CUED FACE CHOSEN

A. intercept only

1. 1 + (1|pt) + (1|face)

random intercepts for study & random slopes for face trustworthiness excluded because singular

m.i.a.1 <- glmer(cuedFaceTrusted_1 ~ 1 +
              (1 | participant) + 
              (1 | face), family = binomial("logit"), data = d2)

summary(m.i.a.1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ 1 + (1 | participant) + (1 | face)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.7  55915.6 -27941.9  55883.7    40827 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7453 -0.9796  0.4767  0.9592  1.7594 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.173284 0.41627 
##  face        (Intercept) 0.002452 0.04952 
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  0.04435    0.01823   2.433    0.015 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(m.i.a.1)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.05 1.01 – 1.08 0.015
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N participant 825
N face 141
Observations 40830
Marginal R2 / Conditional R2 0.000 / 0.051

B. trustManip

a. trust_.5 + (1|pt) + (1|face)

random intercepts for study excluded because no variance

m.i.a.2 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + 
              (1 | participant) + 
              (1 | face), family = binomial("logit"), data = d2)

summary(m.i.a.2)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | participant) + (1 | face)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55886.2  55920.7 -27939.1  55878.2    40826 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7532 -0.9768  0.4746  0.9581  1.7459 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.171900 0.41461 
##  face        (Intercept) 0.002442 0.04942 
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  0.03224    0.01889   1.707   0.0878 .
## trust_.5     0.08592    0.03648   2.355   0.0185 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## trust_.5 -0.271
tab_model(m.i.a.2)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.03 1.00 – 1.07 0.088
trust_.5 1.09 1.01 – 1.17 0.019
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N participant 825
N face 141
Observations 40830
Marginal R2 / Conditional R2 0.000 / 0.051

b. SE trust

m.i.a.2.a <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + 
              (1 | participant) + 
              (1 | face), family = binomial("logit"), data = d2)
summary(m.i.a.2.a)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (1 | participant) + (1 | face)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55886.2  55920.7 -27939.1  55878.2    40826 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7532 -0.9768  0.4746  0.9581  1.7459 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.171900 0.41461 
##  face        (Intercept) 0.002442 0.04942 
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.07521    0.02242   3.354 0.000796 ***
## trustYes_0  -0.08593    0.03648  -2.355 0.018506 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr)
## trustYes_0 -0.585
tab_model(m.i.a.2.a)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.08 1.03 – 1.13 0.001
trustYes_0 0.92 0.85 – 0.99 0.019
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N participant 825
N face 141
Observations 40830
Marginal R2 / Conditional R2 0.000 / 0.051

c. SE not trust

m.i.a.2.b <- glmer(cuedFaceTrusted_1 ~ trustNo_0 +
              (1 | participant) + 
              (1 | face), family = binomial("logit"), data = d2)

summary(m.i.a.2.b)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (1 | participant) + (1 | face)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55886.2  55920.7 -27939.1  55878.2    40826 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7532 -0.9768  0.4746  0.9581  1.7459 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.171901 0.41461 
##  face        (Intercept) 0.002442 0.04942 
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -0.01072    0.02961  -0.362   0.7173  
## trustNo_0    0.08593    0.03648   2.355   0.0185 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr)
## trustNo_0 -0.789
tab_model(m.i.a.2.b)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.99 0.93 – 1.05 0.717
trustNo_0 1.09 1.01 – 1.17 0.019
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N participant 825
N face 141
Observations 40830
Marginal R2 / Conditional R2 0.000 / 0.051

C. trustManip + study

0. merged studies

a. trust.5 + s1v23 + s2v3 + (1|pt) + (1|face)

random intercepts for study and slopes for face trustworthiness excluded because singular tested all study contrast code variation–no sig effects no significant higher order interactions–so excluded those models

m.i.b.1 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + (S1v23 + S2v3) +
              (1 | participant) + 
              (1 | face), family = binomial("logit"), data = d2)

summary(m.i.b.1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (S1v23 + S2v3) + (1 | participant) +  
##     (1 | face)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.3  55941.0 -27938.7  55877.3    40824 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7520 -0.9758  0.4732  0.9585  1.7492 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.171636 0.41429 
##  face        (Intercept) 0.002421 0.04921 
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  0.035616   0.020355   1.750   0.0802 .
## trust_.5     0.086772   0.040235   2.157   0.0310 *
## S1v23        0.008924   0.045718   0.195   0.8452  
## S2v3        -0.039306   0.042540  -0.924   0.3555  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) trs_.5 S1v23 
## trust_.5 -0.363              
## S1v23    -0.284  0.418       
## S2v3     -0.205  0.012 -0.129
tab_model(m.i.b.1)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.04 1.00 – 1.08 0.080
trust_.5 1.09 1.01 – 1.18 0.031
S1v23 1.01 0.92 – 1.10 0.845
S2v3 0.96 0.88 – 1.05 0.355
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N participant 825
N face 141
Observations 40830
Marginal R2 / Conditional R2 0.001 / 0.051

b. SE trust

m.i.b.1.a <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + S1v23 + S2v3 +
              (1 | participant) + 
              (1 | face), family = binomial("logit"), data = d2)

summary(m.i.b.1.a)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + S1v23 + S2v3 + (1 | participant) +  
##     (1 | face)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.3  55941.0 -27938.7  55877.3    40824 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7520 -0.9758  0.4732  0.9585  1.7492 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.171636 0.41429 
##  face        (Intercept) 0.002421 0.04921 
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.079001   0.022850   3.457 0.000545 ***
## trustYes_0  -0.086770   0.040238  -2.156 0.031051 *  
## S1v23        0.008919   0.045723   0.195 0.845335    
## S2v3        -0.039307   0.042544  -0.924 0.355525    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) trsY_0 S1v23 
## trustYes_0 -0.557              
## S1v23       0.115 -0.418       
## S2v3       -0.173 -0.012 -0.129
tab_model(m.i.b.1.a)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.08 1.03 – 1.13 0.001
trustYes_0 0.92 0.85 – 0.99 0.031
S1v23 1.01 0.92 – 1.10 0.845
S2v3 0.96 0.88 – 1.05 0.356
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N participant 825
N face 141
Observations 40830
Marginal R2 / Conditional R2 0.001 / 0.051

c. SE not trust

m.i.b.1.b <- glmer(cuedFaceTrusted_1 ~ trustNo_0 + S1v23 + S2v3 +
              (1 | participant) + 
              (1 | face), family = binomial("logit"), data = d2)

summary(m.i.b.1.b)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + S1v23 + S2v3 + (1 | participant) +  
##     (1 | face)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.3  55941.0 -27938.7  55877.3    40824 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7520 -0.9758  0.4732  0.9585  1.7492 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.171636 0.41429 
##  face        (Intercept) 0.002421 0.04921 
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -0.007768   0.033405  -0.233    0.816  
## trustNo_0    0.086771   0.040232   2.157    0.031 *
## S1v23        0.008922   0.045716   0.195    0.845  
## S2v3        -0.039308   0.042540  -0.924    0.355  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) trsN_0 S1v23 
## trustNo_0 -0.823              
## S1v23     -0.424  0.418       
## S2v3      -0.132  0.012 -0.129
tab_model(m.i.b.1.b)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.99 0.93 – 1.06 0.816
trustNo_0 1.09 1.01 – 1.18 0.031
S1v23 1.01 0.92 – 1.10 0.845
S2v3 0.96 0.88 – 1.05 0.355
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N participant 825
N face 141
Observations 40830
Marginal R2 / Conditional R2 0.001 / 0.051

1. study 1

a. trust.5 + S2_1 + s3_1 + (1|pt)

m3 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + (s2_1 + s3_1) +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (s2_1 + s3_1) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  28236.6  28276.2 -14113.3  28226.6    20410 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2832 -1.0042  0.7218  0.9686  1.2443 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07119  0.2668  
## Number of obs: 20415, groups:  participant, 825
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  0.02657    0.03942   0.674   0.5004  
## trust_.5     0.08031    0.03882   2.069   0.0386 *
## s2_1         0.02876    0.05089   0.565   0.5720  
## s3_1        -0.00997    0.04590  -0.217   0.8280  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) trs_.5 s2_1  
## trust_.5 -0.492              
## s2_1     -0.763  0.358       
## s3_1     -0.851  0.406  0.649
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.03 0.95 – 1.11 0.500
trust_.5 1.08 1.00 – 1.17 0.039
s2_1 1.03 0.93 – 1.14 0.572
s3_1 0.99 0.90 – 1.08 0.828
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20415
Marginal R2 / Conditional R2 0.001 / 0.022

b. SE trust

m3 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + (s2_1 + s3_1) +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (s2_1 + s3_1) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  28236.6  28276.2 -14113.3  28226.6    20410 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2832 -1.0042  0.7218  0.9686  1.2443 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07119  0.2668  
## Number of obs: 20415, groups:  participant, 825
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  0.066721   0.034322   1.944   0.0519 .
## trustYes_0  -0.080311   0.038832  -2.068   0.0386 *
## s2_1         0.028762   0.050895   0.565   0.5720  
## s3_1        -0.009966   0.045915  -0.217   0.8282  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) trsY_0 s2_1  
## trustYes_0  0.000              
## s2_1       -0.674 -0.358       
## s3_1       -0.748 -0.406  0.650
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.07 1.00 – 1.14 0.052
trustYes_0 0.92 0.86 – 1.00 0.039
s2_1 1.03 0.93 – 1.14 0.572
s3_1 0.99 0.90 – 1.08 0.828
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20415
Marginal R2 / Conditional R2 0.001 / 0.022

c. SE not trust

m3 <- glmer(cuedFaceTrusted_1 ~ trustNo_0 + (s2_1 + s3_1) +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (s2_1 + s3_1) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  28236.6  28276.2 -14113.3  28226.6    20410 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2832 -1.0042  0.7218  0.9686  1.2443 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07119  0.2668  
## Number of obs: 20415, groups:  participant, 825
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -0.013591   0.051837  -0.262   0.7932  
## trustNo_0    0.080312   0.038834   2.068   0.0386 *
## s2_1         0.028765   0.050903   0.565   0.5720  
## s3_1        -0.009968   0.045921  -0.217   0.8282  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) trsN_0 s2_1  
## trustNo_0 -0.749              
## s2_1      -0.715  0.358       
## s3_1      -0.800  0.407  0.650
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.99 0.89 – 1.09 0.793
trustNo_0 1.08 1.00 – 1.17 0.039
s2_1 1.03 0.93 – 1.14 0.572
s3_1 0.99 0.90 – 1.08 0.828
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20415
Marginal R2 / Conditional R2 0.001 / 0.022

