Training Models From GA selected features

In previous steps features were selected by using GA technology to assess the suitability of such features.

Differnt GA strategies for fitness evaluation and we have tested nearcenter and randomforest technologies.

Feature selection was prepared acording to document paso2

suppressPackageStartupMessages(library(googleVis))
suppressPackageStartupMessages(library(xtable))
suppressPackageStartupMessages(library(Peaks))
suppressPackageStartupMessages(library(magic))
suppressPackageStartupMessages(library(segmented))
suppressPackageStartupMessages(library(fftw))
suppressPackageStartupMessages(library(FITSio))
suppressPackageStartupMessages(library(stringr))
suppressPackageStartupMessages(library(utils))
suppressPackageStartupMessages(library(e1071))
suppressPackageStartupMessages(library(quantmod))
suppressPackageStartupMessages(library(JADE))
suppressPackageStartupMessages(library(zoo))
suppressPackageStartupMessages(library(plyr))
suppressPackageStartupMessages(library(doMC))
suppressPackageStartupMessages(library(multicore))
suppressPackageStartupMessages(library(parallel))
suppressPackageStartupMessages(library(foreach))
suppressPackageStartupMessages(library(compiler))
suppressPackageStartupMessages(library(galgo))

##Feature extraction as defined by the GA

For feature selection BT-Settl 2012 library from France Allard was selected and wavelength reduction was performed to become compatible with the data coming from the satellite IPAC.

# Procesado del genético de Tª
setwd("~/git/M_sel")
load("nearcenter_ALL_T_5_900.RData")
plot(bb.nc.1, type = "fitness")

plot of chunk lee01

plot(bb.nc.1, type = "fitness", filter = "nosolutions")

plot of chunk lee01

plot(bb.nc.1, type = "confusion")
## Computing confusion from class prediction...
## 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

plot of chunk lee01

cpm <- classPredictionMatrix(bb.nc.1)
cm <- confusionMatrix(bb.nc.1, cpm)
sec <- sensitivityClass(bb.nc.1, cm)
spc <- specificityClass(bb.nc.1, cm)
plot(bb.nc.1, type = "confusion", set = c(1, 0), splits = 1)
## Computing confusion from class prediction...
## 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

plot of chunk lee01

plot(bb.nc.1, type = "confusion", set = c(1, 0), splits = 1, chromosomes = list(bb.nc.1$bestChromosomes[[1]]))
## Computing confusion from class prediction...

plot of chunk lee01

plot(bb.nc.1, type = "generankstability")

plot of chunk lee01

rchr <- lapply(bb.nc.1$bestChromosomes[1:300], robustGeneBackwardElimination, 
    bb.nc.1, result = "shortest")
fsm <- forwardSelectionModels(bb.nc.1, plot = FALSE)
## 4% 8% 12% 16% 20% 24% 29% 33% 37% 41% 45% 49% 53% 57% 61% 65% 69% 73% 78% 82% 86% 90% 94% 98%
fsm$models
## [[1]]
##  [1]  2661 37503 10025  2662 37077 10026  3555  3701 38514  9882 10905
## [12] 37502 37078 17868 10762 14840
## 
## [[2]]
##  [1]  2661 37503 10025  2662 37077 10026  3555  3701 38514  9882 10905
## [12] 37502 37078 17868 10762 14840 17867
## 
## [[3]]
##  [1]  2661 37503 10025  2662 37077 10026  3555  3701 38514  9882 10905
## [12] 37502 37078 17868 10762 14840 17867  2225
## 
## [[4]]
##  [1]  2661 37503 10025  2662 37077 10026  3555  3701 38514  9882 10905
## [12] 37502 37078 17868 10762 14840 17867  2225  2226
rownames(ALL)[fsm$models[[3]]]
##  [1] "48:51_55:62" "47:52_55:62" "48:51_55:64" "49:52_55:62" "57:62_46:53"
##  [6] "49:52_55:64" "83:86_73:80" "84:87_76:83" "84:89_76:83" "48:51_52:61"
## [11] "83:86_73:82" "46:51_55:62" "58:63_46:53" "83:86_70:81" "83:86_70:79"
## [16] "1:4_7:18"    "82:85_70:81" "58:61_46:53"
#
features <- list()
features$T <- c("1:4_7:18", "46:53_55:62", "83:86_73:82", "147:150_130:137")
#

Now, we start to load the original data bp_clean and bq_clean, and we will process the features according to the feature list.

In order to generate features we will use the formula \( \int{\lambda_{1}}{\lambda_{2}}{1-\frac{F_{line}}{F_{cont}} d\lambda} \) as depicted in formula (1) of the above reference.

The band frequences are defined in the previous table but \( F_{cont} \) is not defined. As such a genetic algorithm testing different potential continuum spectra will be tested and looking the best matching to explain spectral parameters by precious feature functions.

