ls.se
## 1  BIOL1040Sem1Report 1 3.9253858 0.010307411
## 2  BIOL1040Sem1Report 2 3.8234282 0.010809668
## 3  BIOL1040Sem1Report 3 3.7940786 0.010502834
## 4  BIOL1040Sem1Report 4 0.7151577 0.004828290
## 5  BIOL1040Sem2Report 1 3.2654889 0.006784010
## 6  BIOL1040Sem2Report 2 3.0790065 0.007191402
## 7  BIOL1040Sem2Report 3 0.4788550 0.003076460
## 8  BIOM2011Sem1Report 1 6.4423636 0.070072392
## 9  BIOM2011Sem1Report 2 1.3357410 0.024507403
## 10 BIOM2011Sem2Report 1 3.7142518 0.134024592
## 11 BIOM2011Sem2Report 2 0.5537070 0.030914024

open duration as histograms
NB log scale, so

##       -4       -3       -2       -1        0        1        2        3 
##  "1 sec"  "3 sec"  "8 sec" "22 sec"  "1 min"  "3 min"  "7 min" "20 min" 
##        4        5        6        7        8 
## "55 min"   "2 hr"   "7 hr"  "18 hr"  "50 hr"

Binning students based on open duration

bins at >1min, 1min-1hr, <1hr

##   SubmissionID OpenDurationTotal.min              project   course  sem
## 1         1486              56.23980 BIOL1040Sem1Report 1 BIOL1040 Sem1
## 2         1487              11.72763 BIOL1040Sem1Report 1 BIOL1040 Sem1
## 3         1488              59.98822 BIOL1040Sem1Report 1 BIOL1040 Sem1
## 4         1489             468.86465 BIOL1040Sem1Report 1 BIOL1040 Sem1
## 5         1490            1399.60237 BIOL1040Sem1Report 1 BIOL1040 Sem1
##     report     open.bin
## 1 Report 1       (1,60]
## 2 Report 1       (1,60]
## 3 Report 1       (1,60]
## 4 Report 1 (60,4.6e+03]
## 5 Report 1 (60,4.6e+03]
## 
##  short medium   long 
##    559   2802   1920
##   StudentID SubmissionID MarkerID   Publish.Time Final.Grade
## 1  S8110327         1711      T18 21/03/13 11:02          71
## 2  S8112239         2271      T25 27/03/13 13:30          79
## 3  S8233701         1755      T15 18/03/13 15:55          79
## 4  S8234819         2261      T03  25/03/13 5:41          75
## 5  S8236749         1929      T09 22/03/13 12:53          83
##                project   course  sem   report
## 1 BIOL1040Sem1Report 1 BIOL1040 Sem1 Report 1
## 2 BIOL1040Sem1Report 1 BIOL1040 Sem1 Report 1
## 3 BIOL1040Sem1Report 1 BIOL1040 Sem1 Report 1
## 4 BIOL1040Sem1Report 1 BIOL1040 Sem1 Report 1
## 5 BIOL1040Sem1Report 1 BIOL1040 Sem1 Report 1
##   SubmissionID StudentID MarkerID   Publish.Time Final.Grade
## 1        10312  S8434173      T17 15/10/13 17:26          92
## 2        10314  S8646403      T01  5/10/13 13:01          65
## 3        10315  S8626753      T05  5/10/13 13:01          75
## 4        10316  S8633583      T06  18/10/13 8:08          54
## 5        10317  S8636705      T05  5/10/13 13:01          79
##                project   course  sem   report OpenDurationTotal.min
## 1 BIOL1040Sem2Report 3 BIOL1040 Sem2 Report 3                    NA
## 2 BIOL1040Sem2Report 3 BIOL1040 Sem2 Report 3                    NA
## 3 BIOL1040Sem2Report 3 BIOL1040 Sem2 Report 3              1.905667
## 4 BIOL1040Sem2Report 3 BIOL1040 Sem2 Report 3                    NA
## 5 BIOL1040Sem2Report 3 BIOL1040 Sem2 Report 3              1.695567
##   open.bin
## 1     <NA>
## 2     <NA>
## 3   medium
## 4     <NA>
## 5   medium
##  short medium   long   NA's 
##    559   2802   1920    786

Final grade by open duration

##             means    errors
## long     77.74407 0.2882501
## medium   78.33212 0.2635101
## short    78.31740 0.5792307
## unopened 67.26081 0.5872290

Open duration by report

is there a sig diff in the amount of time students leave their open?