2. study 2

a. trust.5 + S1_1 + s3_1 + (1|pt)

m3 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + (s1_1 + s3_1) +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (s1_1 + s3_1) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  28236.6  28276.2 -14113.3  28226.6    20410 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2832 -1.0042  0.7218  0.9686  1.2443 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07119  0.2668  
## Number of obs: 20415, groups:  participant, 825
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  0.05533    0.03289   1.682   0.0926 .
## trust_.5     0.08031    0.03882   2.069   0.0386 *
## s1_1        -0.02876    0.05089  -0.565   0.5719  
## s3_1        -0.03873    0.04077  -0.950   0.3421  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) trs_.5 s1_1  
## trust_.5 -0.037              
## s1_1     -0.632 -0.358       
## s3_1     -0.806  0.011  0.517
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.06 0.99 – 1.13 0.093
trust_.5 1.08 1.00 – 1.17 0.039
s1_1 0.97 0.88 – 1.07 0.572
s3_1 0.96 0.89 – 1.04 0.342
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20415
Marginal R2 / Conditional R2 0.001 / 0.022

b. SE trust

m3 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + (s1_1 + s3_1) +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (s1_1 + s3_1) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  28236.6  28276.2 -14113.3  28226.6    20410 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2832 -1.0042  0.7218  0.9686  1.2443 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07119  0.2668  
## Number of obs: 20415, groups:  participant, 825
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  0.09548    0.03759   2.540   0.0111 *
## trustYes_0  -0.08031    0.03883  -2.068   0.0386 *
## s1_1        -0.02877    0.05090  -0.565   0.5720  
## s3_1        -0.03873    0.04078  -0.950   0.3423  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) trsY_0 s1_1  
## trustYes_0 -0.485              
## s1_1       -0.739  0.358       
## s3_1       -0.700 -0.011  0.517
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.10 1.02 – 1.18 0.011
trustYes_0 0.92 0.86 – 1.00 0.039
s1_1 0.97 0.88 – 1.07 0.572
s3_1 0.96 0.89 – 1.04 0.342
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20415
Marginal R2 / Conditional R2 0.001 / 0.022

c. SE not trust

m3 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + (s1_1 + s3_1) +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (s1_1 + s3_1) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  28236.6  28276.2 -14113.3  28226.6    20410 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2832 -1.0042  0.7218  0.9686  1.2443 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07119  0.2668  
## Number of obs: 20415, groups:  participant, 825
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  0.09548    0.03759   2.540   0.0111 *
## trustYes_0  -0.08031    0.03883  -2.068   0.0386 *
## s1_1        -0.02877    0.05090  -0.565   0.5720  
## s3_1        -0.03873    0.04078  -0.950   0.3423  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) trsY_0 s1_1  
## trustYes_0 -0.485              
## s1_1       -0.739  0.358       
## s3_1       -0.700 -0.011  0.517
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.10 1.02 – 1.18 0.011
trustYes_0 0.92 0.86 – 1.00 0.039
s1_1 0.97 0.88 – 1.07 0.572
s3_1 0.96 0.89 – 1.04 0.342
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20415
Marginal R2 / Conditional R2 0.001 / 0.022

3. study 3

a. trust.5 + S1_1 + S2_1 + (1|pt)

m3 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + (s1_1 + s2_1) +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (s1_1 + s2_1) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  28236.6  28276.2 -14113.3  28226.6    20410 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2832 -1.0042  0.7218  0.9686  1.2443 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07119  0.2668  
## Number of obs: 20415, groups:  participant, 825
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) 0.016598   0.024133   0.688   0.4916  
## trust_.5    0.080314   0.038829   2.068   0.0386 *
## s1_1        0.009964   0.045907   0.217   0.8282  
## s2_1        0.038727   0.040776   0.950   0.3422  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) trs_.5 s1_1  
## trust_.5 -0.031              
## s1_1     -0.512 -0.406       
## s2_1     -0.591 -0.011  0.315
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.02 0.97 – 1.07 0.492
trust_.5 1.08 1.00 – 1.17 0.039
s1_1 1.01 0.92 – 1.11 0.828
s2_1 1.04 0.96 – 1.13 0.342
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20415
Marginal R2 / Conditional R2 0.001 / 0.022

b. SE trust

m3 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + (s1_1 + s2_1) +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (s1_1 + s2_1) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  28236.6  28276.2 -14113.3  28226.6    20410 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2832 -1.0042  0.7218  0.9686  1.2443 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07119  0.2668  
## Number of obs: 20415, groups:  participant, 825
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  0.056753   0.030488   1.862   0.0627 .
## trustYes_0  -0.080313   0.038820  -2.069   0.0386 *
## s1_1         0.009967   0.045900   0.217   0.8281  
## s2_1         0.038732   0.040774   0.950   0.3422  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) trsY_0 s1_1  
## trustYes_0 -0.612              
## s1_1       -0.664  0.406       
## s2_1       -0.475  0.011  0.315
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.06 1.00 – 1.12 0.063
trustYes_0 0.92 0.86 – 1.00 0.039
s1_1 1.01 0.92 – 1.11 0.828
s2_1 1.04 0.96 – 1.13 0.342
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20415
Marginal R2 / Conditional R2 0.001 / 0.022

c. SE not trust

m3 <- glmer(cuedFaceTrusted_1 ~ trustNo_0 + (s1_1 + s2_1) +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (s1_1 + s2_1) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  28236.6  28276.2 -14113.3  28226.6    20410 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2832 -1.0042  0.7218  0.9686  1.2443 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07119  0.2668  
## Number of obs: 20415, groups:  participant, 825
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -0.023559   0.031443  -0.749   0.4537  
## trustNo_0    0.080313   0.038825   2.069   0.0386 *
## s1_1         0.009968   0.045904   0.217   0.8281  
## s2_1         0.038731   0.040777   0.950   0.3422  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) trsN_0 s1_1  
## trustNo_0 -0.641              
## s1_1      -0.142 -0.406       
## s2_1      -0.447 -0.011  0.315
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.98 0.92 – 1.04 0.454
trustNo_0 1.08 1.00 – 1.17 0.039
s1_1 1.01 0.92 – 1.11 0.828
s2_1 1.04 0.96 – 1.13 0.342
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20415
Marginal R2 / Conditional R2 0.001 / 0.022

D. trustManip + study + trustDiff

trustworthiness descriptives

describe(d$trustAvg, na.rm = T)
describe(d$trustDiff.CUC, na.rm = T)

0. merged studies

a. trust.5 + s1v23 + s2v3 + trustDiff + (1|pt)

i. controlling

m3 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + (S1v23 + S2v3) + trustDiff.CUC.c +
              (1 | participant), 
            family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (S1v23 + S2v3) + trustDiff.CUC.c +  
##     (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27157.7  27205.1 -13572.8  27145.7    20026 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2463 -0.9749  0.5882  0.9557  2.0230 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07614  0.2759  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.031485   0.019710   1.597   0.1102    
## trust_.5         0.095698   0.039788   2.405   0.0162 *  
## S1v23            0.006949   0.045331   0.153   0.8782    
## S2v3            -0.041262   0.041926  -0.984   0.3250    
## trustDiff.CUC.c -0.734894   0.032401 -22.681   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 S1v23  S2v3  
## trust_.5    -0.370                     
## S1v23       -0.296  0.417              
## S2v3        -0.224  0.011 -0.139       
## trstDf.CUC. -0.009 -0.007  0.010  0.006
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.03 0.99 – 1.07 0.110
trust_.5 1.10 1.02 – 1.19 0.016
S1v23 1.01 0.92 – 1.10 0.878
S2v3 0.96 0.88 – 1.04 0.325
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.035 / 0.057

ii. interaction

no sig 3-way interaction no sig 2-way interaction for trustManip X trustDiff model with interaction failed to converge–used bobyqa optimizer & increased iterations

m3 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c * (S1v23 + S2v3) +
              (1 | participant), 
            family = binomial("logit"),
            control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c * (S1v23 + S2v3) +  
##     (1 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27153.6  27216.8 -13568.8  27137.6    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2861 -0.9724  0.5985  0.9519  2.0493 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07614  0.2759  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            0.030539   0.019705   1.550  0.12119    
## trust_.5               0.097087   0.039833   2.437  0.01480 *  
## trustDiff.CUC.c       -0.819243   0.046283 -17.701  < 2e-16 ***
## S1v23                  0.008393   0.045277   0.185  0.85295    
## S2v3                  -0.042255   0.041965  -1.007  0.31399    
## trustDiff.CUC.c:S1v23 -0.223806   0.080665  -2.775  0.00553 ** 
## trustDiff.CUC.c:S2v3  -0.283307   0.130258  -2.175  0.02963 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 trD.CUC. S1v23  S2v3   tD.CUC.:S1
## trust_.5    -0.371                                         
## trstDf.CUC.  0.004 -0.014                                  
## S1v23       -0.294  0.418  0.004                           
## S2v3        -0.224  0.011  0.009   -0.139                  
## tD.CUC.:S12  0.017 -0.012  0.556   -0.014  0.008           
## tD.CUC.:S23  0.011 -0.011  0.694    0.000  0.006  0.597
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.03 0.99 – 1.07 0.121
trust_.5 1.10 1.02 – 1.19 0.015
trustDiff.CUC.c 0.44 0.40 – 0.48 <0.001
S1v23 1.01 0.92 – 1.10 0.853
S2v3 0.96 0.88 – 1.04 0.314
trustDiff.CUC.c * S1v23 0.80 0.68 – 0.94 0.006
trustDiff.CUC.c * S2v3 0.75 0.58 – 0.97 0.030
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

b. SE trust

m3 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + (S1v23 + S2v3) + trustDiff.CUC.c +
              (1 | participant), family = binomial("logit"), data = d)

summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (S1v23 + S2v3) + trustDiff.CUC.c +  
##     (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27157.7  27205.1 -13572.8  27145.7    20026 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2463 -0.9749  0.5882  0.9557  2.0230 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07614  0.2759  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.079334   0.022223   3.570 0.000357 ***
## trustYes_0      -0.095700   0.039788  -2.405 0.016162 *  
## S1v23            0.006954   0.045331   0.153 0.878078    
## S2v3            -0.041264   0.041926  -0.984 0.325014    
## trustDiff.CUC.c -0.734894   0.032401 -22.681  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 S1v23  S2v3  
## trustYes_0  -0.567                     
## S1v23        0.110 -0.417              
## S2v3        -0.189 -0.011 -0.139       
## trstDf.CUC. -0.014  0.007  0.010  0.006
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.08 1.04 – 1.13 <0.001
trustYes_0 0.91 0.84 – 0.98 0.016
S1v23 1.01 0.92 – 1.10 0.878
S2v3 0.96 0.88 – 1.04 0.325
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.035 / 0.057

c. SE not trust

m3 <- glmer(cuedFaceTrusted_1 ~ trustNo_0 + (S1v23 + S2v3) + trustDiff.CUC.c +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (S1v23 + S2v3) + trustDiff.CUC.c +  
##     (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27157.7  27205.1 -13572.8  27145.7    20026 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2463 -0.9749  0.5882  0.9557  2.0230 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07614  0.2759  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -0.016369   0.032783  -0.499   0.6176    
## trustNo_0        0.095702   0.039789   2.405   0.0162 *  
## S1v23            0.006948   0.045332   0.153   0.8782    
## S2v3            -0.041264   0.041927  -0.984   0.3250    
## trustDiff.CUC.c -0.734893   0.032401 -22.681   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsN_0 S1v23  S2v3  
## trustNo_0   -0.830                     
## S1v23       -0.431  0.417              
## S2v3        -0.141  0.011 -0.139       
## trstDf.CUC. -0.001 -0.007  0.010  0.006
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.98 0.92 – 1.05 0.618
trustNo_0 1.10 1.02 – 1.19 0.016
S1v23 1.01 0.92 – 1.10 0.878
S2v3 0.96 0.88 – 1.04 0.325
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.035 / 0.057

