La hipótesis se plantea de acuerdo a lo que queramos resolver. En R, se le puede indicar al argumento ‘alternative’ de la función z.test
, si este debe ser “less” (cola izquierda), “greater”(cola derecha), ó “two.sided” (dos colas).
#install.packages("BSDA")
library(BSDA)
## Loading required package: lattice
##
## Attaching package: 'BSDA'
## The following object is masked from 'package:datasets':
##
## Orange
#ejemplo para dos colas
#H0: La media es igual a mu
#H0: La media NO es igual a mu
datos1=c(26.2,29.3,31.3,28.7,27.4,25.1,26,27.2,27.5,29.8,32.6,34.6)
z.test(x=datos1, #la muestra
y=NULL, #no se especifica
alternative="two.sided", # "less", "greater","two.sided"
mu=27, # valor a comparar
sigma.x=2.5, #desviación conocida, si tiene la varianza aplicar sqrt()
sigma.y=NULL, #nulo
conf.level=0.95) #confianza
##
## One-sample z-Test
##
## data: datos1
## z = 2.5057, p-value = 0.01222
## alternative hypothesis: true mean is not equal to 27
## 95 percent confidence interval:
## 27.39385 30.22282
## sample estimates:
## mean of x
## 28.80833
# si p-value > 0,05 no rechazar H0
De acuerdo al resultado, si p-value > 0,05 no hay evidencia suficiente para rechazar H0.
En este caso, se usa una distribución t-student. para ello, usamos la función t.test
.
#ejemplo para dos colas
#H0: La media es igual a mu
#H0: La media NO es igual a mu
datos1=c(26.2,29.3,31.3,28.7,27.4,25.1,26,27.2,27.5,29.8,32.6,34.6)
t.test(x=datos1,
y=NULL, #o dejarlo vacío
alternative="two.sided",
mu=27,
conf.level=0.95)
##
## One Sample t-test
##
## data: datos1
## t = 2.1889, df = 11, p-value = 0.05106
## alternative hypothesis: true mean is not equal to 27
## 95 percent confidence interval:
## 26.99003 30.62664
## sample estimates:
## mean of x
## 28.80833
ahora pasaremos a los siguientes casos:
Como n \(\geq\) 30 se puede aproximar el comportamiento de la muestra al de una distribución normal. El ejercicio debe proporcionar el valor para \(\sigma^{2}\)
#install.packages("BSDA")
library(BSDA)
#ejemplo para dos colas
#H0: La media es igual a mu
#H0: La media NO es igual a mu
datos1=c(26.2,29.3,31.3,28.7,27.4,25.1,26,27.2,27.5,29.8,32.6,34.6)
z.test(x=datos1, #la muestra
y=NULL, #no se especifica
alternative="two.sided", # "less", "greater","two.sided"
mu=27, # valor a comparar
sigma.x=2.5, #desviación conocida, si tiene la varianza aplicar sqrt()
sigma.y=NULL, #nulo
conf.level=0.95) #confianza
##
## One-sample z-Test
##
## data: datos1
## z = 2.5057, p-value = 0.01222
## alternative hypothesis: true mean is not equal to 27
## 95 percent confidence interval:
## 27.39385 30.22282
## sample estimates:
## mean of x
## 28.80833
# si p-value > 0,05 no rechazar H0
Como n \(\geq\) 30 se puede aproximar el comportamiento de la muestra al de una distribución normal. El ejercicio debe proporcionar el valor para la varianza muestral (\(s^2\)).
#install.packages("BSDA")
library(BSDA)
#ejemplo para dos colas
#H0: La media es igual a mu
#H0: La media NO es igual a mu
datos1=c(26.2,29.3,31.3,28.7,27.4,25.1,26,27.2,27.5,29.8,32.6,34.6)
z.test(x=datos1, #la muestra
y=NULL, #no se especifica
alternative="two.sided", # "less", "greater","two.sided"
mu=27, # valor a comparar
sigma.x=sd(datos1), #, desviación estándar de los datos
conf.level=0.95) #confianza
##
## One-sample z-Test
##
## data: datos1
## z = 2.1889, p-value = 0.0286
## alternative hypothesis: true mean is not equal to 27
## 95 percent confidence interval:
## 27.18914 30.42752
## sample estimates:
## mean of x
## 28.80833
# si p-value > 0,05 no rechazar H0
#ejemplo para dos colas
#hipótesis
#H0: las medias son iguales
#H1: las medias son diferentes
#install.packages("BSDA")
library(BSDA)
publica <- c(26.2,29.3,31.3,28.7,27.4,25.1,26,27.2,27.5,29.8,32.6,34.6)
privada <- c(25.3,28.2,29.2,27.1,26.8,26.5,30.7,31.3,26.3,24.2)
z.test(x=publica,
y=privada,
alternative = "two.sided",
sigma.x = sqrt(8), # 8 es varianza
sigma.y = sqrt(5), # 5 es varianza
conf.level = 0.95)
##
## Two-sample z-Test
##
## data: publica and privada
## z = 1.1557, p-value = 0.2478
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8686697 3.3653364
## sample estimates:
## mean of x mean of y
## 28.80833 27.56000
# si p-value > 0,05 no rechazar H0
Para este caso usamos un estadístico t-student
#ejemplo para dos colas
#hipótesis
#H0: las medias son iguales
#H1: las medias son diferentes
t.test(
x <- rnorm(50, mean = 18, sd =3), #vector generado
y <- rnorm(60, mean = 20, sd =4), #vector generado
alternative = "two.sided",
var.equal = TRUE, #se especifica que son iguales las varianzas
conf.level = 0.95)