Once the signal points and continuous regions were identified, models were setted-up and assessed by crossvalidation procedure. Iedas for the implementation were taken from http://moderntoolmaking.blogspot.com.es/2013/03/caretensemble-classification-example.html

# Cargamos bp_clean (BT_SETTL) & bq_clean (IPAC)
load("~/git/M_prep/M_prep_cleanip_BT-Settl.RData")
rm(xtmp)
# Buscamos las catacterísticas para extraerla del conjunto de train par T
signal <- unlist(lapply(features$T, function(x) {
    a <- strsplit(x, "_")
    return(a[[1]][1])
}))
noise <- unlist(lapply(features$T, function(x) {
    a <- strsplit(x, "_")
    return(a[[1]][2])
}))
sn <- cbind(signal, noise)
int_spec <- function(x, idx, norm = 0) {
    y <- x$data[[1]][eval(parse(text = idx)), ]
    xz <- diff(as.numeric(y[, 1]), 1)
    yz <- as.numeric(y[, 2])
    if (norm > 0) {
        yz <- rep(1, length(xz))
    }
    z <- sum(xz * rollmean(yz, 2))
    return(z)
}
#
feature_extr <- function(sn, bp) {
    sig <- sn[1]
    noi <- sn[2]
    Fcont <- unlist(lapply(bp, int_spec, noi, 0))/unlist(lapply(bp, int_spec, 
        noi, 1))
    fea <- unlist(lapply(bp, int_spec, sig, 1)) - unlist(lapply(bp, int_spec, 
        sig, 0))/Fcont
    return(fea)
}
xx <- apply(sn, 1, feature_extr, bp_clean)
colnames(xx) <- as.character(sn[, 1])
xx <- cbind(xx, unlist(lapply(bp_clean, function(x) {
    return(x$stellarp[1])
})))
colnames(xx)[5] <- "T"
save(xx, file = "features_BTSETTL_paso3v1.RData")

# Just informing for the features
newfea <- cbind(t(apply(sn, 1, function(x) {
    return(range(bp_clean[[1]]$data[[1]][eval(parse(text = x[1])), 1]))
})), t(apply(sn, 1, function(x) {
    return(range(bp_clean[[1]]$data[[1]][eval(parse(text = x[2])), 1]))
})))
colnames(newfea) <- c("Signal_from", "Signal_To", "Cont_From", "Cont_To")

print(xtable(newfea), type = "html")
Signal_from Signal_To Cont_From Cont_To
1 8461.00 8471.80 8482.60 8522.20
2 8623.00 8648.20 8655.40 8680.60
3 8756.20 8767.00 8720.20 8752.60
4 8986.60 8997.40 8925.40 8950.60
#

Regression and modeling

Let's build up several models and compare their performance. Generally speaking we split randomly the learning set and we will learn by ten folder cross validation. Then we will test the models against the unseen data and we will test the ensamble technology, even.

# Setup
gc(reset = TRUE)
##             used   (Mb) gc trigger   (Mb)  max used   (Mb)
## Ncells   2142828  114.5    6910418  369.1   2142828  114.5
## Vcells 566268747 4320.3  769748743 5872.8 566268747 4320.3
set.seed(42)  #From random.org

# Libraries
library(caret)
## Loading required package: cluster
## Loading required package: lattice
## Attaching package: 'lattice'
## The following object is masked from 'package:multicore':
## 
## parallel
## Loading required package: reshape2
## Attaching package: 'caret'
## The following object is masked from 'package:galgo':
## 
## best, confusionMatrix
library(devtools)
## Attaching package: 'devtools'
## The following object is masked from 'package:R.oo':
## 
## check, unload
# Solo una vez: install_github('caretEnsemble', 'zachmayer') #Install
# zach's caretEnsemble package Code gathered from the author's post.
library(caretEnsemble)