1. study 1

a. trust.5 + S2_1 + s3_1 + trustDiff + (1|pt)

no 3-way int no higher order int for trustDiff x trustManip

m3 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c + (s2_1 + s3_1) +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c + (s2_1 + s3_1) +  
##     (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27157.7  27205.1 -13572.8  27145.7    20026 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2463 -0.9749  0.5882  0.9557  2.0230 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07614  0.2759  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.02685    0.04068   0.660   0.5092    
## trust_.5         0.09570    0.03979   2.405   0.0162 *  
## trustDiff.CUC.c -0.73490    0.03240 -22.681   <2e-16 ***
## s2_1             0.02758    0.05252   0.525   0.5995    
## s3_1            -0.01368    0.04723  -0.290   0.7721    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 tD.CUC s2_1  
## trust_.5    -0.489                     
## trstDf.CUC. -0.012 -0.007              
## s2_1        -0.763  0.355  0.007       
## s3_1        -0.853  0.405  0.013  0.651
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.03 0.95 – 1.11 0.509
trust_.5 1.10 1.02 – 1.19 0.016
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
s2_1 1.03 0.93 – 1.14 0.599
s3_1 0.99 0.90 – 1.08 0.772
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.035 / 0.057

b. SE trust

m3 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + (s2_1 + s3_1) + trustDiff.CUC.c +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (s2_1 + s3_1) + trustDiff.CUC.c +  
##     (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27157.7  27205.1 -13572.8  27145.7    20026 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2463 -0.9749  0.5882  0.9557  2.0230 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07614  0.2759  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.07470    0.03548   2.105   0.0353 *  
## trustYes_0      -0.09570    0.03979  -2.405   0.0162 *  
## s2_1             0.02758    0.05252   0.525   0.5995    
## s3_1            -0.01368    0.04723  -0.290   0.7721    
## trustDiff.CUC.c -0.73489    0.03240 -22.681   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 s2_1   s3_1  
## trustYes_0   0.000                     
## s2_1        -0.676 -0.355              
## s3_1        -0.751 -0.405  0.651       
## trstDf.CUC. -0.018  0.007  0.007  0.013
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.08 1.01 – 1.16 0.035
trustYes_0 0.91 0.84 – 0.98 0.016
s2_1 1.03 0.93 – 1.14 0.599
s3_1 0.99 0.90 – 1.08 0.772
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.035 / 0.057

c. SE not trust

m3 <- glmer(cuedFaceTrusted_1 ~ trustNo_0 + (s2_1 + s3_1) + trustDiff.CUC.c +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (s2_1 + s3_1) + trustDiff.CUC.c +  
##     (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27157.7  27205.1 -13572.8  27145.7    20026 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2463 -0.9749  0.5882  0.9557  2.0230 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07614  0.2759  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -0.02100    0.05331  -0.394   0.6937    
## trustNo_0        0.09570    0.03979   2.405   0.0162 *  
## s2_1             0.02758    0.05252   0.525   0.5994    
## s3_1            -0.01368    0.04723  -0.290   0.7721    
## trustDiff.CUC.c -0.73489    0.03240 -22.681   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsN_0 s2_1   s3_1  
## trustNo_0   -0.746                     
## s2_1        -0.715  0.355              
## s3_1        -0.802  0.405  0.651       
## trstDf.CUC. -0.007 -0.007  0.007  0.013
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.98 0.88 – 1.09 0.694
trustNo_0 1.10 1.02 – 1.19 0.016
s2_1 1.03 0.93 – 1.14 0.599
s3_1 0.99 0.90 – 1.08 0.772
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.035 / 0.057

2. study 2

a. trust.5 + S1_1 + s3_1 + trustDiff + (1|pt)

no 3-way int no higher order int for trustDiff x trustManip

m3 <- glmer(cuedFaceTrusted_1 ~ trust_.5 * trustDiff.CUC.c + (s1_1 + s3_1) +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 * trustDiff.CUC.c + (s1_1 + s3_1) +  
##     (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27159.4  27214.7 -13572.7  27145.4    20025 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3192 -0.9753  0.5902  0.9553  2.0063 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07616  0.276   
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               0.05435    0.03397   1.600   0.1096    
## trust_.5                  0.09581    0.03980   2.407   0.0161 *  
## trustDiff.CUC.c          -0.74494    0.03693 -20.173   <2e-16 ***
## s1_1                     -0.02776    0.05251  -0.529   0.5970    
## s3_1                     -0.04128    0.04194  -0.984   0.3250    
## trust_.5:trustDiff.CUC.c  0.04200    0.07374   0.570   0.5690    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 tD.CUC s1_1   s3_1  
## trust_.5    -0.037                            
## trstDf.CUC. -0.002 -0.009                     
## s1_1        -0.633 -0.355 -0.003              
## s3_1        -0.809  0.012  0.005  0.519       
## t_.5:D.CUC. -0.004  0.005 -0.480 -0.006 -0.001
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.06 0.99 – 1.13 0.110
trust_.5 1.10 1.02 – 1.19 0.016
trustDiff.CUC.c 0.47 0.44 – 0.51 <0.001
s1_1 0.97 0.88 – 1.08 0.597
s3_1 0.96 0.88 – 1.04 0.325
trust_.5 *
trustDiff.CUC.c
1.04 0.90 – 1.21 0.569
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.035 / 0.057

b. SE trust

m3 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + (s1_1 + s3_1) + trustDiff.CUC.c +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (s1_1 + s3_1) + trustDiff.CUC.c +  
##     (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27157.7  27205.1 -13572.8  27145.7    20026 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2463 -0.9749  0.5882  0.9557  2.0230 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07614  0.2759  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.10228    0.03872   2.641  0.00826 ** 
## trustYes_0      -0.09570    0.03979  -2.405  0.01617 *  
## s1_1            -0.02758    0.05252  -0.525  0.59945    
## s3_1            -0.04126    0.04193  -0.984  0.32502    
## trustDiff.CUC.c -0.73490    0.03240 -22.681  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 s1_1   s3_1  
## trustYes_0  -0.482                     
## s1_1        -0.737  0.355              
## s3_1        -0.704 -0.011  0.519       
## trstDf.CUC. -0.007  0.007 -0.007  0.006
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.11 1.03 – 1.20 0.008
trustYes_0 0.91 0.84 – 0.98 0.016
s1_1 0.97 0.88 – 1.08 0.599
s3_1 0.96 0.88 – 1.04 0.325
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.035 / 0.057

c. SE not trust

m3 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + (s1_1 + s3_1) + trustDiff.CUC.c +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (s1_1 + s3_1) + trustDiff.CUC.c +  
##     (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27157.7  27205.1 -13572.8  27145.7    20026 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2463 -0.9749  0.5882  0.9557  2.0230 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07614  0.2759  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.10228    0.03872   2.641  0.00826 ** 
## trustYes_0      -0.09570    0.03979  -2.405  0.01617 *  
## s1_1            -0.02758    0.05252  -0.525  0.59945    
## s3_1            -0.04126    0.04193  -0.984  0.32502    
## trustDiff.CUC.c -0.73490    0.03240 -22.681  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 s1_1   s3_1  
## trustYes_0  -0.482                     
## s1_1        -0.737  0.355              
## s3_1        -0.704 -0.011  0.519       
## trstDf.CUC. -0.007  0.007 -0.007  0.006
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.11 1.03 – 1.20 0.008
trustYes_0 0.91 0.84 – 0.98 0.016
s1_1 0.97 0.88 – 1.08 0.599
s3_1 0.96 0.88 – 1.04 0.325
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.035 / 0.057

3. study 3

a. trust.5 + S1_1 + S2_1 + trustDiff + (1|pt)

i. controlling

m3 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + (s1_1 + s2_1) + trustDiff.CUC.c +
              (1 | participant), 
            family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (s1_1 + s2_1) + trustDiff.CUC.c +  
##     (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27157.7  27205.1 -13572.8  27145.7    20026 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2463 -0.9749  0.5882  0.9557  2.0230 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07613  0.2759  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.01317    0.02464   0.535   0.5930    
## trust_.5         0.09570    0.03979   2.405   0.0162 *  
## s1_1             0.01368    0.04723   0.290   0.7720    
## s2_1             0.04126    0.04193   0.984   0.3250    
## trustDiff.CUC.c -0.73490    0.03240 -22.681   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 s1_1   s2_1  
## trust_.5    -0.032                     
## s1_1        -0.508 -0.405              
## s2_1        -0.587 -0.011  0.311       
## trstDf.CUC.  0.004 -0.007 -0.013 -0.006
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.01 0.97 – 1.06 0.593
trust_.5 1.10 1.02 – 1.19 0.016
s1_1 1.01 0.92 – 1.11 0.772
s2_1 1.04 0.96 – 1.13 0.325
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.035 / 0.057

ii. interacting

no sig 3-way interaction no sig 2-way interaction for trustManip X trustDiff model with interaction failed to converge–used bobyqa optimizer & increased iterations

m3 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c * (s1_1 + s2_1) +
              (1 | participant), 
            family = binomial("logit"),
            control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)

summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c * (s1_1 + s2_1) +  
##     (1 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27153.6  27216.8 -13568.8  27137.6    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2861 -0.9724  0.5985  0.9519  2.0493 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07614  0.2759  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           0.01221    0.02467   0.495   0.6207    
## trust_.5              0.09708    0.03983   2.437   0.0148 *  
## trustDiff.CUC.c      -1.03550    0.12153  -8.520   <2e-16 ***
## s1_1                  0.01274    0.04718   0.270   0.7872    
## s2_1                  0.04225    0.04197   1.007   0.3140    
## trustDiff.CUC.c:s1_1  0.36546    0.13049   2.801   0.0051 ** 
## trustDiff.CUC.c:s2_1  0.28331    0.13026   2.175   0.0296 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 trD.CUC. s1_1   s2_1   tD.CUC.:1
## trust_.5    -0.032                                        
## trstDf.CUC.  0.015 -0.014                                 
## s1_1        -0.509 -0.405 -0.002                          
## s2_1        -0.587 -0.011 -0.009    0.311                 
## tD.CUC.:1_1 -0.014  0.013 -0.931   -0.004  0.008          
## tD.CUC.:2_1 -0.014  0.011 -0.933    0.003  0.006  0.868
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.01 0.96 – 1.06 0.621
trust_.5 1.10 1.02 – 1.19 0.015
trustDiff.CUC.c 0.36 0.28 – 0.45 <0.001
s1_1 1.01 0.92 – 1.11 0.787
s2_1 1.04 0.96 – 1.13 0.314
trustDiff.CUC.c * s1_1 1.44 1.12 – 1.86 0.005
trustDiff.CUC.c * s2_1 1.33 1.03 – 1.71 0.030
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

b. SE trust

i. controlling

m3 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + trustDiff.CUC.c + (s1_1 + s2_1)  +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + trustDiff.CUC.c + (s1_1 + s2_1) +  
##     (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27157.7  27205.1 -13572.8  27145.7    20026 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2463 -0.9749  0.5882  0.9557  2.0230 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07614  0.2759  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.06102    0.03117   1.957   0.0503 .  
## trustYes_0      -0.09570    0.03979  -2.405   0.0162 *  
## trustDiff.CUC.c -0.73490    0.03240 -22.681   <2e-16 ***
## s1_1             0.01369    0.04723   0.290   0.7719    
## s2_1             0.04126    0.04193   0.984   0.3250    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 tD.CUC s1_1  
## trustYes_0  -0.613                     
## trstDf.CUC. -0.001  0.007              
## s1_1        -0.660  0.405 -0.013       
## s2_1        -0.471  0.011 -0.006  0.311
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.06 1.00 – 1.13 0.050
trustYes_0 0.91 0.84 – 0.98 0.016
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
s1_1 1.01 0.92 – 1.11 0.772
s2_1 1.04 0.96 – 1.13 0.325
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.035 / 0.057

ii. interacting

no sig 2-way interaction for trustManip X trustDiff

m3 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + trustDiff.CUC.c * (s1_1 + s2_1) + 
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + trustDiff.CUC.c * (s1_1 + s2_1) +  
##     (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27153.6  27216.8 -13568.8  27137.6    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2861 -0.9724  0.5985  0.9519  2.0493 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07614  0.2759  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           0.06075    0.03121   1.946  0.05161 .  
## trustYes_0           -0.09708    0.03983  -2.437  0.01480 *  
## trustDiff.CUC.c      -1.03549    0.12155  -8.519  < 2e-16 ***
## s1_1                  0.01273    0.04718   0.270  0.78728    
## s2_1                  0.04225    0.04197   1.007  0.31402    
## trustDiff.CUC.c:s1_1  0.36545    0.13051   2.800  0.00511 ** 
## trustDiff.CUC.c:s2_1  0.28330    0.13028   2.174  0.02967 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 trD.CUC. s1_1   s2_1   tD.CUC.:1
## trustYes_0  -0.613                                        
## trstDf.CUC.  0.003  0.014                                 
## s1_1        -0.661  0.405 -0.002                          
## s2_1        -0.471  0.011 -0.009    0.311                 
## tD.CUC.:1_1 -0.003 -0.013 -0.931   -0.004  0.008          
## tD.CUC.:2_1 -0.004 -0.011 -0.933    0.003  0.006  0.869
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.06 1.00 – 1.13 0.052
trustYes_0 0.91 0.84 – 0.98 0.015
trustDiff.CUC.c 0.36 0.28 – 0.45 <0.001
s1_1 1.01 0.92 – 1.11 0.787
s2_1 1.04 0.96 – 1.13 0.314
trustDiff.CUC.c * s1_1 1.44 1.12 – 1.86 0.005
trustDiff.CUC.c * s2_1 1.33 1.03 – 1.71 0.030
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