##
## Two Sample t-test
##
## data: x <- rnorm(50, mean = 18, sd = 3) and y <- rnorm(60, mean = 20, sd = 4)
## t = -2.5667, df = 108, p-value = 0.01164
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.7483650 -0.3531677
## sample estimates:
## mean of x mean of y
## 18.02653 19.57730
# si p-value > 0,05 no rechazar H0
Para este caso usamos un estadístico t-student
#ejemplo para dos colas
#hipótesis
#H0: las medias son iguales
#H1: las medias son diferentes
t.test(
x <- rnorm(50, mean = 18, sd =3), #vector generado
y <- rnorm(60, mean = 20, sd =6), #vector generado
alternative = "two.sided",
var.equal = FALSE, #se especifíca que son diferentes las varianzas
conf.level = 0.95)
##
## Welch Two Sample t-test
##
## data: x <- rnorm(50, mean = 18, sd = 3) and y <- rnorm(60, mean = 20, sd = 6)
## t = -0.9502, df = 104.75, p-value = 0.3442
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.3203556 0.8169426
## sample estimates:
## mean of x mean of y
## 18.63979 19.39150
# si p-value > 0,05 no rechazar H0
#ejemplo para dos colas
#hipótesis
#H0: las medias son iguales
#H1: las medias son diferentes
#install.packages("BSDA")
library(BSDA)
publica <- c(26.2,29.3,31.3,28.7,27.4,25.1,26,27.2,27.5,29.8,32.6,34.6)
privada <- c(25.3,28.2,29.2,27.1,26.8,26.5,30.7,31.3,26.3,24.2)
z.test(x=publica,
y=privada,
alternative = "two.sided",
sigma.x = sqrt(8), # 8 es varianza
sigma.y = sqrt(5), # 5 es varianza
conf.level = 0.95)
##
## Two-sample z-Test
##
## data: publica and privada
## z = 1.1557, p-value = 0.2478
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8686697 3.3653364
## sample estimates:
## mean of x mean of y
## 28.80833 27.56000
# si p-value > 0,05 no rechazar H0
#ejemplo para dos colas
#hipótesis
#H0: las medias son iguales
#H1: las medias son diferentes
#install.packages("BSDA")
library(BSDA)
publica <- c(26.2,29.3,31.3,28.7,27.4,25.1,26,27.2,27.5,29.8,32.6,34.6)
privada <- c(25.3,28.2,29.2,27.1,26.8,26.5,30.7,31.3,26.3,24.2)
z.test(x=publica,
y=privada,
alternative = "two.sided",
sigma.x = sd(publica), # desviación muestral
sigma.y = sd(privada), # desviación muestral
conf.level = 0.95)
##
## Two-sample z-Test
##
## data: publica and privada
## z = 1.1382, p-value = 0.2551
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.9013662 3.3980329
## sample estimates:
## mean of x mean of y
## 28.80833 27.56000
# si p-value > 0,05 no rechazar H0
#ejemplo dos colas
#H0: p = p0
#H1: p != p0
prop.test(x=275,
n=500,
p=0.5,
alternative='two.sided',
conf.level=0.90)
##
## 1-sample proportions test with continuity correction
##
## data: 275 out of 500, null probability 0.5
## X-squared = 4.802, df = 1, p-value = 0.02843
## alternative hypothesis: true p is not equal to 0.5
## 90 percent confidence interval:
## 0.5122310 0.5872162
## sample estimates:
## p
## 0.55
# si p-value > 0,05 no rechazar H0
#ejemplo dos colas
#HO: las proporciones son iguales
#H1: las proporciones No son iguales
prop.test(x=c(154, 30), n=c(184, 184),
alternative='two.sided', conf.level=0.95)
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(154, 30) out of c(184, 184)
## X-squared = 164.45, df = 1, p-value < 2.2e-16
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.5929938 0.7548322
## sample estimates:
## prop 1 prop 2
## 0.8369565 0.1630435
# si p-value > 0,05 no rechazar H0
#ejemplo
#HO: la varianza es igual a = 5
#H1: la varianza NO es igual a = 5
contenido <- c(510, 492, 494, 498, 492,
496, 502, 491, 507, 496)
#install.packages('EnvStats')
library(EnvStats)
##
## Attaching package: 'EnvStats'
## The following objects are masked from 'package:stats':
##
## predict, predict.lm
## The following object is masked from 'package:base':
##
## print.default
varTest(x <- contenido,
alternative= "two.sided",
conf.level = 0.95,
sigma.squared = 40)
##
## Chi-Squared Test on Variance
##
## data: x <- contenido
## Chi-Squared = 9.64, df = 9, p-value = 0.7608
## alternative hypothesis: true variance is not equal to 40
## 95 percent confidence interval:
## 20.27045 142.79422
## sample estimates:
## variance
## 42.84444
#ejemplo
#HO: las varianzas son iguales
#H1: las varianzas No son iguales
muestra1 <- c(26.2,29.3,31.3,28.7,27.4,25.1,26,27.2,27.5,29.8,32.6,34.6)
muestra2 <- c(25.3,28.2,29.2,27.1,26.8,26.5,30.7,31.3,26.3,24.2)
var.test( x <- muestra1,
y <- muestra2,
alternative='two.sided',
conf.level=0.95)
##
## F test to compare two variances
##
## data: x <- muestra1 and y <- muestra2
## F = 1.5735, num df = 11, denom df = 9, p-value = 0.5053
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4022178 5.6455803
## sample estimates:
## ratio of variances
## 1.573506
# si p-value > 0,05 no rechazar H0