install package

options(warn = -1)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.5     v dplyr   1.0.7
## v tidyr   1.1.4     v stringr 1.4.0
## v readr   2.0.2     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
setwd("C:/Users/nawal/OneDrive/Desktop/Aditya Course/Data Wrangling/Week 4/Week 4/homework3")

##Load data using tidyverse

df<- read_csv("acs_2015_county_data_revised.csv")
## Rows: 3142 Columns: 35
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr  (2): state, county
## dbl (33): census_id, total_pop, men, women, hispanic, white, black, native, ...
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(df)
## # A tibble: 6 x 35
##   census_id state county total_pop   men women hispanic white black native asian
##       <dbl> <chr> <chr>      <dbl> <dbl> <dbl>    <dbl> <dbl> <dbl>  <dbl> <dbl>
## 1      1001 Alab~ Autau~     55221 26745 28476      2.6  75.8  18.5    0.4   1  
## 2      1003 Alab~ Baldw~    195121 95314 99807      4.5  83.1   9.5    0.6   0.7
## 3      1005 Alab~ Barbo~     26932 14497 12435      4.6  46.2  46.7    0.2   0.4
## 4      1007 Alab~ Bibb       22604 12073 10531      2.2  74.5  21.4    0.4   0.1
## 5      1009 Alab~ Blount     57710 28512 29198      8.6  87.9   1.5    0.3   0.1
## 6      1011 Alab~ Bullo~     10678  5660  5018      4.4  22.2  70.7    1.2   0.2
## # ... with 24 more variables: pacific <dbl>, citizen <dbl>, income <dbl>,
## #   income_per_cap <dbl>, poverty <dbl>, child_poverty <dbl>,
## #   professional <dbl>, service <dbl>, office <dbl>, construction <dbl>,
## #   production <dbl>, drive <dbl>, carpool <dbl>, transit <dbl>, walk <dbl>,
## #   other_transp <dbl>, work_at_home <dbl>, mean_commute <dbl>, employed <dbl>,
## #   private_work <dbl>, public_work <dbl>, self_employed <dbl>,
## #   family_work <dbl>, unemployment <dbl>