c. SE not trust

i. controlling

m3 <- glmer(cuedFaceTrusted_1 ~ trustNo_0 + (s1_1 + s2_1) + trustDiff.CUC.c +
              (1 | participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (s1_1 + s2_1) + trustDiff.CUC.c +  
##     (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27157.7  27205.1 -13572.8  27145.7    20026 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2463 -0.9749  0.5882  0.9557  2.0230 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07614  0.2759  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -0.03468    0.03215  -1.079   0.2808    
## trustNo_0        0.09570    0.03979   2.405   0.0162 *  
## s1_1             0.01368    0.04723   0.290   0.7721    
## s2_1             0.04126    0.04193   0.984   0.3251    
## trustDiff.CUC.c -0.73489    0.03240 -22.681   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsN_0 s1_1   s2_1  
## trustNo_0   -0.643                     
## s1_1        -0.139 -0.405              
## s2_1        -0.443 -0.011  0.311       
## trstDf.CUC.  0.007 -0.007 -0.013 -0.006
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.97 0.91 – 1.03 0.281
trustNo_0 1.10 1.02 – 1.19 0.016
s1_1 1.01 0.92 – 1.11 0.772
s2_1 1.04 0.96 – 1.13 0.325
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.035 / 0.057

ii. interacting

no sig 2-way interaction for trustManip X trustDiff

m3 <- glmer(cuedFaceTrusted_1 ~ trustNo_0 + (s1_1 + s2_1) * trustDiff.CUC.c + 
              (1 |participant), family = binomial("logit"), data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (s1_1 + s2_1) * trustDiff.CUC.c +  
##     (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27153.6  27216.8 -13568.8  27137.6    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2861 -0.9724  0.5985  0.9519  2.0493 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07613  0.2759  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          -0.03633    0.03220  -1.128  0.25918    
## trustNo_0             0.09708    0.03983   2.437  0.01481 *  
## s1_1                  0.01274    0.04718   0.270  0.78714    
## s2_1                  0.04225    0.04197   1.007  0.31407    
## trustDiff.CUC.c      -1.03550    0.12157  -8.518  < 2e-16 ***
## s1_1:trustDiff.CUC.c  0.36547    0.13052   2.800  0.00511 ** 
## s2_1:trustDiff.CUC.c  0.28331    0.13030   2.174  0.02968 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsN_0 s1_1   s2_1   tD.CUC s1_1:D
## trustNo_0   -0.643                                   
## s1_1        -0.140 -0.405                            
## s2_1        -0.443 -0.011  0.311                     
## trstDf.CUC.  0.020 -0.014 -0.002 -0.009              
## s1_1:D.CUC. -0.019  0.013 -0.004  0.008 -0.931       
## s2_1:D.CUC. -0.018  0.011  0.003  0.006 -0.933  0.869
tab_model(m3)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.96 0.91 – 1.03 0.259
trustNo_0 1.10 1.02 – 1.19 0.015
s1_1 1.01 0.92 – 1.11 0.787
s2_1 1.04 0.96 – 1.13 0.314
trustDiff.CUC.c 0.36 0.28 – 0.45 <0.001
s1_1 * trustDiff.CUC.c 1.44 1.12 – 1.86 0.005
s2_1 * trustDiff.CUC.c 1.33 1.03 – 1.71 0.030
Random Effects
σ2 3.29
τ00 participant 0.08
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

E. trustManip + study + respTime + trustDiff + (1|pt)

0. merged studies

a. trust.5 + study + respTime + trustDiff + (1|pt)

singular when including random slopes for face trustworthiness – so incorporated trustworthiness difference as fixed effect no higher order interactions with trustDiff

m7a <- glmer(cuedFaceTrusted_1 ~ trust_.5 * respTime.log.c + trustDiff.CUC.c + (S1v23 + S2v3) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d)

summary(m7a)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 * respTime.log.c + trustDiff.CUC.c +  
##     (S1v23 + S2v3) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27155.8  27219.0 -13569.9  27139.8    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2448 -0.9736  0.5853  0.9566  2.0630 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07359  0.2713  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              0.02585    0.02017   1.282   0.1999    
## trust_.5                 0.09367    0.04029   2.325   0.0201 *  
## respTime.log.c          -0.03863    0.02211  -1.747   0.0806 .  
## trustDiff.CUC.c         -0.73603    0.03240 -22.719   <2e-16 ***
## S1v23                    0.03021    0.04613   0.655   0.5125    
## S2v3                    -0.04451    0.04173  -1.067   0.2861    
## trust_.5:respTime.log.c -0.05352    0.04428  -1.209   0.2268    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 rspT.. tD.CUC S1v23  S2v3  
## trust_.5    -0.389                                   
## respTm.lg.c -0.059  0.143                            
## trstDf.CUC. -0.007 -0.006  0.015                     
## S1v23       -0.312  0.401 -0.129  0.006              
## S2v3        -0.211  0.009  0.015  0.006 -0.143       
## trst_.5:T..  0.234 -0.151 -0.243  0.007 -0.130  0.026
tab_model(m7a)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.03 0.99 – 1.07 0.200
trust_.5 1.10 1.01 – 1.19 0.020
respTime.log.c 0.96 0.92 – 1.00 0.081
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
S1v23 1.03 0.94 – 1.13 0.513
S2v3 0.96 0.88 – 1.04 0.286
trust_.5 * respTime.log.c 0.95 0.87 – 1.03 0.227
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

b. SE trust

m7 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 * respTime.log.c + trustDiff.CUC.c + (S1v23 + S2v3) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 * respTime.log.c + trustDiff.CUC.c +  
##     (S1v23 + S2v3) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27155.8  27219.0 -13569.9  27139.8    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2448 -0.9736  0.5853  0.9566  2.0630 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07359  0.2713  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                           Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                0.07269    0.02228   3.262   0.0011 ** 
## trustYes_0                -0.09367    0.04029  -2.325   0.0201 *  
## respTime.log.c            -0.06539    0.02722  -2.402   0.0163 *  
## trustDiff.CUC.c           -0.73602    0.03240 -22.719   <2e-16 ***
## S1v23                      0.03021    0.04613   0.655   0.5125    
## S2v3                      -0.04452    0.04173  -1.067   0.2861    
## trustYes_0:respTime.log.c  0.05352    0.04428   1.209   0.2268    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 rspT.. tD.CUC S1v23  S2v3  
## trustYes_0  -0.552                                   
## respTm.lg.c  0.123  0.006                            
## trstDf.CUC. -0.012  0.006  0.018                     
## S1v23        0.081 -0.401 -0.210  0.007              
## S2v3        -0.183 -0.009  0.033  0.006 -0.143       
## trstY_0:T.. -0.076 -0.151 -0.616 -0.007  0.130 -0.026
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.08 1.03 – 1.12 0.001
trustYes_0 0.91 0.84 – 0.99 0.020
respTime.log.c 0.94 0.89 – 0.99 0.016
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
S1v23 1.03 0.94 – 1.13 0.513
S2v3 0.96 0.88 – 1.04 0.286
trustYes_0 *
respTime.log.c
1.05 0.97 – 1.15 0.227
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

c. SE not trust

m7 <- glmer(cuedFaceTrusted_1 ~ trustNo_0 * respTime.log.c + trustDiff.CUC.c + (S1v23 + S2v3) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 * respTime.log.c + trustDiff.CUC.c +  
##     (S1v23 + S2v3) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27155.8  27219.0 -13569.9  27139.8    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2447 -0.9736  0.5853  0.9566  2.0630 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07359  0.2713  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              -0.02099    0.03360  -0.625   0.5321    
## trustNo_0                 0.09368    0.04029   2.325   0.0201 *  
## respTime.log.c           -0.01185    0.03489  -0.340   0.7342    
## trustDiff.CUC.c          -0.73601    0.03240 -22.719   <2e-16 ***
## S1v23                     0.03021    0.04613   0.655   0.5125    
## S2v3                     -0.04452    0.04173  -1.067   0.2861    
## trustNo_0:respTime.log.c -0.05355    0.04428  -1.209   0.2265    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsN_0 rspT.. tD.CUC S1v23  S2v3  
## trustNo_0   -0.833                                   
## respTm.lg.c -0.223  0.186                            
## trstDf.CUC. -0.001 -0.006  0.005                     
## S1v23       -0.428  0.401  0.001  0.006              
## S2v3        -0.132  0.009 -0.007  0.006 -0.143       
## trstN_0:T..  0.231 -0.151 -0.789  0.007 -0.130  0.026
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.98 0.92 – 1.05 0.532
trustNo_0 1.10 1.01 – 1.19 0.020
respTime.log.c 0.99 0.92 – 1.06 0.734
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
S1v23 1.03 0.94 – 1.13 0.513
S2v3 0.96 0.88 – 1.04 0.286
trustNo_0 *
respTime.log.c
0.95 0.87 – 1.03 0.227
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

1. study 1

a. trust.5 + study 1 + respTime + trustDiff + (1|pt)

m7a <- glmer(cuedFaceTrusted_1 ~ trust_.5 * respTime.log.c + trustDiff.CUC.c + (s2_1 + s3_1) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d)

summary(m7a)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 * respTime.log.c + trustDiff.CUC.c +  
##     (s2_1 + s3_1) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27155.8  27219.0 -13569.9  27139.8    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2448 -0.9736  0.5853  0.9566  2.0630 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07359  0.2713  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              0.005711   0.041704   0.137   0.8911    
## trust_.5                 0.093674   0.040289   2.325   0.0201 *  
## respTime.log.c          -0.038626   0.022114  -1.747   0.0807 .  
## trustDiff.CUC.c         -0.736022   0.032397 -22.719   <2e-16 ***
## s2_1                     0.052470   0.053274   0.985   0.3247    
## s3_1                     0.007953   0.047843   0.166   0.8680    
## trust_.5:respTime.log.c -0.053523   0.044279  -1.209   0.2267    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 rspT.. tD.CUC s2_1   s3_1  
## trust_.5    -0.484                                   
## respTm.lg.c  0.066  0.143                            
## trstDf.CUC. -0.008 -0.006  0.015                     
## s2_1        -0.770  0.344 -0.117  0.003              
## s3_1        -0.855  0.391 -0.117  0.009  0.664       
## trst_.5:T..  0.209 -0.151 -0.243  0.007 -0.123 -0.114
tab_model(m7a)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.01 0.93 – 1.09 0.891
trust_.5 1.10 1.01 – 1.19 0.020
respTime.log.c 0.96 0.92 – 1.00 0.081
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
s2_1 1.05 0.95 – 1.17 0.325
s3_1 1.01 0.92 – 1.11 0.868
trust_.5 * respTime.log.c 0.95 0.87 – 1.03 0.227
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