# Data
library(mlbench)
xx <- as.data.frame(xx)
X <- xx[, -5]
rownames(X) <- 1:nrow(X)
X <- data.frame(X)
Y <- xx[, 5]

# Split train/test
train <- runif(nrow(X)) <= 0.66

# Setup CV Folds returnData=FALSE saves some space
folds = 10
repeats = 1
myControl <- trainControl(method = "cv", number = folds, repeats = repeats, 
    returnResamp = "none", returnData = FALSE, savePredictions = TRUE, verboseIter = FALSE, 
    allowParallel = TRUE, index = createMultiFolds(Y[train], k = folds, times = repeats))
# Train some models
model1 <- train(X[train, ], Y[train], method = "gbm", trControl = myControl, 
    tuneGrid = expand.grid(.n.trees = 500, .interaction.depth = 15, .shrinkage = 0.01))
## Loading required package: survival
## Loading required package: splines
## Loaded gbm 2.1
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   179307.9595            -nan     0.0100 3410.0473
##      2   175935.5725            -nan     0.0100 3654.7250
##      3   172931.5149            -nan     0.0100 2732.4142
##      4   169644.0842            -nan     0.0100 3694.4000
##      5   166387.3144            -nan     0.0100 2958.1340
##      6   163286.9707            -nan     0.0100 2600.4208
##      7   160239.7764            -nan     0.0100 2801.4742
##      8   157148.3505            -nan     0.0100 2983.2977
##      9   154168.4362            -nan     0.0100 2966.6405
##     10   151303.9871            -nan     0.0100 2987.2508
##     20   125833.1055            -nan     0.0100 2298.0128
##     40    87258.6867            -nan     0.0100 1582.9393
##     60    60661.2538            -nan     0.0100  944.2773
##     80    42874.8693            -nan     0.0100  808.5113
##    100    30661.8896            -nan     0.0100  400.6403
##    120    22422.8813            -nan     0.0100  334.5063
##    140    16822.6978            -nan     0.0100  218.3710
##    160    13003.6565            -nan     0.0100  143.2418
##    180    10493.0607            -nan     0.0100   81.5623
##    200     8650.2908            -nan     0.0100   46.2738
##    220     7353.3170            -nan     0.0100   31.9129
##    240     6435.9236            -nan     0.0100   21.3409
##    260     5786.8477            -nan     0.0100   19.1605
##    280     5305.4703            -nan     0.0100    8.3837
##    300     4962.2221            -nan     0.0100    2.1835
##    320     4728.3826            -nan     0.0100   -5.7258
##    340     4511.0337            -nan     0.0100   -0.7734
##    360     4326.7185            -nan     0.0100   -0.9983
##    380     4197.7866            -nan     0.0100  -12.9052
##    400     4060.9671            -nan     0.0100   -8.5292
##    420     3945.5371            -nan     0.0100   -5.1113
##    440     3840.2091            -nan     0.0100   -9.2332
##    460     3751.6859            -nan     0.0100   -0.0985
##    480     3666.1723            -nan     0.0100   -4.9869
##    500     3580.4464            -nan     0.0100   -0.9406
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   180891.2253            -nan     0.0100 3104.5932
##      2   177461.9082            -nan     0.0100 3492.9414
##      3   174169.5063            -nan     0.0100 3083.6787
##      4   171010.3991            -nan     0.0100 3112.3879
##      5   167791.3842            -nan     0.0100 3043.9646
##      6   164691.5943            -nan     0.0100 3188.7683
##      7   161591.4635            -nan     0.0100 3076.1430
##      8   158555.0787            -nan     0.0100 3164.8286
##      9   155518.8975            -nan     0.0100 2889.8978
##     10   152576.1117            -nan     0.0100 3234.2343
##     20   126760.8123            -nan     0.0100 2040.2664
##     40    87582.4108            -nan     0.0100 1520.6286
##     60    60987.7236            -nan     0.0100 1033.9684
##     80    42935.7949            -nan     0.0100  689.4634
##    100    30940.9891            -nan     0.0100  491.0149
##    120    22604.6405            -nan     0.0100  299.4662
##    140    17003.9605            -nan     0.0100  208.9285
##    160    13222.1848            -nan     0.0100  118.5350
##    180    10511.8364            -nan     0.0100   92.5443
##    200     8690.6539            -nan     0.0100   62.2000
##    220     7381.8456            -nan     0.0100   29.5691
##    240     6487.0080            -nan     0.0100   19.5112
##    260     5887.9534            -nan     0.0100   16.5107
##    280     5371.9701            -nan     0.0100    2.6183
##    300     5032.1397            -nan     0.0100   -1.8724
##    320     4757.9145            -nan     0.0100   -0.5814
##    340     4526.5452            -nan     0.0100   -5.3260
##    360     4356.0783            -nan     0.0100   -6.0980
##    380     4229.2522            -nan     0.0100   -1.4554
##    400     4073.9392            -nan     0.0100   -7.3720
##    420     3933.2480            -nan     0.0100  -13.1402
##    440     3815.3861            -nan     0.0100   -2.4036
##    460     3724.2669            -nan     0.0100   -2.8136
##    480     3636.7559            -nan     0.0100   -1.3160
##    500     3552.8527            -nan     0.0100   -6.0980
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   181529.2186            -nan     0.0100 3118.2246