Check the structure of the data

str(df)
## spec_tbl_df [3,142 x 35] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ census_id     : num [1:3142] 1001 1003 1005 1007 1009 ...
##  $ state         : chr [1:3142] "Alabama" "Alabama" "Alabama" "Alabama" ...
##  $ county        : chr [1:3142] "Autauga" "Baldwin" "Barbour" "Bibb" ...
##  $ total_pop     : num [1:3142] 55221 195121 26932 22604 57710 ...
##  $ men           : num [1:3142] 26745 95314 14497 12073 28512 ...
##  $ women         : num [1:3142] 28476 99807 12435 10531 29198 ...
##  $ hispanic      : num [1:3142] 2.6 4.5 4.6 2.2 8.6 4.4 1.2 3.5 0.4 1.5 ...
##  $ white         : num [1:3142] 75.8 83.1 46.2 74.5 87.9 22.2 53.3 73 57.3 91.7 ...
##  $ black         : num [1:3142] 18.5 9.5 46.7 21.4 1.5 70.7 43.8 20.3 40.3 4.8 ...
##  $ native        : num [1:3142] 0.4 0.6 0.2 0.4 0.3 1.2 0.1 0.2 0.2 0.6 ...
##  $ asian         : num [1:3142] 1 0.7 0.4 0.1 0.1 0.2 0.4 0.9 0.8 0.3 ...
##  $ pacific       : num [1:3142] 0 0 0 0 0 0 0 0 0 0 ...
##  $ citizen       : num [1:3142] 40725 147695 20714 17495 42345 ...
##  $ income        : num [1:3142] 51281 50254 32964 38678 45813 ...
##  $ income_per_cap: num [1:3142] 24974 27317 16824 18431 20532 ...
##  $ poverty       : num [1:3142] 12.9 13.4 26.7 16.8 16.7 24.6 25.4 20.5 21.6 19.2 ...
##  $ child_poverty : num [1:3142] 18.6 19.2 45.3 27.9 27.2 38.4 39.2 31.6 37.2 30.1 ...
##  $ professional  : num [1:3142] 33.2 33.1 26.8 21.5 28.5 18.8 27.5 27.3 23.3 29.3 ...
##  $ service       : num [1:3142] 17 17.7 16.1 17.9 14.1 15 16.6 17.7 14.5 16 ...
##  $ office        : num [1:3142] 24.2 27.1 23.1 17.8 23.9 19.7 21.9 24.2 26.3 19.5 ...
##  $ construction  : num [1:3142] 8.6 10.8 10.8 19 13.5 20.1 10.3 10.5 11.5 13.7 ...
##  $ production    : num [1:3142] 17.1 11.2 23.1 23.7 19.9 26.4 23.7 20.4 24.4 21.5 ...
##  $ drive         : num [1:3142] 87.5 84.7 83.8 83.2 84.9 74.9 84.5 85.3 85.1 83.9 ...
##  $ carpool       : num [1:3142] 8.8 8.8 10.9 13.5 11.2 14.9 12.4 9.4 11.9 12.1 ...
##  $ transit       : num [1:3142] 0.1 0.1 0.4 0.5 0.4 0.7 0 0.2 0.2 0.2 ...
##  $ walk          : num [1:3142] 0.5 1 1.8 0.6 0.9 5 0.8 1.2 0.3 0.6 ...
##  $ other_transp  : num [1:3142] 1.3 1.4 1.5 1.5 0.4 1.7 0.6 1.2 0.4 0.7 ...
##  $ work_at_home  : num [1:3142] 1.8 3.9 1.6 0.7 2.3 2.8 1.7 2.7 2.1 2.5 ...
##  $ mean_commute  : num [1:3142] 26.5 26.4 24.1 28.8 34.9 27.5 24.6 24.1 25.1 27.4 ...
##  $ employed      : num [1:3142] 23986 85953 8597 8294 22189 ...
##  $ private_work  : num [1:3142] 73.6 81.5 71.8 76.8 82 79.5 77.4 74.1 85.1 73.1 ...
##  $ public_work   : num [1:3142] 20.9 12.3 20.8 16.1 13.5 15.1 16.2 20.8 12.1 18.5 ...
##  $ self_employed : num [1:3142] 5.5 5.8 7.3 6.7 4.2 5.4 6.2 5 2.8 7.9 ...
##  $ family_work   : num [1:3142] 0 0.4 0.1 0.4 0.4 0 0.2 0.1 0 0.5 ...
##  $ unemployment  : num [1:3142] 7.6 7.5 17.6 8.3 7.7 18 10.9 12.3 8.9 7.9 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   census_id = col_double(),
##   ..   state = col_character(),
##   ..   county = col_character(),
##   ..   total_pop = col_double(),
##   ..   men = col_double(),
##   ..   women = col_double(),
##   ..   hispanic = col_double(),
##   ..   white = col_double(),
##   ..   black = col_double(),
##   ..   native = col_double(),
##   ..   asian = col_double(),
##   ..   pacific = col_double(),
##   ..   citizen = col_double(),
##   ..   income = col_double(),
##   ..   income_per_cap = col_double(),
##   ..   poverty = col_double(),
##   ..   child_poverty = col_double(),
##   ..   professional = col_double(),
##   ..   service = col_double(),
##   ..   office = col_double(),
##   ..   construction = col_double(),
##   ..   production = col_double(),
##   ..   drive = col_double(),
##   ..   carpool = col_double(),
##   ..   transit = col_double(),
##   ..   walk = col_double(),
##   ..   other_transp = col_double(),
##   ..   work_at_home = col_double(),
##   ..   mean_commute = col_double(),
##   ..   employed = col_double(),
##   ..   private_work = col_double(),
##   ..   public_work = col_double(),
##   ..   self_employed = col_double(),
##   ..   family_work = col_double(),
##   ..   unemployment = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>

No data donโ€™t require any structure change as the columns are in the same format as desired