b. SE trust

m7 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 * respTime.log.c + trustDiff.CUC.c + (S1v23 + S2v3) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 * respTime.log.c + trustDiff.CUC.c +  
##     (S1v23 + S2v3) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27155.8  27219.0 -13569.9  27139.8    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2448 -0.9736  0.5853  0.9566  2.0630 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07359  0.2713  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                           Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                0.07269    0.02228   3.262   0.0011 ** 
## trustYes_0                -0.09367    0.04029  -2.325   0.0201 *  
## respTime.log.c            -0.06539    0.02722  -2.402   0.0163 *  
## trustDiff.CUC.c           -0.73602    0.03240 -22.719   <2e-16 ***
## S1v23                      0.03021    0.04613   0.655   0.5125    
## S2v3                      -0.04452    0.04173  -1.067   0.2861    
## trustYes_0:respTime.log.c  0.05352    0.04428   1.209   0.2268    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 rspT.. tD.CUC S1v23  S2v3  
## trustYes_0  -0.552                                   
## respTm.lg.c  0.123  0.006                            
## trstDf.CUC. -0.012  0.006  0.018                     
## S1v23        0.081 -0.401 -0.210  0.007              
## S2v3        -0.183 -0.009  0.033  0.006 -0.143       
## trstY_0:T.. -0.076 -0.151 -0.616 -0.007  0.130 -0.026
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.08 1.03 – 1.12 0.001
trustYes_0 0.91 0.84 – 0.99 0.020
respTime.log.c 0.94 0.89 – 0.99 0.016
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
S1v23 1.03 0.94 – 1.13 0.513
S2v3 0.96 0.88 – 1.04 0.286
trustYes_0 *
respTime.log.c
1.05 0.97 – 1.15 0.227
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

c. SE not trust

m7 <- glmer(cuedFaceTrusted_1 ~ trustNo_0 * respTime.log.c + trustDiff.CUC.c + (S1v23 + S2v3) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 * respTime.log.c + trustDiff.CUC.c +  
##     (S1v23 + S2v3) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27155.8  27219.0 -13569.9  27139.8    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2447 -0.9736  0.5853  0.9566  2.0630 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07359  0.2713  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              -0.02099    0.03360  -0.625   0.5321    
## trustNo_0                 0.09368    0.04029   2.325   0.0201 *  
## respTime.log.c           -0.01185    0.03489  -0.340   0.7342    
## trustDiff.CUC.c          -0.73601    0.03240 -22.719   <2e-16 ***
## S1v23                     0.03021    0.04613   0.655   0.5125    
## S2v3                     -0.04452    0.04173  -1.067   0.2861    
## trustNo_0:respTime.log.c -0.05355    0.04428  -1.209   0.2265    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsN_0 rspT.. tD.CUC S1v23  S2v3  
## trustNo_0   -0.833                                   
## respTm.lg.c -0.223  0.186                            
## trstDf.CUC. -0.001 -0.006  0.005                     
## S1v23       -0.428  0.401  0.001  0.006              
## S2v3        -0.132  0.009 -0.007  0.006 -0.143       
## trstN_0:T..  0.231 -0.151 -0.789  0.007 -0.130  0.026
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.98 0.92 – 1.05 0.532
trustNo_0 1.10 1.01 – 1.19 0.020
respTime.log.c 0.99 0.92 – 1.06 0.734
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
S1v23 1.03 0.94 – 1.13 0.513
S2v3 0.96 0.88 – 1.04 0.286
trustNo_0 *
respTime.log.c
0.95 0.87 – 1.03 0.227
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

0. merged studies

a. trust.5 + study + respTime + trustDiff + (1|pt)

singular when including random slopes for face trustworthiness – so incorporated trustworthiness difference as fixed effect no higher order interactions with trustDiff

m7a <- glmer(cuedFaceTrusted_1 ~ trust_.5 * respTime.log.c + trustDiff.CUC.c + (S1v23 + S2v3) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d)

summary(m7a)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 * respTime.log.c + trustDiff.CUC.c +  
##     (S1v23 + S2v3) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27155.8  27219.0 -13569.9  27139.8    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2448 -0.9736  0.5853  0.9566  2.0630 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07359  0.2713  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              0.02585    0.02017   1.282   0.1999    
## trust_.5                 0.09367    0.04029   2.325   0.0201 *  
## respTime.log.c          -0.03863    0.02211  -1.747   0.0806 .  
## trustDiff.CUC.c         -0.73603    0.03240 -22.719   <2e-16 ***
## S1v23                    0.03021    0.04613   0.655   0.5125    
## S2v3                    -0.04451    0.04173  -1.067   0.2861    
## trust_.5:respTime.log.c -0.05352    0.04428  -1.209   0.2268    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 rspT.. tD.CUC S1v23  S2v3  
## trust_.5    -0.389                                   
## respTm.lg.c -0.059  0.143                            
## trstDf.CUC. -0.007 -0.006  0.015                     
## S1v23       -0.312  0.401 -0.129  0.006              
## S2v3        -0.211  0.009  0.015  0.006 -0.143       
## trst_.5:T..  0.234 -0.151 -0.243  0.007 -0.130  0.026
tab_model(m7a)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.03 0.99 – 1.07 0.200
trust_.5 1.10 1.01 – 1.19 0.020
respTime.log.c 0.96 0.92 – 1.00 0.081
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
S1v23 1.03 0.94 – 1.13 0.513
S2v3 0.96 0.88 – 1.04 0.286
trust_.5 * respTime.log.c 0.95 0.87 – 1.03 0.227
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

b. SE trust

m7 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 * respTime.log.c + trustDiff.CUC.c + (S1v23 + S2v3) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 * respTime.log.c + trustDiff.CUC.c +  
##     (S1v23 + S2v3) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27155.8  27219.0 -13569.9  27139.8    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2448 -0.9736  0.5853  0.9566  2.0630 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07359  0.2713  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                           Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                0.07269    0.02228   3.262   0.0011 ** 
## trustYes_0                -0.09367    0.04029  -2.325   0.0201 *  
## respTime.log.c            -0.06539    0.02722  -2.402   0.0163 *  
## trustDiff.CUC.c           -0.73602    0.03240 -22.719   <2e-16 ***
## S1v23                      0.03021    0.04613   0.655   0.5125    
## S2v3                      -0.04452    0.04173  -1.067   0.2861    
## trustYes_0:respTime.log.c  0.05352    0.04428   1.209   0.2268    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 rspT.. tD.CUC S1v23  S2v3  
## trustYes_0  -0.552                                   
## respTm.lg.c  0.123  0.006                            
## trstDf.CUC. -0.012  0.006  0.018                     
## S1v23        0.081 -0.401 -0.210  0.007              
## S2v3        -0.183 -0.009  0.033  0.006 -0.143       
## trstY_0:T.. -0.076 -0.151 -0.616 -0.007  0.130 -0.026
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.08 1.03 – 1.12 0.001
trustYes_0 0.91 0.84 – 0.99 0.020
respTime.log.c 0.94 0.89 – 0.99 0.016
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
S1v23 1.03 0.94 – 1.13 0.513
S2v3 0.96 0.88 – 1.04 0.286
trustYes_0 *
respTime.log.c
1.05 0.97 – 1.15 0.227
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

c. SE not trust

m7 <- glmer(cuedFaceTrusted_1 ~ trustNo_0 * respTime.log.c + trustDiff.CUC.c + (S1v23 + S2v3) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 * respTime.log.c + trustDiff.CUC.c +  
##     (S1v23 + S2v3) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27155.8  27219.0 -13569.9  27139.8    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2447 -0.9736  0.5853  0.9566  2.0630 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07359  0.2713  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              -0.02099    0.03360  -0.625   0.5321    
## trustNo_0                 0.09368    0.04029   2.325   0.0201 *  
## respTime.log.c           -0.01185    0.03489  -0.340   0.7342    
## trustDiff.CUC.c          -0.73601    0.03240 -22.719   <2e-16 ***
## S1v23                     0.03021    0.04613   0.655   0.5125    
## S2v3                     -0.04452    0.04173  -1.067   0.2861    
## trustNo_0:respTime.log.c -0.05355    0.04428  -1.209   0.2265    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsN_0 rspT.. tD.CUC S1v23  S2v3  
## trustNo_0   -0.833                                   
## respTm.lg.c -0.223  0.186                            
## trstDf.CUC. -0.001 -0.006  0.005                     
## S1v23       -0.428  0.401  0.001  0.006              
## S2v3        -0.132  0.009 -0.007  0.006 -0.143       
## trstN_0:T..  0.231 -0.151 -0.789  0.007 -0.130  0.026
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.98 0.92 – 1.05 0.532
trustNo_0 1.10 1.01 – 1.19 0.020
respTime.log.c 0.99 0.92 – 1.06 0.734
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
S1v23 1.03 0.94 – 1.13 0.513
S2v3 0.96 0.88 – 1.04 0.286
trustNo_0 *
respTime.log.c
0.95 0.87 – 1.03 0.227
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

0. merged studies

a. trust.5 + study + respTime + trustDiff + (1|pt)

singular when including random slopes for face trustworthiness – so incorporated trustworthiness difference as fixed effect no higher order interactions with trustDiff

m7a <- glmer(cuedFaceTrusted_1 ~ trust_.5 * respTime.log.c + trustDiff.CUC.c + (S1v23 + S2v3) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d)

summary(m7a)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 * respTime.log.c + trustDiff.CUC.c +  
##     (S1v23 + S2v3) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27155.8  27219.0 -13569.9  27139.8    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2448 -0.9736  0.5853  0.9566  2.0630 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07359  0.2713  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              0.02585    0.02017   1.282   0.1999    
## trust_.5                 0.09367    0.04029   2.325   0.0201 *  
## respTime.log.c          -0.03863    0.02211  -1.747   0.0806 .  
## trustDiff.CUC.c         -0.73603    0.03240 -22.719   <2e-16 ***
## S1v23                    0.03021    0.04613   0.655   0.5125    
## S2v3                    -0.04451    0.04173  -1.067   0.2861    
## trust_.5:respTime.log.c -0.05352    0.04428  -1.209   0.2268    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 rspT.. tD.CUC S1v23  S2v3  
## trust_.5    -0.389                                   
## respTm.lg.c -0.059  0.143                            
## trstDf.CUC. -0.007 -0.006  0.015                     
## S1v23       -0.312  0.401 -0.129  0.006              
## S2v3        -0.211  0.009  0.015  0.006 -0.143       
## trst_.5:T..  0.234 -0.151 -0.243  0.007 -0.130  0.026
tab_model(m7a)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.03 0.99 – 1.07 0.200
trust_.5 1.10 1.01 – 1.19 0.020
respTime.log.c 0.96 0.92 – 1.00 0.081
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
S1v23 1.03 0.94 – 1.13 0.513
S2v3 0.96 0.88 – 1.04 0.286
trust_.5 * respTime.log.c 0.95 0.87 – 1.03 0.227
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

b. SE trust

m7 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 * respTime.log.c + trustDiff.CUC.c + (S1v23 + S2v3) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 * respTime.log.c + trustDiff.CUC.c +  
##     (S1v23 + S2v3) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27155.8  27219.0 -13569.9  27139.8    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2448 -0.9736  0.5853  0.9566  2.0630 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07359  0.2713  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                           Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                0.07269    0.02228   3.262   0.0011 ** 
## trustYes_0                -0.09367    0.04029  -2.325   0.0201 *  
## respTime.log.c            -0.06539    0.02722  -2.402   0.0163 *  
## trustDiff.CUC.c           -0.73602    0.03240 -22.719   <2e-16 ***
## S1v23                      0.03021    0.04613   0.655   0.5125    
## S2v3                      -0.04452    0.04173  -1.067   0.2861    
## trustYes_0:respTime.log.c  0.05352    0.04428   1.209   0.2268    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 rspT.. tD.CUC S1v23  S2v3  
## trustYes_0  -0.552                                   
## respTm.lg.c  0.123  0.006                            
## trstDf.CUC. -0.012  0.006  0.018                     
## S1v23        0.081 -0.401 -0.210  0.007              
## S2v3        -0.183 -0.009  0.033  0.006 -0.143       
## trstY_0:T.. -0.076 -0.151 -0.616 -0.007  0.130 -0.026
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.08 1.03 – 1.12 0.001
trustYes_0 0.91 0.84 – 0.99 0.020
respTime.log.c 0.94 0.89 – 0.99 0.016
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
S1v23 1.03 0.94 – 1.13 0.513
S2v3 0.96 0.88 – 1.04 0.286
trustYes_0 *
respTime.log.c
1.05 0.97 – 1.15 0.227
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