##      2   178018.3245            -nan     0.0100 3205.0033
##      3   174703.3279            -nan     0.0100 3150.5083
##      4   171418.9098            -nan     0.0100 3415.4951
##      5   168267.5598            -nan     0.0100 3331.3096
##      6   165170.2230            -nan     0.0100 2962.8094
##      7   162067.0147            -nan     0.0100 3015.6860
##      8   159039.0844            -nan     0.0100 3141.8339
##      9   156105.4597            -nan     0.0100 2730.3211
##     10   153199.3367            -nan     0.0100 2849.8761
##     20   127080.3267            -nan     0.0100 2245.6042
##     40    87756.5183            -nan     0.0100 1684.1536
##     60    61273.9733            -nan     0.0100 1099.0253
##     80    43257.9586            -nan     0.0100  637.5925
##    100    31132.6928            -nan     0.0100  448.7477
##    120    22680.7319            -nan     0.0100  320.7846
##    140    17164.3482            -nan     0.0100  178.4026
##    160    13234.7088            -nan     0.0100  123.5218
##    180    10538.5246            -nan     0.0100   70.3546
##    200     8679.7402            -nan     0.0100   64.3404
##    220     7412.0605            -nan     0.0100   47.6951
##    240     6482.5488            -nan     0.0100   25.4102
##    260     5772.7301            -nan     0.0100   18.7062
##    280     5269.7174            -nan     0.0100   11.7170
##    300     4889.3188            -nan     0.0100    7.8215
##    320     4621.6326            -nan     0.0100  -13.1395
##    340     4393.4957            -nan     0.0100    7.3966
##    360     4230.5513            -nan     0.0100    0.1000
##    380     4070.6031            -nan     0.0100    0.9303
##    400     3905.1723            -nan     0.0100   -6.6913
##    420     3797.3515            -nan     0.0100  -11.0852
##    440     3697.4112            -nan     0.0100   -3.6464
##    460     3592.1764            -nan     0.0100   -9.3147
##    480     3500.3896            -nan     0.0100   -3.7596
##    500     3423.0113            -nan     0.0100  -13.4424
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   189061.8026            -nan     0.0100 3493.8746
##      2   185444.5595            -nan     0.0100 3908.4862
##      3   181981.6360            -nan     0.0100 3637.2195
##      4   178455.7412            -nan     0.0100 3581.6775
##      5   175143.6801            -nan     0.0100 3197.8992
##      6   171805.4577            -nan     0.0100 3239.4157
##      7   168499.6983            -nan     0.0100 3269.0645
##      8   165254.5896            -nan     0.0100 3272.2046
##      9   162175.6631            -nan     0.0100 2880.9435
##     10   159074.0538            -nan     0.0100 2758.5936
##     20   131745.2136            -nan     0.0100 2314.0378
##     40    90585.4367            -nan     0.0100 1604.8789
##     60    63122.5693            -nan     0.0100 1259.3781
##     80    44484.4630            -nan     0.0100  687.1724
##    100    31895.6077            -nan     0.0100  480.4054
##    120    23261.4444            -nan     0.0100  380.6938
##    140    17259.0607            -nan     0.0100  240.1530
##    160    13253.8982            -nan     0.0100  172.1580
##    180    10487.5155            -nan     0.0100   98.3928
##    200     8618.9678            -nan     0.0100   61.4072
##    220     7337.7942            -nan     0.0100   37.1159
##    240     6471.9284            -nan     0.0100   29.2817
##    260     5802.3719            -nan     0.0100   17.8031
##    280     5299.8351            -nan     0.0100    9.2782
##    300     4967.0530            -nan     0.0100    2.4339
##    320     4701.2142            -nan     0.0100   -3.4820
##    340     4464.3974            -nan     0.0100    0.5008
##    360     4261.6420            -nan     0.0100    0.9904
##    380     4089.9575            -nan     0.0100   -3.2807
##    400     3968.5885            -nan     0.0100   -0.0503
##    420     3861.5027            -nan     0.0100  -17.8948
##    440     3758.5262            -nan     0.0100   -0.1360
##    460     3681.6295            -nan     0.0100   -3.4807
##    480     3593.8707            -nan     0.0100   -5.9248
##    500     3520.8628            -nan     0.0100   -4.1649
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   172880.9175            -nan     0.0100 3745.7838
##      2   169857.0917            -nan     0.0100 3069.5394
##      3   166682.4806            -nan     0.0100 3328.4675
##      4   163460.1806            -nan     0.0100 3544.2493
##      5   160431.3784            -nan     0.0100 2759.2971
##      6   157553.3352            -nan     0.0100 2874.4126
##      7   154685.7289            -nan     0.0100 2658.2597
##      8   151785.5844            -nan     0.0100 3276.8000
##      9   148872.4379            -nan     0.0100 2963.5417
##     10   145987.3374            -nan     0.0100 2962.9743
##     20   120684.6555            -nan     0.0100 2305.6652
##     40    83983.6799            -nan     0.0100 1430.8067
##     60    58896.1993            -nan     0.0100 1166.6275
##     80    41593.7433            -nan     0.0100  705.5550
##    100    29796.6903            -nan     0.0100  505.0255
##    120    21788.1954            -nan     0.0100  281.6830
##    140    16306.6163            -nan     0.0100  199.9793
##    160    12632.4263            -nan     0.0100  150.0976
##    180    10141.4403            -nan     0.0100   95.9542
##    200     8392.3415            -nan     0.0100   52.8838
##    220     7182.7774            -nan     0.0100   49.0350
##    240     