Hypothesis:
\(H_o: \alpha_i = 0\) \(H_a: \alpha_i \neq 0\)
\(H_o: \gamma_k = 0\) \(H_a: \gamma_k \neq 0\)
\(H_o: \delta_l = 0\) \(H_a: \delta_l \neq 0\)
\(H_o: \alpha\gamma_{ik} = 0\) \(H_a: \alpha\gamma_{ik} \neq 0\)
\(H_o: \alpha\delta_{il} = 0\) \(H_a: \alpha\delta_{il} \neq 0\)
A <-c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <-rep(c(-1,-1,1,1),4)
C <-rep(c(-1,-1,-1,-1,1,1,1,1),2)
D <- rep(c(rep(-1,8), rep(1,8)))
obs <-c(12,18,13,16,17,15,20,15,10,25,13,24,19,21,17,23)
mod1<-aov(obs~A*B*C*D)
summary(mod1)
## Df Sum Sq Mean Sq
## A 1 81.00 81.00
## B 1 1.00 1.00
## C 1 16.00 16.00
## D 1 42.25 42.25
## A:B 1 2.25 2.25
## A:C 1 72.25 72.25
## B:C 1 0.25 0.25
## A:D 1 64.00 64.00
## B:D 1 0.00 0.00
## C:D 1 0.00 0.00
## A:B:C 1 4.00 4.00
## A:B:D 1 2.25 2.25
## A:C:D 1 0.25 0.25
## B:C:D 1 2.25 2.25
## A:B:C:D 1 4.00 4.00
halfnormal(mod1)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A A:C A:D D
mod2<-aov(obs~A*C+A*D)
summary(mod2)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 81.00 81.00 49.846 3.46e-05 ***
## C 1 16.00 16.00 9.846 0.010549 *
## D 1 42.25 42.25 26.000 0.000465 ***
## A:C 1 72.25 72.25 44.462 5.58e-05 ***
## A:D 1 64.00 64.00 39.385 9.19e-05 ***
## Residuals 10 16.25 1.62
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1