c. SE not trust

m7 <- glmer(cuedFaceTrusted_1 ~ trustNo_0 * respTime.log.c + trustDiff.CUC.c + (S1v23 + S2v3) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 * respTime.log.c + trustDiff.CUC.c +  
##     (S1v23 + S2v3) + (1 | participant)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  27155.8  27219.0 -13569.9  27139.8    20024 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2447 -0.9736  0.5853  0.9566  2.0630 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.07359  0.2713  
## Number of obs: 20032, groups:  participant, 825
## 
## Fixed effects:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              -0.02099    0.03360  -0.625   0.5321    
## trustNo_0                 0.09368    0.04029   2.325   0.0201 *  
## respTime.log.c           -0.01185    0.03489  -0.340   0.7342    
## trustDiff.CUC.c          -0.73601    0.03240 -22.719   <2e-16 ***
## S1v23                     0.03021    0.04613   0.655   0.5125    
## S2v3                     -0.04452    0.04173  -1.067   0.2861    
## trustNo_0:respTime.log.c -0.05355    0.04428  -1.209   0.2265    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsN_0 rspT.. tD.CUC S1v23  S2v3  
## trustNo_0   -0.833                                   
## respTm.lg.c -0.223  0.186                            
## trstDf.CUC. -0.001 -0.006  0.005                     
## S1v23       -0.428  0.401  0.001  0.006              
## S2v3        -0.132  0.009 -0.007  0.006 -0.143       
## trstN_0:T..  0.231 -0.151 -0.789  0.007 -0.130  0.026
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.98 0.92 – 1.05 0.532
trustNo_0 1.10 1.01 – 1.19 0.020
respTime.log.c 0.99 0.92 – 1.06 0.734
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
S1v23 1.03 0.94 – 1.13 0.513
S2v3 0.96 0.88 – 1.04 0.286
trustNo_0 *
respTime.log.c
0.95 0.87 – 1.03 0.227
Random Effects
σ2 3.29
τ00 participant 0.07
ICC 0.02
N participant 825
Observations 20032
Marginal R2 / Conditional R2 0.036 / 0.057

F. trustManip + study + respTime

0. merged studies

a. trust.5 + studies + respTime + (1|pt) + (1|face)

no 2-way trust manipulation by response time interaction no 2-way study by response time interaction no 2-way study by trust manipulation interaction singular when including random slopes for face trustworthiness

m7 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + respTime.log.c + (S1v23 + S2v3) +
              (1|face) +
              (1|participant), 
            family = binomial("logit"), 
            data = d2)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + respTime.log.c + (S1v23 + S2v3) +  
##     (1 | face) + (1 | participant)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.4  55949.7 -27937.7  55875.4    40823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7559 -0.9767  0.4740  0.9578  1.7665 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.170704 0.4132  
##  face        (Intercept) 0.002431 0.0493  
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)     0.03567    0.02032   1.755   0.0792 .
## trust_.5        0.08193    0.04031   2.032   0.0421 *
## respTime.log.c -0.02359    0.01696  -1.391   0.1642  
## S1v23           0.01735    0.04603   0.377   0.7063  
## S2v3           -0.04027    0.04247  -0.948   0.3430  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 rspT.. S1v23 
## trust_.5    -0.361                     
## respTm.lg.c -0.002  0.086              
## S1v23       -0.281  0.401 -0.132       
## S2v3        -0.205  0.013  0.016 -0.130
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.04 1.00 – 1.08 0.079
trust_.5 1.09 1.00 – 1.17 0.042
respTime.log.c 0.98 0.94 – 1.01 0.164
S1v23 1.02 0.93 – 1.11 0.706
S2v3 0.96 0.88 – 1.04 0.343
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N face 141
N participant 825
Observations 40830
Marginal R2 / Conditional R2 0.001 / 0.051

b. SE trust

m7 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + respTime.log.c + (S1v23 + S2v3) +
              (1|face) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d2)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + respTime.log.c + (S1v23 + S2v3) +  
##     (1 | face) + (1 | participant)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.4  55949.7 -27937.7  55875.4    40823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7559 -0.9767  0.4740  0.9578  1.7665 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.170705 0.4132  
##  face        (Intercept) 0.002431 0.0493  
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     0.07664    0.02287   3.350 0.000807 ***
## trustYes_0     -0.08193    0.04032  -2.032 0.042134 *  
## respTime.log.c -0.02359    0.01696  -1.391 0.164152    
## S1v23           0.01735    0.04604   0.377 0.706337    
## S2v3           -0.04027    0.04247  -0.948 0.343016    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 rspT.. S1v23 
## trustYes_0  -0.560                     
## respTm.lg.c  0.074 -0.086              
## S1v23        0.104 -0.401 -0.132       
## S2v3        -0.171 -0.013  0.016 -0.130
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.08 1.03 – 1.13 0.001
trustYes_0 0.92 0.85 – 1.00 0.042
respTime.log.c 0.98 0.94 – 1.01 0.164
S1v23 1.02 0.93 – 1.11 0.706
S2v3 0.96 0.88 – 1.04 0.343
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N face 141
N participant 825
Observations 40830
Marginal R2 / Conditional R2 0.001 / 0.051

c. SE not trust

m7b <- glmer(cuedFaceTrusted_1 ~ trustNo_0 + respTime.log.c + (S1v23 + S2v3) +
              (1|face) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d2)

summary(m7b)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + respTime.log.c + (S1v23 + S2v3) +  
##     (1 | face) + (1 | participant)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.4  55949.7 -27937.7  55875.4    40823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7559 -0.9767  0.4740  0.9578  1.7665 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.170704 0.4132  
##  face        (Intercept) 0.002431 0.0493  
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    -0.00529    0.03340  -0.158   0.8742  
## trustNo_0       0.08193    0.04031   2.032   0.0421 *
## respTime.log.c -0.02359    0.01696  -1.391   0.1641  
## S1v23           0.01735    0.04604   0.377   0.7063  
## S2v3           -0.04027    0.04247  -0.948   0.3430  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsN_0 rspT.. S1v23 
## trustNo_0   -0.823                     
## respTm.lg.c -0.053  0.086              
## S1v23       -0.413  0.401 -0.132       
## S2v3        -0.133  0.013  0.016 -0.130
tab_model(m7b)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.99 0.93 – 1.06 0.874
trustNo_0 1.09 1.00 – 1.17 0.042
respTime.log.c 0.98 0.94 – 1.01 0.164
S1v23 1.02 0.93 – 1.11 0.706
S2v3 0.96 0.88 – 1.04 0.343
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N face 141
N participant 825
Observations 40830
Marginal R2 / Conditional R2 0.001 / 0.051

1. study 1

a. trust_.5 + study 1 + respTime + (1|pt) + (1|face)

m7 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + respTime.log.c + (s2_1 + s3_1) +
              (1|face) +
              (1|participant), 
            family = binomial("logit"), 
            data = d2)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + respTime.log.c + (s2_1 + s3_1) +  
##     (1 | face) + (1 | participant)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.4  55949.7 -27937.7  55875.4    40823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7559 -0.9767  0.4740  0.9578  1.7665 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.170706 0.4132  
##  face        (Intercept) 0.002431 0.0493  
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)     0.024120   0.041299   0.584   0.5592  
## trust_.5        0.081921   0.040315   2.032   0.0422 *
## respTime.log.c -0.023591   0.016957  -1.391   0.1641  
## s2_1            0.037473   0.053157   0.705   0.4808  
## s3_1           -0.002799   0.048120  -0.058   0.9536  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 rspT.. s2_1  
## trust_.5    -0.476                     
## respTm.lg.c  0.097  0.086              
## s2_1        -0.762  0.342 -0.120       
## s3_1        -0.845  0.390 -0.119  0.652
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.02 0.94 – 1.11 0.559
trust_.5 1.09 1.00 – 1.17 0.042
respTime.log.c 0.98 0.94 – 1.01 0.164
s2_1 1.04 0.94 – 1.15 0.481
s3_1 1.00 0.91 – 1.10 0.954
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N face 141
N participant 825
Observations 40830
Marginal R2 / Conditional R2 0.001 / 0.051

b. SE trust

m7 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + respTime.log.c + (s2_1 + s3_1) +
              (1|face) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d2)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + respTime.log.c + (s2_1 + s3_1) +  
##     (1 | face) + (1 | participant)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.4  55949.7 -27937.7  55875.4    40823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7559 -0.9767  0.4740  0.9578  1.7665 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.170705 0.4132  
##  face        (Intercept) 0.002431 0.0493  
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)     0.065073   0.036322   1.792   0.0732 .
## trustYes_0     -0.081928   0.040313  -2.032   0.0421 *
## respTime.log.c -0.023590   0.016957  -1.391   0.1642  
## s2_1            0.037482   0.053151   0.705   0.4807  
## s3_1           -0.002788   0.048117  -0.058   0.9538  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 rspT.. s2_1  
## trustYes_0  -0.014                     
## respTm.lg.c  0.158 -0.086              
## s2_1        -0.676 -0.342 -0.120       
## s3_1        -0.745 -0.389 -0.119  0.652
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.07 0.99 – 1.15 0.073
trustYes_0 0.92 0.85 – 1.00 0.042
respTime.log.c 0.98 0.94 – 1.01 0.164
s2_1 1.04 0.94 – 1.15 0.481
s3_1 1.00 0.91 – 1.10 0.954
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N face 141
N participant 825
Observations 40830
Marginal R2 / Conditional R2 0.001 / 0.051

c. SE not trust

m7b <- glmer(cuedFaceTrusted_1 ~ trustNo_0 + respTime.log.c +  (s2_1 + s3_1)  +
              (1|face) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d2)

summary(m7b)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + respTime.log.c + (s2_1 + s3_1) +  
##     (1 | face) + (1 | participant)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.4  55949.7 -27937.7  55875.4    40823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7559 -0.9767  0.4740  0.9578  1.7665 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.170704 0.4132  
##  face        (Intercept) 0.002431 0.0493  
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    -0.016854   0.053885  -0.313   0.7545  
## trustNo_0       0.081927   0.040313   2.032   0.0421 *
## respTime.log.c -0.023590   0.016956  -1.391   0.1642  
## s2_1            0.037482   0.053149   0.705   0.4807  
## s3_1           -0.002788   0.048115  -0.058   0.9538  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsN_0 rspT.. s2_1  
## trustNo_0   -0.739                     
## respTm.lg.c  0.042  0.086              
## s2_1        -0.712  0.342 -0.120       
## s3_1        -0.793  0.389 -0.119  0.652
tab_model(m7b)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.98 0.88 – 1.09 0.754
trustNo_0 1.09 1.00 – 1.17 0.042
respTime.log.c 0.98 0.94 – 1.01 0.164
s2_1 1.04 0.94 – 1.15 0.481
s3_1 1.00 0.91 – 1.10 0.954
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N face 141
N participant 825
Observations 40830
Marginal R2 / Conditional R2 0.001 / 0.051