6341.2915            -nan     0.0100   31.2260
##    260     5744.6324            -nan     0.0100   -0.5705
##    280     5265.7522            -nan     0.0100   -2.9339
##    300     4918.8457            -nan     0.0100   17.0804
##    320     4639.2461            -nan     0.0100    6.3102
##    340     4415.4921            -nan     0.0100    3.2679
##    360     4206.9395            -nan     0.0100   -7.2330
##    380     4062.6451            -nan     0.0100   -3.6141
##    400     3923.8521            -nan     0.0100    0.8510
##    420     3824.4877            -nan     0.0100   -4.9500
##    440     3711.8677            -nan     0.0100    0.2932
##    460     3616.4978            -nan     0.0100   -6.4666
##    480     3518.3239            -nan     0.0100   -0.5891
##    500     3421.4358            -nan     0.0100   -3.6602
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   179290.5881            -nan     0.0100 3568.0059
##      2   176095.8400            -nan     0.0100 3413.5503
##      3   172838.4081            -nan     0.0100 2933.2246
##      4   169613.1081            -nan     0.0100 3308.4414
##      5   166360.4360            -nan     0.0100 3132.8190
##      6   163249.7017            -nan     0.0100 3412.9446
##      7   160140.2446            -nan     0.0100 3057.6835
##      8   157122.3008            -nan     0.0100 2768.1505
##      9   154159.9728            -nan     0.0100 2730.0439
##     10   151328.7444            -nan     0.0100 2770.5688
##     20   125485.4177            -nan     0.0100 2339.6673
##     40    87087.9919            -nan     0.0100 1677.7010
##     60    60921.5247            -nan     0.0100 1060.2662
##     80    43159.7859            -nan     0.0100  646.6479
##    100    30931.7799            -nan     0.0100  446.5798
##    120    22577.8289            -nan     0.0100  343.2238
##    140    16892.7374            -nan     0.0100  205.8910
##    160    13043.1497            -nan     0.0100  132.9002
##    180    10260.3328            -nan     0.0100  113.4272
##    200     8459.4508            -nan     0.0100   55.9937
##    220     7173.5216            -nan     0.0100   43.1172
##    240     6266.8248            -nan     0.0100   31.5725
##    260     5659.0245            -nan     0.0100   10.3914
##    280     5216.1872            -nan     0.0100    6.9247
##    300     4847.9136            -nan     0.0100    8.5947
##    320     4605.5766            -nan     0.0100    1.1668
##    340     4394.3719            -nan     0.0100    1.5141
##    360     4227.0010            -nan     0.0100   -3.2783
##    380     4079.1897            -nan     0.0100   -0.3602
##    400     3966.4923            -nan     0.0100   -5.7943
##    420     3856.6220            -nan     0.0100    0.6156
##    440     3755.5880            -nan     0.0100   -8.0094
##    460     3668.2972            -nan     0.0100   -9.8979
##    480     3581.5233            -nan     0.0100   -9.0534
##    500     3505.1810            -nan     0.0100   -4.8542
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   182535.8099            -nan     0.0100 3213.1076
##      2   179188.4655            -nan     0.0100 3842.2970
##      3   175759.3133            -nan     0.0100 2940.6436
##      4   172359.7457            -nan     0.0100 3396.9516
##      5   169096.4749            -nan     0.0100 3768.1662
##      6   165830.9108            -nan     0.0100 3042.7436
##      7   162636.8878            -nan     0.0100 3112.5893
##      8   159507.9833            -nan     0.0100 3202.8127
##      9   156482.4790            -nan     0.0100 2779.7257
##     10   153594.9188            -nan     0.0100 3115.1654
##     20   127226.6314            -nan     0.0100 2258.6665
##     40    87663.9505            -nan     0.0100 1716.1931
##     60    60774.7324            -nan     0.0100 1193.7946
##     80    42625.4469            -nan     0.0100  740.9963
##    100    30286.3972            -nan     0.0100  479.5022
##    120    21769.1047            -nan     0.0100  367.7749
##    140    16101.3233            -nan     0.0100  220.0876
##    160    12070.9198            -nan     0.0100  131.1889
##    180     9461.3896            -nan     0.0100   99.1634
##    200     7628.3514            -nan     0.0100   49.7568
##    220     6388.8874            -nan     0.0100   40.6741
##    240     5533.1798            -nan     0.0100   33.7856
##    260     4896.4948            -nan     0.0100    5.6629
##    280     4441.9231            -nan     0.0100    7.7148
##    300     4126.0851            -nan     0.0100   -3.9310
##    320     3870.2043            -nan     0.0100   -1.6980
##    340     3679.1002            -nan     0.0100    2.6175
##    360     3514.9604            -nan     0.0100   -6.4706
##    380     3378.5334            -nan     0.0100   -9.4098
##    400     3257.4355            -nan     0.0100   -3.1145
##    420     3159.7142            -nan     0.0100   -1.2507
##    440     3074.0330            -nan     0.0100   -2.1825
##    460     2997.6121            -nan     0.0100   -4.8392
##    480     2938.3627            -nan     0.0100   -1.2138
##    500     2861.3042            -nan     0.0100    1.5227
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   174659.5586            -nan     0.0100 3040.6034