## [1] "Level 2 - semesters pooled"
## 
##  Welch Two Sample t-test
## 
## data:  df[, 10] by df[, 9]
## t = 6.0832, df = 266.001, p-value = 4.084e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  184.8511 361.7757
## sample estimates:
## mean in group Report 1 mean in group Report 2 
##              342.24975               68.93636
## [1] "Level 1 - semesters pooled"
##               Df    Sum Sq Mean Sq F value Pr(>F)    
## df[, 9]        3  17120573 5706858   51.02 <2e-16 ***
## Residuals   4738 529944612  111850                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 574 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = df[, 10] ~ df[, 9])
## 
## $`df[, 9]`
##                         diff        lwr        upr     p adj
## Report 2-Report 1  -12.60544  -44.86734   19.65647 0.7469987
## Report 3-Report 1  -94.64860 -127.41763  -61.87956 0.0000000
## Report 4-Report 1 -175.74088 -218.50975 -132.97202 0.0000000
## Report 3-Report 2  -82.04316 -114.77301  -49.31331 0.0000000
## Report 4-Report 2 -163.13544 -205.87430 -120.39659 0.0000000
## Report 4-Report 3  -81.09228 -124.21523  -37.96934 0.0000083
## [1] "Level 1 Semester 1"
##               Df    Sum Sq Mean Sq F value Pr(>F)    
## df[, 9]        3  16203646 5401215      42 <2e-16 ***
## Residuals   2390 307324667  128588                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 267 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = df[, 10] ~ df[, 9])
## 
## $`df[, 9]`
##                           diff        lwr        upr     p adj
## Report 2-Report 1  -17.9152000  -71.17126   35.34086 0.8230058
## Report 3-Report 1  -18.6585637  -72.03511   34.71798 0.8055256
## Report 4-Report 1 -205.5585235 -260.31065 -150.80640 0.0000000
## Report 3-Report 2   -0.7433636  -52.68605   51.19933 0.9999821
## Report 4-Report 2 -187.6433234 -240.99857 -134.28808 0.0000000
## Report 4-Report 3 -186.8999598 -240.37547 -133.42445 0.0000000
## [1] "Level 1 Semester 2"
##               Df    Sum Sq Mean Sq F value Pr(>F)    
## df[, 9]        2  13075208 6537604   73.75 <2e-16 ***
## Residuals   2345 207879794   88648                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 307 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = df[, 10] ~ df[, 9])
## 
## $`df[, 9]`
##                         diff       lwr        upr     p adj
## Report 2-Report 1  -12.21178  -46.7486   22.32503 0.6848886
## Report 3-Report 1 -167.92481 -203.4405 -132.40910 0.0000000
## Report 3-Report 2 -155.71302 -191.8087 -119.61734 0.0000000

How long do students pause to look at feedback/their writing (between clicks)?

Minimum (in msec), and Max (in hours) as tables

## BIOL1040Sem1Report 1 BIOL1040Sem1Report 2 BIOL1040Sem1Report 3 
##                   82                   35                   18 
## BIOL1040Sem1Report 4 BIOL1040Sem2Report 1 BIOL1040Sem2Report 2 
##                   40                    7                   16 
## BIOL1040Sem2Report 3 BIOM2011Sem1Report 1 BIOM2011Sem1Report 2 
##                   11                  129                  476 
## BIOM2011Sem2Report 1 BIOM2011Sem2Report 2 
##                   96                  446
## BIOL1040Sem1Report 1 BIOL1040Sem1Report 2 BIOL1040Sem1Report 3 
##                 23.6                 23.8                 45.8 
## BIOL1040Sem1Report 4 BIOL1040Sem2Report 1 BIOL1040Sem2Report 2 
##                 21.7                 36.3                 31.3 
## BIOL1040Sem2Report 3 BIOM2011Sem1Report 1 BIOM2011Sem1Report 2 
##                 19.3                 22.5                 17.4 
## BIOM2011Sem2Report 1 BIOM2011Sem2Report 2 
##                 17.2                  9.7

pause duration as mean and SEM

is there a sig diff in the pauses between reports?