2. study 2

a. trust_.5 + study 2 + respTime + (1|pt) + (1|face)

m7 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + respTime.log.c + (s1_1 + s3_1) +
              (1|face) +
              (1|participant), 
            family = binomial("logit"), 
            data = d2)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + respTime.log.c + (s1_1 + s3_1) +  
##     (1 | face) + (1 | participant)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.4  55949.7 -27937.7  55875.4    40823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7559 -0.9767  0.4740  0.9578  1.7665 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.170704 0.4132  
##  face        (Intercept) 0.002431 0.0493  
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)     0.06159    0.03444   1.788   0.0737 .
## trust_.5        0.08193    0.04031   2.032   0.0421 *
## respTime.log.c -0.02359    0.01696  -1.391   0.1642  
## s1_1           -0.03748    0.05315  -0.705   0.4806  
## s3_1           -0.04027    0.04247  -0.948   0.3430  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 rspT.. s1_1  
## trust_.5    -0.043                     
## respTm.lg.c -0.070  0.086              
## s1_1        -0.630 -0.342  0.120       
## s3_1        -0.796  0.013  0.016  0.512
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.06 0.99 – 1.14 0.074
trust_.5 1.09 1.00 – 1.17 0.042
respTime.log.c 0.98 0.94 – 1.01 0.164
s1_1 0.96 0.87 – 1.07 0.481
s3_1 0.96 0.88 – 1.04 0.343
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N face 141
N participant 825
Observations 40830
Marginal R2 / Conditional R2 0.001 / 0.051

b. SE trust

m7 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + respTime.log.c + (s1_1 + s3_1) +
              (1|face) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d2)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + respTime.log.c + (s1_1 + s3_1) +  
##     (1 | face) + (1 | participant)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.4  55949.7 -27937.7  55875.4    40823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7559 -0.9767  0.4740  0.9578  1.7665 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.170704 0.41316 
##  face        (Intercept) 0.002431 0.04931 
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     0.10256    0.03916   2.619  0.00882 **
## trustYes_0     -0.08193    0.04031  -2.032  0.04213 * 
## respTime.log.c -0.02359    0.01696  -1.391  0.16411   
## s1_1           -0.03749    0.05315  -0.705  0.48065   
## s3_1           -0.04028    0.04247  -0.948  0.34291   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 rspT.. s1_1  
## trustYes_0  -0.477                     
## respTm.lg.c -0.017 -0.086              
## s1_1        -0.730  0.342  0.120       
## s3_1        -0.693 -0.013  0.016  0.512
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.11 1.03 – 1.20 0.009
trustYes_0 0.92 0.85 – 1.00 0.042
respTime.log.c 0.98 0.94 – 1.01 0.164
s1_1 0.96 0.87 – 1.07 0.481
s3_1 0.96 0.88 – 1.04 0.343
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N face 141
N participant 825
Observations 40830
Marginal R2 / Conditional R2 0.001 / 0.051

c. SE not trust

m7b <- glmer(cuedFaceTrusted_1 ~ trustNo_0 + respTime.log.c +  (s1_1 + s3_1)  +
              (1|face) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d2)

summary(m7b)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + respTime.log.c + (s1_1 + s3_1) +  
##     (1 | face) + (1 | participant)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.4  55949.7 -27937.7  55875.4    40823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7559 -0.9767  0.4740  0.9578  1.7665 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.170705 0.4132  
##  face        (Intercept) 0.002431 0.0493  
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)     0.02063    0.04064   0.508   0.6118  
## trustNo_0       0.08193    0.04032   2.032   0.0421 *
## respTime.log.c -0.02359    0.01696  -1.391   0.1641  
## s1_1           -0.03749    0.05316  -0.705   0.4807  
## s3_1           -0.04027    0.04247  -0.948   0.3430  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsN_0 rspT.. s1_1  
## trustNo_0   -0.532                     
## respTm.lg.c -0.102  0.086              
## s1_1        -0.364 -0.342  0.120       
## s3_1        -0.681  0.013  0.016  0.512
tab_model(m7b)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.02 0.94 – 1.11 0.612
trustNo_0 1.09 1.00 – 1.17 0.042
respTime.log.c 0.98 0.94 – 1.01 0.164
s1_1 0.96 0.87 – 1.07 0.481
s3_1 0.96 0.88 – 1.04 0.343
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N face 141
N participant 825
Observations 40830
Marginal R2 / Conditional R2 0.001 / 0.051

3. study 3

a. trust_.5 + study 3 + respTime + (1|pt) + (1|face)

m7 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + respTime.log.c + (s1_1 + s2_1) +
              (1|face) +
              (1|participant), 
            family = binomial("logit"), 
            data = d2)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + respTime.log.c + (s1_1 + s2_1) +  
##     (1 | face) + (1 | participant)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.4  55949.7 -27937.7  55875.4    40823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7559 -0.9767  0.4740  0.9578  1.7665 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.170706 0.4132  
##  face        (Intercept) 0.002431 0.0493  
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)     0.021321   0.025730   0.829   0.4073  
## trust_.5        0.081925   0.040314   2.032   0.0421 *
## respTime.log.c -0.023591   0.016957  -1.391   0.1641  
## s1_1            0.002789   0.048117   0.058   0.9538  
## s2_1            0.040269   0.042472   0.948   0.3431  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 rspT.. s1_1  
## trust_.5    -0.035                     
## respTm.lg.c -0.067  0.086              
## s1_1        -0.514 -0.389  0.119       
## s2_1        -0.585 -0.013 -0.016  0.317
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.02 0.97 – 1.07 0.407
trust_.5 1.09 1.00 – 1.17 0.042
respTime.log.c 0.98 0.94 – 1.01 0.164
s1_1 1.00 0.91 – 1.10 0.954
s2_1 1.04 0.96 – 1.13 0.343
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N face 141
N participant 825
Observations 40830
Marginal R2 / Conditional R2 0.001 / 0.051

b. SE trust

m7 <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + respTime.log.c + (s1_1 + s2_1) +
              (1|face) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d2)

summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + respTime.log.c + (s1_1 + s2_1) +  
##     (1 | face) + (1 | participant)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.4  55949.7 -27937.7  55875.4    40823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7559 -0.9767  0.4740  0.9578  1.7665 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.170704 0.4132  
##  face        (Intercept) 0.002431 0.0493  
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)     0.062281   0.032118   1.939   0.0525 .
## trustYes_0     -0.081925   0.040316  -2.032   0.0421 *
## respTime.log.c -0.023591   0.016957  -1.391   0.1642  
## s1_1            0.002791   0.048120   0.058   0.9537  
## s2_1            0.040273   0.042473   0.948   0.3430  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 rspT.. s1_1  
## trustYes_0  -0.599                     
## respTm.lg.c  0.001 -0.086              
## s1_1        -0.656  0.390  0.119       
## s2_1        -0.477  0.013 -0.016  0.317
tab_model(m7)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.06 1.00 – 1.13 0.052
trustYes_0 0.92 0.85 – 1.00 0.042
respTime.log.c 0.98 0.94 – 1.01 0.164
s1_1 1.00 0.91 – 1.10 0.954
s2_1 1.04 0.96 – 1.13 0.343
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N face 141
N participant 825
Observations 40830
Marginal R2 / Conditional R2 0.001 / 0.051

c. SE not trust

m7b <- glmer(cuedFaceTrusted_1 ~ trustNo_0 + respTime.log.c +  (s1_1 + s2_1)  +
              (1|face) +
              (1 | participant), 
            family = binomial("logit"), 
            data = d2)

summary(m7b)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + respTime.log.c + (s1_1 + s2_1) +  
##     (1 | face) + (1 | participant)
##    Data: d2
## 
##      AIC      BIC   logLik deviance df.resid 
##  55889.4  55949.7 -27937.7  55875.4    40823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7559 -0.9767  0.4740  0.9578  1.7665 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  participant (Intercept) 0.170703 0.4132  
##  face        (Intercept) 0.002431 0.0493  
## Number of obs: 40830, groups:  participant, 825; face, 141
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    -0.019645   0.033244  -0.591   0.5546  
## trustNo_0       0.081927   0.040315   2.032   0.0421 *
## respTime.log.c -0.023591   0.016957  -1.391   0.1641  
## s1_1            0.002789   0.048119   0.058   0.9538  
## s2_1            0.040273   0.042473   0.948   0.3430  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsN_0 rspT.. s1_1  
## trustNo_0   -0.634                     
## respTm.lg.c -0.104  0.086              
## s1_1        -0.161 -0.390  0.119       
## s2_1        -0.445 -0.013 -0.016  0.317
tab_model(m7b)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.98 0.92 – 1.05 0.555
trustNo_0 1.09 1.00 – 1.17 0.042
respTime.log.c 0.98 0.94 – 1.01 0.164
s1_1 1.00 0.91 – 1.10 0.954
s2_1 1.04 0.96 – 1.13 0.343
Random Effects
σ2 3.29
τ00 participant 0.17
τ00 face 0.00
ICC 0.05
N face 141
N participant 825
Observations 40830
Marginal R2 / Conditional R2 0.001 / 0.051

RESPONSE TIME OUTCOME

response time descriptives

aggregate(d$respTime, list(d$condition, d$study), mean)

A. trustManip + study

0. merged studies

a. trust_.5 + study + (trustworthy|face) + (1|pt)

m7 <- lmer(respTime.log ~ trust_.5 + (S1v23 + S2v3) +
             (trustworthy|face) + 
             (1|participant), 
           control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)),
           data = d2)

summary(m7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: respTime.log ~ trust_.5 + (S1v23 + S2v3) + (trustworthy | face) +  
##     (1 | participant)
##    Data: d2
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: 65107.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.1031 -0.6625 -0.0621  0.6174  7.1222 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr 
##  participant (Intercept) 0.2676450 0.51734       
##  face        (Intercept) 0.0039562 0.06290       
##              trustworthy 0.0006534 0.02556  -0.77
##  Residual                0.2691035 0.51875       
## Number of obs: 40447, groups:  participant, 825; face, 140
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    1.11136    0.02066  923.64006  53.797  < 2e-16 ***
## trust_.5      -0.22335    0.03650 1435.96520  -6.118 1.22e-09 ***
## S1v23          0.35085    0.04609  881.81764   7.612 6.94e-14 ***
## S2v3          -0.04009    0.04384  825.05746  -0.914    0.361    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) trs_.5 S1v23 
## trust_.5 -0.326              
## S1v23    -0.257  0.375       
## S2v3     -0.206  0.012 -0.132

b. SE trust

m7 <- lmer(respTime.log ~ trustYes_0 + (S1v23 + S2v3) +
             (trustworthy|face) + 
             (1|participant), 
           control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)),
           data = d2)
summary(m7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: respTime.log ~ trustYes_0 + (S1v23 + S2v3) + (trustworthy | face) +  
##     (1 | participant)
##    Data: d2
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: 65107.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.1031 -0.6625 -0.0621  0.6174  7.1222 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr 
##  participant (Intercept) 0.2676455 0.51734       
##  face        (Intercept) 0.0039541 0.06288       
##              trustworthy 0.0006532 0.02556  -0.77
##  Residual                0.2691035 0.51875       
## Number of obs: 40447, groups:  participant, 825; face, 140
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    0.99969    0.02267  992.30259  44.101  < 2e-16 ***
## trustYes_0     0.22335    0.03650 1435.96291   6.118 1.22e-09 ***
## S1v23          0.35085    0.04609  881.81555   7.612 6.94e-14 ***
## S2v3          -0.04009    0.04384  825.05546  -0.914    0.361    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) trsY_0 S1v23 
## trustYes_0 -0.508              
## S1v23       0.067 -0.375       
## S2v3       -0.179 -0.012 -0.132

c. SE not trust

m7 <- lmer(respTime.log ~ trustNo_0 + (S1v23 + S2v3) +
             (trustworthy|face) + 
             (1|participant), 
           control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)),
           data = d2)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00227424 (tol = 0.002, component 1)
summary(m7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: respTime.log ~ trustNo_0 + (S1v23 + S2v3) + (trustworthy | face) +  
##     (1 | participant)
##    Data: d2
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: 65107.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.1031 -0.6625 -0.0621  0.6174  7.1222 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr 
##  participant (Intercept) 0.2676450 0.51734       
##  face        (Intercept) 0.0039509 0.06286       
##              trustworthy 0.0006529 0.02555  -0.77
##  Residual                0.2691035 0.51875       
## Number of obs: 40447, groups:  participant, 825; face, 140
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    1.22303    0.03172 1185.29447  38.561  < 2e-16 ***
## trustNo_0     -0.22335    0.03650 1435.96542  -6.118 1.22e-09 ***
## S1v23          0.35085    0.04609  881.81784   7.612 6.94e-14 ***
## S2v3          -0.04009    0.04384  825.05767  -0.914    0.361    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) trsN_0 S1v23 
## trustNo_0 -0.788              
## S1v23     -0.383  0.375       
## S2v3      -0.141  0.012 -0.132
## optimizer (bobyqa) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00227424 (tol = 0.002, component 1)