##      2   171686.5212            -nan     0.0100 3081.8485
##      3   168510.0000            -nan     0.0100 3246.5378
##      4   165404.4613            -nan     0.0100 3135.3014
##      5   162332.4077            -nan     0.0100 2923.5973
##      6   159465.3591            -nan     0.0100 2892.5529
##      7   156639.8403            -nan     0.0100 2849.6456
##      8   153772.7180            -nan     0.0100 2763.3838
##      9   150955.5049            -nan     0.0100 2910.8920
##     10   148396.7277            -nan     0.0100 2752.3217
##     20   123244.8975            -nan     0.0100 2279.9783
##     40    85111.6476            -nan     0.0100 1514.9588
##     60    59244.4473            -nan     0.0100 1116.7400
##     80    41922.8455            -nan     0.0100  733.0330
##    100    30133.4715            -nan     0.0100  431.5427
##    120    22022.2599            -nan     0.0100  316.5402
##    140    16548.9003            -nan     0.0100  227.8197
##    160    12623.1097            -nan     0.0100  128.1432
##    180    10131.9975            -nan     0.0100   75.4295
##    200     8356.3602            -nan     0.0100   44.1787
##    220     7202.6666            -nan     0.0100   37.7806
##    240     6303.3639            -nan     0.0100   23.6606
##    260     5689.7496            -nan     0.0100   29.0934
##    280     5238.1839            -nan     0.0100    5.3206
##    300     4884.4097            -nan     0.0100   13.8535
##    320     4631.1557            -nan     0.0100   -3.0027
##    340     4395.4904            -nan     0.0100   -8.3670
##    360     4216.4521            -nan     0.0100   -2.4585
##    380     4074.9623            -nan     0.0100   -3.0987
##    400     3939.8611            -nan     0.0100   -1.6071
##    420     3823.9796            -nan     0.0100   -5.2892
##    440     3733.8931            -nan     0.0100   -4.0133
##    460     3633.0206            -nan     0.0100   -1.3775
##    480     3534.6532            -nan     0.0100   -2.7583
##    500     3441.0195            -nan     0.0100   -9.1629
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   180550.0583            -nan     0.0100 3114.5205
##      2   176899.1953            -nan     0.0100 3833.3059
##      3   173428.6522            -nan     0.0100 3507.2371
##      4   170302.7406            -nan     0.0100 2697.3812
##      5   167241.9266            -nan     0.0100 2928.7506
##      6   164102.4005            -nan     0.0100 2856.5883
##      7   161170.1761            -nan     0.0100 2754.5929
##      8   158236.6956            -nan     0.0100 3322.9223
##      9   155430.4170            -nan     0.0100 3196.7905
##     10   152492.8704            -nan     0.0100 2803.8851
##     20   126493.1939            -nan     0.0100 2209.3691
##     40    87523.2921            -nan     0.0100 1601.8196
##     60    61246.9129            -nan     0.0100 1200.7827
##     80    42970.5353            -nan     0.0100  612.0170
##    100    30812.6513            -nan     0.0100  461.8656
##    120    22559.0865            -nan     0.0100  308.5439
##    140    16728.0966            -nan     0.0100  233.5774
##    160    12816.6641            -nan     0.0100  146.8487
##    180    10058.9190            -nan     0.0100   76.8116
##    200     8251.4442            -nan     0.0100   62.7139
##    220     6945.7197            -nan     0.0100   37.9028
##    240     6088.0225            -nan     0.0100   29.8275
##    260     5412.9180            -nan     0.0100   20.9991
##    280     4930.3718            -nan     0.0100    1.6074
##    300     4592.1858            -nan     0.0100    3.6179
##    320     4352.7432            -nan     0.0100   -2.2554
##    340     4150.2717            -nan     0.0100    2.8620
##    360     3988.0639            -nan     0.0100   -3.0907
##    380     3847.7142            -nan     0.0100   -4.4186
##    400     3723.8409            -nan     0.0100   -6.1507
##    420     3608.5075            -nan     0.0100   -3.5322
##    440     3507.8134            -nan     0.0100   -3.9099
##    460     3434.7454            -nan     0.0100   -4.1606
##    480     3349.9817            -nan     0.0100   -6.7610
##    500     3270.4364            -nan     0.0100   -7.3386
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   182799.8902            -nan     0.0100 3735.0322
##      2   179340.3532            -nan     0.0100 3528.9584
##      3   175830.6544            -nan     0.0100 3449.7548
##      4   172463.6425            -nan     0.0100 3345.3787
##      5   169173.2317            -nan     0.0100 2982.3949
##      6   166051.8299            -nan     0.0100 3153.8213
##      7   162974.2659            -nan     0.0100 2865.2154
##      8   159844.8529            -nan     0.0100 2917.2712
##      9   156836.1068            -nan     0.0100 2968.0533
##     10   153940.7638            -nan     0.0100 2892.2966
##     20   127454.7055            -nan     0.0100 2153.5436
##     40    88331.5612            -nan     0.0100 1589.4889
##     60    61449.4674            -nan     0.0100  885.5493
##     80    43121.7862            -nan     0.0100  683.4825
##    100    30733.2516            -nan     0.0100  459.1678
##    120    22194.6508            -nan     0.0100  389.8672
##    140    16381.0019            -nan     0.0100  216.9513
##    160    12516.1986            -nan     0.0100  164.4987
##    180     9867.2710            -nan     0.0100   92.3172
##    200     8057.8572            -nan     0.0100   60.8444
##    220     