glimpse(df)
## Rows: 3,142
## Columns: 35
## $ census_id      <dbl> 1001, 1003, 1005, 1007, 1009, 1011, 1013, 1015, 1017, 1~
## $ state          <chr> "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", ~
## $ county         <chr> "Autauga", "Baldwin", "Barbour", "Bibb", "Blount", "Bul~
## $ total_pop      <dbl> 55221, 195121, 26932, 22604, 57710, 10678, 20354, 11664~
## $ men            <dbl> 26745, 95314, 14497, 12073, 28512, 5660, 9502, 56274, 1~
## $ women          <dbl> 28476, 99807, 12435, 10531, 29198, 5018, 10852, 60374, ~
## $ hispanic       <dbl> 2.6, 4.5, 4.6, 2.2, 8.6, 4.4, 1.2, 3.5, 0.4, 1.5, 7.6, ~
## $ white          <dbl> 75.8, 83.1, 46.2, 74.5, 87.9, 22.2, 53.3, 73.0, 57.3, 9~
## $ black          <dbl> 18.5, 9.5, 46.7, 21.4, 1.5, 70.7, 43.8, 20.3, 40.3, 4.8~
## $ native         <dbl> 0.4, 0.6, 0.2, 0.4, 0.3, 1.2, 0.1, 0.2, 0.2, 0.6, 0.4, ~
## $ asian          <dbl> 1.0, 0.7, 0.4, 0.1, 0.1, 0.2, 0.4, 0.9, 0.8, 0.3, 0.3, ~
## $ pacific        <dbl> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ~
## $ citizen        <dbl> 40725, 147695, 20714, 17495, 42345, 8057, 15581, 88612,~
## $ income         <dbl> 51281, 50254, 32964, 38678, 45813, 31938, 32229, 41703,~
## $ income_per_cap <dbl> 24974, 27317, 16824, 18431, 20532, 17580, 18390, 21374,~
## $ poverty        <dbl> 12.9, 13.4, 26.7, 16.8, 16.7, 24.6, 25.4, 20.5, 21.6, 1~
## $ child_poverty  <dbl> 18.6, 19.2, 45.3, 27.9, 27.2, 38.4, 39.2, 31.6, 37.2, 3~
## $ professional   <dbl> 33.2, 33.1, 26.8, 21.5, 28.5, 18.8, 27.5, 27.3, 23.3, 2~
## $ service        <dbl> 17.0, 17.7, 16.1, 17.9, 14.1, 15.0, 16.6, 17.7, 14.5, 1~
## $ office         <dbl> 24.2, 27.1, 23.1, 17.8, 23.9, 19.7, 21.9, 24.2, 26.3, 1~
## $ construction   <dbl> 8.6, 10.8, 10.8, 19.0, 13.5, 20.1, 10.3, 10.5, 11.5, 13~
## $ production     <dbl> 17.1, 11.2, 23.1, 23.7, 19.9, 26.4, 23.7, 20.4, 24.4, 2~
## $ drive          <dbl> 87.5, 84.7, 83.8, 83.2, 84.9, 74.9, 84.5, 85.3, 85.1, 8~
## $ carpool        <dbl> 8.8, 8.8, 10.9, 13.5, 11.2, 14.9, 12.4, 9.4, 11.9, 12.1~
## $ transit        <dbl> 0.1, 0.1, 0.4, 0.5, 0.4, 0.7, 0.0, 0.2, 0.2, 0.2, 0.2, ~
## $ walk           <dbl> 0.5, 1.0, 1.8, 0.6, 0.9, 5.0, 0.8, 1.2, 0.3, 0.6, 1.1, ~
## $ other_transp   <dbl> 1.3, 1.4, 1.5, 1.5, 0.4, 1.7, 0.6, 1.2, 0.4, 0.7, 1.4, ~
## $ work_at_home   <dbl> 1.8, 3.9, 1.6, 0.7, 2.3, 2.8, 1.7, 2.7, 2.1, 2.5, 1.9, ~
## $ mean_commute   <dbl> 26.5, 26.4, 24.1, 28.8, 34.9, 27.5, 24.6, 24.1, 25.1, 2~
## $ employed       <dbl> 23986, 85953, 8597, 8294, 22189, 3865, 7813, 47401, 136~
## $ private_work   <dbl> 73.6, 81.5, 71.8, 76.8, 82.0, 79.5, 77.4, 74.1, 85.1, 7~
## $ public_work    <dbl> 20.9, 12.3, 20.8, 16.1, 13.5, 15.1, 16.2, 20.8, 12.1, 1~
## $ self_employed  <dbl> 5.5, 5.8, 7.3, 6.7, 4.2, 5.4, 6.2, 5.0, 2.8, 7.9, 4.1, ~
## $ family_work    <dbl> 0.0, 0.4, 0.1, 0.4, 0.4, 0.0, 0.2, 0.1, 0.0, 0.5, 0.5, ~
## $ unemployment   <dbl> 7.6, 7.5, 17.6, 8.3, 7.7, 18.0, 10.9, 12.3, 8.9, 7.9, 9~

To check the missing values present in the data

colSums(is.na(df))
##      census_id          state         county      total_pop            men 
##              0              0              0              0              0 
##          women       hispanic          white          black         native 
##              0              0              0              0              0 
##          asian        pacific        citizen         income income_per_cap 
##              0              0              0              1              0 
##        poverty  child_poverty   professional        service         office 
##              0              1              0              0              0 
##   construction     production          drive        carpool        transit 
##              0              0              0              0              0 
##           walk   other_transp   work_at_home   mean_commute       employed 
##              0              0              0              0              0 
##   private_work    public_work  self_employed    family_work   unemployment 
##              0              0              0              0              0