1. study 1

a. trust_.5 + study + (trustworthy|face) + (1|pt)

m7 <- lmer(respTime.log ~ trust_.5 + (s2_1 + s3_1) +
             (trustworthy|face) + 
             (1|participant), 
           control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)),
           data = d2)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00244687 (tol = 0.002, component 1)
summary(m7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: respTime.log ~ trust_.5 + (s2_1 + s3_1) + (trustworthy | face) +  
##     (1 | participant)
##    Data: d2
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: 65107.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.1031 -0.6625 -0.0621  0.6174  7.1222 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr 
##  participant (Intercept) 0.2676449 0.51734       
##  face        (Intercept) 0.0039610 0.06294       
##              trustworthy 0.0006539 0.02557  -0.77
##  Residual                0.2691035 0.51875       
## Number of obs: 40447, groups:  participant, 825; face, 140
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    0.87746    0.04120  925.60796  21.299  < 2e-16 ***
## trust_.5      -0.22335    0.03650 1435.96561  -6.118 1.22e-09 ***
## s2_1           0.37089    0.05359  863.67551   6.921 8.74e-12 ***
## s3_1           0.33081    0.04835  879.94080   6.841 1.47e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) trs_.5 s2_1  
## trust_.5 -0.443              
## s2_1     -0.750  0.318       
## s3_1     -0.836  0.362  0.634
## optimizer (bobyqa) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00244687 (tol = 0.002, component 1)

b. SE trust

m7 <- lmer(respTime.log ~ trustYes_0 + (s2_1 + s3_1) +
             (trustworthy|face) + 
             (1|participant), 
           control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)),
           data = d2)
summary(m7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: respTime.log ~ trustYes_0 + (s2_1 + s3_1) + (trustworthy | face) +  
##     (1 | participant)
##    Data: d2
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: 65107.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.1031 -0.6625 -0.0621  0.6174  7.1222 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr 
##  participant (Intercept) 0.2676452 0.51734       
##  face        (Intercept) 0.0039530 0.06287       
##              trustworthy 0.0006531 0.02556  -0.77
##  Residual                0.2691035 0.51875       
## Number of obs: 40447, groups:  participant, 825; face, 140
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 7.658e-01  3.693e-02 8.419e+02  20.734  < 2e-16 ***
## trustYes_0  2.233e-01  3.650e-02 1.436e+03   6.118 1.22e-09 ***
## s2_1        3.709e-01  5.359e-02 8.637e+02   6.921 8.74e-12 ***
## s3_1        3.308e-01  4.835e-02 8.799e+02   6.841 1.47e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) trsY_0 s2_1  
## trustYes_0  0.000              
## s2_1       -0.680 -0.318       
## s3_1       -0.754 -0.362  0.634

c. SE not trust

m7 <- lmer(respTime.log ~ trustNo_0 + (s2_1 + s3_1) +
             (trustworthy|face) + 
             (1|participant), 
           control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), 
           data = d2)
summary(m7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: respTime.log ~ trustNo_0 + (s2_1 + s3_1) + (trustworthy | face) +  
##     (1 | participant)
##    Data: d2
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: 65107.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.1031 -0.6625 -0.0621  0.6174  7.1222 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev. Corr 
##  participant (Intercept) 0.267645 0.51734       
##  face        (Intercept) 0.003952 0.06287       
##              trustworthy 0.000653 0.02555  -0.77
##  Residual                0.269103 0.51875       
## Number of obs: 40447, groups:  participant, 825; face, 140
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    0.98913    0.05193 1078.04546  19.047  < 2e-16 ***
## trustNo_0     -0.22335    0.03650 1435.96538  -6.118 1.22e-09 ***
## s2_1           0.37089    0.05359  863.67526   6.921 8.74e-12 ***
## s3_1           0.33081    0.04835  879.94056   6.841 1.47e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) trsN_0 s2_1  
## trustNo_0 -0.703              
## s2_1      -0.707  0.318       
## s3_1      -0.791  0.362  0.634

2. study 2

a. trust_.5 + study 2 + (trustworthy|face) + (1|pt)

m7 <- lmer(respTime.log ~ trust_.5 + (s1_1 + s3_1) +
             (trustworthy|face) + 
             (1|participant), 
           control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)),
           data = d2)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00244469 (tol = 0.002, component 1)
summary(m7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: respTime.log ~ trust_.5 + (s1_1 + s3_1) + (trustworthy | face) +  
##     (1 | participant)
##    Data: d2
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: 65107.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.1031 -0.6625 -0.0621  0.6174  7.1222 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr 
##  participant (Intercept) 0.2676448 0.51734       
##  face        (Intercept) 0.0039579 0.06291       
##              trustworthy 0.0006536 0.02556  -0.77
##  Residual                0.2691035 0.51875       
## Number of obs: 40447, groups:  participant, 825; face, 140
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    1.24835    0.03544  843.96425  35.224  < 2e-16 ***
## trust_.5      -0.22335    0.03650 1435.96637  -6.118 1.22e-09 ***
## s1_1          -0.37089    0.05359  863.67616  -6.921 8.74e-12 ***
## s3_1          -0.04009    0.04384  825.05850  -0.914    0.361    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) trs_.5 s1_1  
## trust_.5 -0.035              
## s1_1     -0.640 -0.318       
## s3_1     -0.796  0.012  0.523
## optimizer (bobyqa) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00244469 (tol = 0.002, component 1)

b. SE trust

m7 <- lmer(respTime.log ~ trustYes_0 + (s1_1 + s3_1) +
             (trustworthy|face) + 
             (1|participant), 
           control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)),
           data = d2)
summary(m7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: respTime.log ~ trustYes_0 + (s1_1 + s3_1) + (trustworthy | face) +  
##     (1 | participant)
##    Data: d2
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: 65107.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.1031 -0.6625 -0.0621  0.6174  7.1222 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr 
##  participant (Intercept) 0.2676457 0.51734       
##  face        (Intercept) 0.0039557 0.06289       
##              trustworthy 0.0006533 0.02556  -0.77
##  Residual                0.2691034 0.51875       
## Number of obs: 40447, groups:  participant, 825; face, 140
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    1.13668    0.03929  923.18199  28.928  < 2e-16 ***
## trustYes_0     0.22335    0.03650 1435.96168   6.118 1.22e-09 ***
## s1_1          -0.37089    0.05359  863.67200  -6.921 8.74e-12 ***
## s3_1          -0.04009    0.04384  825.05442  -0.914    0.361    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) trsY_0 s1_1  
## trustYes_0 -0.433              
## s1_1       -0.725  0.318       
## s3_1       -0.713 -0.012  0.523

c. SE not trust

m7 <- lmer(respTime.log ~ trustNo_0 + (s1_1 + s3_1) +
             (trustworthy|face) + 
             (1|participant), 
           control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)),
           data = d2)
summary(m7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: respTime.log ~ trustNo_0 + (s1_1 + s3_1) + (trustworthy | face) +  
##     (1 | participant)
##    Data: d2
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: 65107.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.1031 -0.6625 -0.0621  0.6174  7.1222 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev. Corr 
##  participant (Intercept) 0.267645 0.51734       
##  face        (Intercept) 0.003952 0.06287       
##              trustworthy 0.000653 0.02555  -0.77
##  Residual                0.269103 0.51875       
## Number of obs: 40447, groups:  participant, 825; face, 140
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    1.36003    0.04043  943.75058  33.642  < 2e-16 ***
## trustNo_0     -0.22335    0.03650 1435.96505  -6.118 1.22e-09 ***
## s1_1          -0.37089    0.05359  863.67495  -6.921 8.74e-12 ***
## s3_1          -0.04009    0.04384  825.05731  -0.914    0.361    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) trsN_0 s1_1  
## trustNo_0 -0.482              
## s1_1      -0.418 -0.318       
## s3_1      -0.703  0.012  0.523

3. study 3

a. trust_.5 + study 3 + (trustworthy|face) + (1|pt)

m7 <- lmer(respTime.log ~ trust_.5 + (s1_1 + s2_1) +
             (trustworthy|face) + 
             (1|participant), 
           control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)),
           data = d2)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00430879 (tol = 0.002, component 1)
summary(m7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: respTime.log ~ trust_.5 + (s1_1 + s2_1) + (trustworthy | face) +  
##     (1 | participant)
##    Data: d2
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: 65107.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.1031 -0.6625 -0.0621  0.6174  7.1222 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr 
##  participant (Intercept) 0.2676454 0.51734       
##  face        (Intercept) 0.0039688 0.06300       
##              trustworthy 0.0006546 0.02559  -0.77
##  Residual                0.2691035 0.51875       
## Number of obs: 40447, groups:  participant, 825; face, 140
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    1.20826    0.02654  867.19490  45.528  < 2e-16 ***
## trust_.5      -0.22335    0.03650 1435.96300  -6.118 1.22e-09 ***
## s1_1          -0.33080    0.04835  879.93849  -6.841 1.47e-11 ***
## s2_1           0.04009    0.04384  825.05564   0.914    0.361    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) trs_.5 s1_1  
## trust_.5 -0.028              
## s1_1     -0.524 -0.362       
## s2_1     -0.589 -0.012  0.327
## optimizer (bobyqa) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00430879 (tol = 0.002, component 1)

b. SE trust

m7 <- lmer(respTime.log ~ trustYes_0 + (s1_1 + s2_1) +
             (trustworthy|face) + 
             (1|participant), 
           control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)),
           data = d2)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00229484 (tol = 0.002, component 1)
summary(m7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: respTime.log ~ trustYes_0 + (s1_1 + s2_1) + (trustworthy | face) +  
##     (1 | participant)
##    Data: d2
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: 65107.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.1031 -0.6625 -0.0621  0.6174  7.1222 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr 
##  participant (Intercept) 0.2676452 0.51734       
##  face        (Intercept) 0.0039539 0.06288       
##              trustworthy 0.0006532 0.02556  -0.77
##  Residual                0.2691035 0.51875       
## Number of obs: 40447, groups:  participant, 825; face, 140
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    1.09659    0.03179  999.89014  34.492  < 2e-16 ***
## trustYes_0     0.22335    0.03650 1435.96453   6.118 1.22e-09 ***
## s1_1          -0.33081    0.04835  879.93978  -6.841 1.47e-11 ***
## s2_1           0.04009    0.04384  825.05687   0.914    0.361    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) trsY_0 s1_1  
## trustYes_0 -0.551              
## s1_1       -0.646  0.362       
## s2_1       -0.498  0.012  0.327
## optimizer (bobyqa) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00229484 (tol = 0.002, component 1)

c. SE not trust

m7 <- lmer(respTime.log ~ trustNo_0 + (s1_1 + s2_1) +
             (trustworthy|face) + 
             (1|participant), 
           control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)),
           data = d2)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00479147 (tol = 0.002, component 1)
summary(m7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: respTime.log ~ trustNo_0 + (s1_1 + s2_1) + (trustworthy | face) +  
##     (1 | participant)
##    Data: d2
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: 65107.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.1031 -0.6625 -0.0621  0.6174  7.1222 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr 
##  participant (Intercept) 0.2676443 0.51734       
##  face        (Intercept) 0.0039705 0.06301       
##              trustworthy 0.0006548 0.02559  -0.77
##  Residual                0.2691035 0.51875       
## Number of obs: 40447, groups:  participant, 825; face, 140
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    1.31994    0.03262 1017.10085  40.463  < 2e-16 ***
## trustNo_0     -0.22335    0.03650 1435.96916  -6.118 1.22e-09 ***
## s1_1          -0.33080    0.04835  879.94402  -6.841 1.47e-11 ***
## s2_1           0.04009    0.04384  825.06097   0.914    0.361    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) trsN_0 s1_1  
## trustNo_0 -0.582              
## s1_1      -0.224 -0.362       
## s2_1      -0.473 -0.012  0.327
## optimizer (bobyqa) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00479147 (tol = 0.002, component 1)