##             means    errors
## Report 1 1.999917 0.1521152
## Report 2 1.270313 0.1893537
## [1] "Level 2 - semesters pooled"
## 
##  Welch Two Sample t-test
## 
## data:  dfs[, dv] by dfs[, iv]
## t = 3.0039, df = 31423.57, p-value = 0.002668
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  15212.20 72340.25
## sample estimates:
## mean in group Report 1 mean in group Report 2 
##              119995.03               76218.81
## [1] "Level 1 - semesters pooled"
##                 Df    Sum Sq   Mean Sq F value   Pr(>F)    
## dfs[, iv]        3 1.347e+14 4.488e+13   11.48 1.61e-07 ***
## Residuals   314287 1.229e+18 3.911e+12                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = dfs[, dv] ~ dfs[, iv])
## 
## $`dfs[, iv]`
##                         diff          lwr        upr     p adj
## Report 2-Report 1  20610.105    -761.7298  41981.939 0.0634555
## Report 3-Report 1  -5627.407  -29855.8705  18601.056 0.9331029
## Report 4-Report 1 -69955.224 -110174.2824 -29736.165 0.0000466
## Report 3-Report 2 -26237.512  -51379.3957  -1095.627 0.0368834
## Report 4-Report 2 -90565.328 -131341.1615 -49789.495 0.0000001
## Report 4-Report 3 -64327.817 -106670.8411 -21984.792 0.0005506
## [1] "Level 1 Semester 1"
##                 Df    Sum Sq   Mean Sq F value   Pr(>F)    
## dfs[, iv]        3 1.514e+14 5.047e+13   11.67 1.22e-07 ***
## Residuals   166354 7.196e+17 4.326e+12                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = dfs[, dv] ~ dfs[, iv])
## 
## $`dfs[, iv]`
##                         diff        lwr       upr     p adj
## Report 2-Report 1  -1850.813  -35629.93  31928.31 0.9990057
## Report 3-Report 1   1827.874  -32317.63  35973.38 0.9990724
## Report 4-Report 1 -96379.066 -142556.58 -50201.56 0.0000005
## Report 3-Report 2   3678.688  -30453.29  37810.67 0.9925910
## Report 4-Report 2 -94528.253 -140695.76 -48360.74 0.0000009
## Report 4-Report 3 -98206.940 -144643.19 -51770.69 0.0000003
## [1] "Level 1 Semester 1"
##                 Df    Sum Sq   Mean Sq F value   Pr(>F)    
## dfs[, iv]        2 1.592e+14 7.962e+13   23.12 9.12e-11 ***
## Residuals   147930 5.094e+17 3.443e+12                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = dfs[, dv] ~ dfs[, iv])
## 
## $`dfs[, iv]`
##                         diff         lwr       upr     p adj
## Report 2-Report 1   34371.05    9691.028  59051.07 0.0031523
## Report 3-Report 1  -70504.64 -105281.447 -35727.83 0.0000060
## Report 3-Report 2 -104875.69 -141164.763 -68586.62 0.0000000

pause duration as histograms
NB log scale, so

##       -4       -3       -2       -1        0        1        2        3 
##  "1 sec"  "3 sec"  "8 sec" "22 sec"  "1 min"  "3 min"  "7 min" "20 min" 
##        4        5        6        7        8 
## "55 min"   "2 hr"   "7 hr"  "18 hr"  "50 hr"

setting up final notfinal categorisation