There is only 2 missing value one in income column & other in child_poverty , we will omit this records since using any sort of imputation would not be able to explain the correct value of this 2 observations

df<- na.omit(df)

To summarize data we will use summary function

summary(df)
##    census_id        state              county            total_pop       
##  Min.   : 1001   Length:3140        Length:3140        Min.   :     267  
##  1st Qu.:18179   Class :character   Class :character   1st Qu.:   11036  
##  Median :29176   Mode  :character   Mode  :character   Median :   25793  
##  Mean   :30383                                         Mean   :  100801  
##  3rd Qu.:45080                                         3rd Qu.:   67620  
##  Max.   :56045                                         Max.   :10038388  
##       men              women            hispanic          white      
##  Min.   :    136   Min.   :    131   Min.   : 0.000   Min.   : 0.90  
##  1st Qu.:   5551   1st Qu.:   5488   1st Qu.: 1.900   1st Qu.:65.67  
##  Median :  12838   Median :  12916   Median : 3.700   Median :84.65  
##  Mean   :  49597   Mean   :  51204   Mean   : 8.819   Mean   :77.31  
##  3rd Qu.:  33328   3rd Qu.:  34123   3rd Qu.: 9.000   3rd Qu.:93.33  
##  Max.   :4945351   Max.   :5093037   Max.   :98.700   Max.   :99.80  
##      black            native           asian           pacific        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.00000  
##  1st Qu.: 0.600   1st Qu.: 0.100   1st Qu.: 0.200   1st Qu.: 0.00000  
##  Median : 2.100   Median : 0.300   Median : 0.500   Median : 0.00000  
##  Mean   : 8.885   Mean   : 1.763   Mean   : 1.253   Mean   : 0.07357  
##  3rd Qu.:10.200   3rd Qu.: 0.600   3rd Qu.: 1.200   3rd Qu.: 0.00000  
##  Max.   :85.900   Max.   :92.100   Max.   :41.600   Max.   :11.10000  
##     citizen            income       income_per_cap     poverty    
##  Min.   :    199   Min.   : 19328   Min.   : 8292   Min.   : 1.4  
##  1st Qu.:   8276   1st Qu.: 38826   1st Qu.:20470   1st Qu.:12.0  
##  Median :  19454   Median : 45095   Median :23575   Median :16.0  
##  Mean   :  70849   Mean   : 46824   Mean   :24331   Mean   :16.7  
##  3rd Qu.:  50795   3rd Qu.: 52248   3rd Qu.:27138   3rd Qu.:20.3  
##  Max.   :6046749   Max.   :123453   Max.   :65600   Max.   :53.3  
##  child_poverty    professional      service          office     
##  Min.   : 0.00   Min.   :13.50   Min.   : 5.00   Min.   : 4.10  
##  1st Qu.:16.10   1st Qu.:26.70   1st Qu.:15.90   1st Qu.:20.20  
##  Median :22.50   Median :30.00   Median :18.00   Median :22.40  
##  Mean   :23.29   Mean   :31.05   Mean   :18.25   Mean   :22.13  
##  3rd Qu.:29.50   3rd Qu.:34.42   3rd Qu.:20.20   3rd Qu.:24.30  
##  Max.   :72.30   Max.   :74.00   Max.   :36.60   Max.   :35.40  
##   construction     production        drive         carpool     
##  Min.   : 1.70   Min.   : 0.00   Min.   : 5.2   Min.   : 0.00  
##  1st Qu.: 9.80   1st Qu.:11.50   1st Qu.:76.6   1st Qu.: 8.50  
##  Median :12.20   Median :15.40   Median :80.6   Median : 9.90  
##  Mean   :12.75   Mean   :15.82   Mean   :79.1   Mean   :10.33  
##  3rd Qu.:15.00   3rd Qu.:19.40   3rd Qu.:83.6   3rd Qu.:11.90  
##  Max.   :40.30   Max.   :55.60   Max.   :94.6   Max.   :29.90  
##     transit             walk         other_transp    work_at_home   
##  Min.   : 0.0000   Min.   : 0.000   Min.   : 0.00   Min.   : 0.000  
##  1st Qu.: 0.1000   1st Qu.: 1.400   1st Qu.: 0.90   1st Qu.: 2.800  
##  Median : 0.4000   Median : 2.400   Median : 1.30   Median : 4.000  
##  Mean   : 0.9681   Mean   : 3.294   Mean   : 1.61   Mean   : 4.694  
##  3rd Qu.: 0.8000   3rd Qu.: 4.000   3rd Qu.: 1.90   3rd Qu.: 5.700  
##  Max.   :61.7000   Max.   :71.200   Max.   :39.10   Max.   :37.200  
##   mean_commute      employed        private_work    public_work   
##  Min.   : 4.90   Min.   :    166   Min.   :29.50   Min.   : 5.80  
##  1st Qu.:19.30   1st Qu.:   4532   1st Qu.:70.90   1st Qu.:13.07  
##  Median :22.90   Median :  10657   Median :75.85   Median :16.10  
##  Mean   :23.15   Mean   :  46416   Mean   :74.45   Mean   :17.33  
##  3rd Qu.:26.60   3rd Qu.:  29272   3rd Qu.:79.80   3rd Qu.:20.10  
##  Max.   :44.00   Max.   :4635465   Max.   :88.30   Max.   :66.20  
##  self_employed     family_work      unemployment   
##  Min.   : 0.000   Min.   :0.0000   Min.   : 0.000  
##  1st Qu.: 5.400   1st Qu.:0.1000   1st Qu.: 5.500  
##  Median : 6.900   Median :0.2000   Median : 7.500  
##  Mean   : 7.922   Mean   :0.2917   Mean   : 7.815  
##  3rd Qu.: 9.400   3rd Qu.:0.3000   3rd Qu.: 9.700  
##  Max.   :36.600   Max.   :9.8000   Max.   :29.400