6750.3815            -nan     0.0100   30.7189
##    240     5830.4128            -nan     0.0100   22.8673
##    260     5134.3065            -nan     0.0100   25.0771
##    280     4646.4299            -nan     0.0100    9.0222
##    300     4300.9866            -nan     0.0100    8.4009
##    320     4041.7136            -nan     0.0100    2.0615
##    340     3820.2704            -nan     0.0100   -3.4176
##    360     3642.3391            -nan     0.0100   -0.3458
##    380     3492.4093            -nan     0.0100   -3.1958
##    400     3354.4393            -nan     0.0100   -0.0687
##    420     3232.4559            -nan     0.0100   -6.5004
##    440     3129.1104            -nan     0.0100   -2.1803
##    460     3039.0493            -nan     0.0100   -3.7224
##    480     2954.1547            -nan     0.0100   -6.6125
##    500     2875.3675            -nan     0.0100   -3.3578
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   180315.2924            -nan     0.0100 3466.2320
##      2   176855.4030            -nan     0.0100 3328.6152
##      3   173552.5128            -nan     0.0100 3865.8002
##      4   170210.0410            -nan     0.0100 2950.2243
##      5   167005.4688            -nan     0.0100 3118.3435
##      6   163724.5530            -nan     0.0100 3329.0297
##      7   160519.4337            -nan     0.0100 3142.7354
##      8   157492.4834            -nan     0.0100 2530.5581
##      9   154519.6072            -nan     0.0100 2947.9222
##     10   151568.3121            -nan     0.0100 2744.9598
##     20   125502.3421            -nan     0.0100 2155.9306
##     40    86445.6376            -nan     0.0100 1627.1338
##     60    60122.9173            -nan     0.0100  920.0664
##     80    42517.6667            -nan     0.0100  656.5925
##    100    30421.0848            -nan     0.0100  483.1944
##    120    22080.2677            -nan     0.0100  335.4818
##    140    16490.3713            -nan     0.0100  228.4488
##    160    12663.8930            -nan     0.0100  155.4471
##    180    10021.8551            -nan     0.0100   88.5657
##    200     8196.2391            -nan     0.0100   64.7597
##    220     6938.1326            -nan     0.0100   46.0861
##    240     5996.9328            -nan     0.0100   27.4751
##    260     5323.2183            -nan     0.0100   22.3862
##    280     4885.7981            -nan     0.0100    3.4558
##    300     4503.5242            -nan     0.0100   11.3791
##    320     4210.0157            -nan     0.0100    0.6397
##    340     3964.0905            -nan     0.0100    6.7694
##    360     3784.9672            -nan     0.0100   -1.5032
##    380     3634.8441            -nan     0.0100  -11.9373
##    400     3526.4132            -nan     0.0100    7.0513
##    420     3431.8755            -nan     0.0100   -5.6693
##    440     3327.7914            -nan     0.0100   -3.9871
##    460     3227.7954            -nan     0.0100   -3.5098
##    480     3137.9643            -nan     0.0100   -1.2522
##    500     3067.4610            -nan     0.0100   -9.1898
model2 <- train(X[train, ], Y[train], method = "blackboost", trControl = myControl)
## This is mboost 2.2-2. See 'package?mboost' and the NEWS file for a
## complete list of changes. Note: The default for the computation of the
## degrees of freedom has changed.  For details see section 'Global Options'
## of '?bols'.
## Loading required package: grid
## Loading required package: modeltools
## Loading required package: stats4
## Attaching package: 'modeltools'
## The following object is masked from 'package:R.oo':
## 
## clone, dimension
## The following object is masked from 'package:plyr':
## 
## empty
## Loading required package: coin
## Loading required package: mvtnorm
## Loading required package: sandwich
## Loading required package: strucchange
## Loading required package: vcd
## Loading required package: MASS
## Loading required package: colorspace
model3 <- train(X[train, ], Y[train], method = "parRF", trControl = myControl)
## randomForest 4.6-7
## Type rfNews() to see new features/changes/bug fixes.
model4 <- train(X[train, ], Y[train], method = "mlpWeightDecay", trControl = myControl, 
    trace = FALSE)
## Loading required package: Rcpp
## Attaching package: 'RSNNS'
## The following object is masked from 'package:caret':
## 
## confusionMatrix, train
## The following object is masked from 'package:galgo':
## 
## confusionMatrix
model5 <- train(X[train, ], Y[train], method = "ppr", trControl = myControl)
model6 <- train(X[train, ], Y[train], method = "earth", trControl = myControl)
## Loading required package: plotmo
## Loading required package: plotrix
model7 <- train(X[train, ], Y[train], method = "glm", trControl = myControl)
model8 <- train(X[train, ], Y[train], method = "svmRadial", trControl = myControl)
## Attaching package: 'kernlab'
## The following object is masked from 'package:modeltools':
## 
## prior
## The following object is masked from 'package:galgo':
## 
## scaling
model9 <- train(X[train, ], Y[train], method = "gam", trControl = myControl)
## Loading required package: nlme
## This is mgcv 1.7-26. For overview type 'help("mgcv-package")'.
## Attaching package: 'mgcv'
## The following object is masked from 'package:magic':
## 
## magic
model10 <- train(X[train, ], Y[train], method = "glmnet", trControl = myControl)
## Loading required package: Matrix
## Loaded glmnet 1.9-3