In the variable transit & walk have very skewed mean and median we will further histogram to understand the reason behind it.

hist(df$transit)

hist(df$walk)

After plotting the histogram and looking at the records for highest walk and transit the number seems to be fine

df$flag<- ifelse(df$women> df$men,1,0)

county_women_gt_men <- df%>% filter(flag ==1) %>% summarise(count = length(unique(county)))

print(county_women_gt_men)
## # A tibble: 1 x 1
##   count
##   <int>
## 1  1248

1248

county_unemp<- df%>% filter(unemployment < 10) %>% summarise(count = length(unique(county)))

print(county_unemp)
## # A tibble: 1 x 1
##   count
##   <int>
## 1  1482

1482

highest_mean_commute <- df%>% select(census_id,county,state,mean_commute)%>% arrange(desc(mean_commute))%>% top_n(10)
## Selecting by mean_commute
print(highest_mean_commute)
## # A tibble: 10 x 4
##    census_id county       state         mean_commute
##        <dbl> <chr>        <chr>                <dbl>
##  1     42103 Pike         Pennsylvania          44  
##  2     36005 Bronx        New York              43  
##  3     24017 Charles      Maryland              42.8
##  4     51187 Warren       Virginia              42.7
##  5     36081 Queens       New York              42.6
##  6     36085 Richmond     New York              42.6
##  7     51193 Westmoreland Virginia              42.5
##  8      8093 Park         Colorado              42.4
##  9     36047 Kings        New York              41.7
## 10     54015 Clay         West Virginia         41.4
per_women <- df  %>% mutate(women_prop = women/total_pop) %>% select(census_id,county,state,women_prop) %>% arrange(women_prop) %>% top_n(-10)
## Selecting by women_prop
print(per_women)
## # A tibble: 10 x 4
##    census_id county                 state        women_prop
##        <dbl> <chr>                  <chr>             <dbl>
##  1     42053 Forest                 Pennsylvania      0.268
##  2      8011 Bent                   Colorado          0.314
##  3     51183 Sussex                 Virginia          0.315
##  4     13309 Wheeler                Georgia           0.321
##  5      6035 Lassen                 California        0.332
##  6     48095 Concho                 Texas             0.333
##  7     13053 Chattahoochee          Georgia           0.334
##  8      2013 Aleutians East Borough Alaska            0.335
##  9     22125 West Feliciana         Louisiana         0.336
## 10     32027 Pershing               Nevada            0.337
df$race_variable <- df$hispanic +df$white +df$black + df$native +df$asian + df$pacific

lowest_per_race <- df%>% group_by(county) %>% arrange(race_variable) %>% select(county) %>% head(n=10)

print(lowest_per_race)
## # A tibble: 10 x 1
## # Groups:   county [10]
##    county                  
##    <chr>                   
##  1 Hawaii                  
##  2 Maui                    
##  3 Mayes                   
##  4 Honolulu                
##  5 Pontotoc                
##  6 Grundy                  
##  7 Yakutat City and Borough
##  8 Johnston                
##  9 Kauai                   
## 10 Alfalfa
lowest_per_state<- df %>% group_by(state) %>% summarise(mean_race= mean(race_variable)) %>% top_n(-1)
## Selecting by mean_race
print(lowest_per_state)
## # A tibble: 1 x 2
##   state  mean_race
##   <chr>      <dbl>
## 1 Hawaii      80.3
sum_gt_100 <- df%>% filter(race_variable > 100) %>% select(county)

print(sum_gt_100)
## # A tibble: 11 x 1
##    county   
##    <chr>    
##  1 Claiborne
##  2 Gosper   
##  3 Hooker   
##  4 Nance    
##  5 Bailey   
##  6 Duval    
##  7 Edwards  
##  8 Kenedy   
##  9 Kent     
## 10 Presidio 
## 11 Beaver
sum_eq_100<- df %>% filter(race_variable ==100) %>% group_by(state) %>% summarise(total = length(unique(state)))

print(sum_eq_100)
## # A tibble: 13 x 2
##    state          total
##    <chr>          <int>
##  1 Alabama            1
##  2 Georgia            1
##  3 Kansas             1
##  4 Kentucky           1
##  5 Mississippi        1
##  6 Montana            1
##  7 Nebraska           1
##  8 New Mexico         1
##  9 North Carolina     1
## 10 North Dakota       1
## 11 South Dakota       1
## 12 Texas              1
## 13 West Virginia      1
df$carpool_rank <- min_rank(-df$carpool)

highest_rank_carp<- df %>% filter(carpool_rank %in% c(1:10)) %>% select(census_id,county,state,carpool,carpool_rank) %>% arrange(carpool_rank)

print(highest_rank_carp)
## # A tibble: 10 x 5
##    census_id county   state    carpool carpool_rank
##        <dbl> <chr>    <chr>      <dbl>        <int>
##  1     13061 Clay     Georgia     29.9            1
##  2     18087 LaGrange Indiana     27              2
##  3     13165 Jenkins  Georgia     25.3            3
##  4      5133 Sevier   Arkansas    24.4            4
##  5     20175 Seward   Kansas      23.4            5
##  6     48079 Cochran  Texas       22.8            6
##  7     48247 Jim Hogg Texas       22.6            7
##  8     48393 Roberts  Texas       22.4            8
##  9     39075 Holmes   Ohio        21.8            9
## 10     21197 Powell   Kentucky    21.6           10
lowes_rank_carp <-  df %>% select(census_id,county,state,carpool,carpool_rank) %>% arrange(desc(carpool_rank)) %>% top_n(10)         
## Selecting by carpool_rank
print(lowes_rank_carp)
## # A tibble: 11 x 5
##    census_id county      state        carpool carpool_rank
##        <dbl> <chr>       <chr>          <dbl>        <int>
##  1     48261 Kenedy      Texas            0           3139
##  2     48269 King        Texas            0           3139
##  3     48235 Irion       Texas            0.9         3138
##  4     31183 Wheeler     Nebraska         1.3         3137
##  5     36061 New York    New York         1.9         3136
##  6     13309 Wheeler     Georgia          2.3         3134
##  7     38029 Emmons      North Dakota     2.3         3134
##  8     30019 Daniels     Montana          2.6         3132
##  9     31057 Dundy       Nebraska         2.6         3132
## 10     46069 Hyde        South Dakota     2.8         3130
## 11     51720 Norton city Virginia         2.8         3130
state_best <- df%>% group_by(state)%>% summarise(carpool_avg = mean(carpool)) %>% arrange(desc(carpool_avg)) %>% top_n(1)
## Selecting by carpool_avg
print(state_best)
## # A tibble: 1 x 2
##   state  carpool_avg
##   <chr>        <dbl>
## 1 Hawaii        12.8
state_best_5 <- df%>% group_by(state)%>% summarise(carpool_avg = mean(carpool)) %>% arrange(desc(carpool_avg)) %>% top_n(5)
## Selecting by carpool_avg
print(state_best_5)
## # A tibble: 5 x 2
##   state    carpool_avg
##   <chr>          <dbl>
## 1 Hawaii          12.8
## 2 Alaska          12.1
## 3 Arkansas        11.9
## 4 Utah            11.9
## 5 Texas           11.8