# Make a list of all the models
all.models <- list(model1, model2, model3, model4, model5, model6, model7, model8, 
    model9, model10)
names(all.models) <- sapply(all.models, function(x) x$method)
sort(sapply(all.models, function(x) min(x$results$RMSE)))
##          parRF            gbm            ppr     blackboost          earth 
##          81.76          87.75          91.99          95.08         106.78 
##            gam      svmRadial         glmnet            glm mlpWeightDecay 
##         112.37         118.77         145.83         146.87         585.71

# Make a greedy ensemble - currently can only use RMSE
greedy <- caretEnsemble(all.models, iter = 1000L)
## Loading required package: pbapply
sort(greedy$weights, decreasing = TRUE)
##          parRF            ppr      svmRadial            glm mlpWeightDecay 
##          0.782          0.159          0.039          0.016          0.004
greedy$error
##  RMSE 
## 83.38

# Make a linear regression ensemble
linear <- caretStack(all.models, method = "glm", trControl = trainControl(method = "cv"))
summary(linear$ens_model$finalModel)
## 
## Call:
## NULL
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -401.0   -37.9    -2.8    30.7   320.6  
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -40.17230   57.90063   -0.69    0.489    
## gbm              0.39671    0.20866    1.90    0.059 .  
## blackboost      -0.39551    0.17868   -2.21    0.028 *  
## parRF            0.97899    0.14392    6.80  9.6e-11 ***
## mlpWeightDecay   0.00663    0.00855    0.77    0.439    
## ppr              0.23524    0.11092    2.12    0.035 *  
## earth            0.18288    0.12502    1.46    0.145    
## glm             -0.34766    0.76176   -0.46    0.649    
## svmRadial        0.03241    0.06746    0.48    0.631    
## gam             -0.54241    0.11776   -4.61  6.9e-06 ***
## glmnet           0.46760    0.78086    0.60    0.550    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 6321)
## 
##     Null deviance: 42463442  on 230  degrees of freedom
## Residual deviance:  1390656  on 220  degrees of freedom
## AIC: 2690
## 
## Number of Fisher Scoring iterations: 2
linear$error
##   parameter  RMSE Rsquared RMSESD RsquaredSD
## 1      none 84.81   0.9636  19.99    0.02093

# Predict for test set:
preds <- data.frame(sapply(all.models, predict, newdata = X[!train, ]))
preds$ENS_greedy <- predict(greedy, newdata = X[!train, ])
preds$ENS_linear <- predict(linear, newdata = X[!train, ])
sort(sqrt(colMeans((preds - Y[!train])^2)))
##     ENS_linear     ENS_greedy          parRF            gbm            ppr 
##          78.59          79.79          82.20          88.90          92.46 
##            gam     blackboost          earth      svmRadial            glm 
##          96.39         103.59         109.03         132.76         151.49 
##         glmnet mlpWeightDecay 
##         152.10         744.06

IPAC validation

After having the models built as well as the ensamble of them it is time to predict for the IPAC dataset. Thus we start to prepare the data,

# Cargamos bq_clean (IPAC)
yy <- apply(sn, 1, feature_extr, bq_clean)
yy <- as.data.frame(yy)
colnames(yy) <- as.character(sn[, 1])
colnames(yy) <- str_replace(paste("X", colnames(yy), sep = ""), ":", ".")
save(xx, yy, file = "features_BTSETTL_paso3v1.RData")
# Predict for new dataset:
predf <- data.frame(sapply(all.models, predict, newdata = yy))
predf$ENS_greedy <- predict(greedy, newdata = yy)
predf$ENS_linear <- predict(linear, newdata = yy)

Neighbourhood Analysis

In order to realize how close or isolated the both sets (BT-SETTL and IPAC) are a PCA analysis is performed:

# Cargamos bq_clean (IPAC)
zz <- rbind(X, yy)
pcaz <- prcomp(zz)
plot(pcaz$x[, 1], pcaz$x[, 2], pch = ".")
points(pcaz$x[(nrow(X) + 1):nrow(zz), 1], pcaz$x[(nrow(X) + 1):nrow(zz), 2], 
    pch = "x", col = 3)
points(pcaz$x[1:nrow(X), 1], pcaz$x[1:nrow(X), 2], pch = "+", col = 2)

plot of chunk lee04

rownames(yy)[896 - nrow(X)]
## [1] "LP_799-3.7512.txt"

According to the obtained predictions, some comparison will be performed against the prediction carried out by using spectrafull projection by means of ICA/JADE technology. This was carried out by Miss Prendes Gero at http://innova.uned.es, so we will download her prediction datasets and just compare them.

# Cargamos bq_clean (IPAC)
load("~/git/M_sel/belen_resul_T.RData")
idx <- unlist(lapply(bq_clean, function(x) {
    return(x$name)
})) %in% rownames(dd)
plot(dd[, 1], predf$ENS_greedy[idx])

plot of chunk lee05

rownames(dd)[124]
## [1] "LP_799-3.7512.txt"
plot(dd[, 1], predf$ENS_greedy[idx], xlim = c(1500, 3500), ylim = c(1500, 3500))
lines(c(1500, 3500), c(1500, 3500), col = 2)

plot of chunk lee05

hist((dd[, 1] - predf$ENS_greedy[idx])/sd(dd[, 1] - predf$ENS_greedy[idx]), 
    breaks = 20)

plot of chunk lee05

mean(dd[, 1] - predf$ENS_greedy[idx])
## [1] -438.6
sd(dd[, 1] - predf$ENS_greedy[idx])
## [1] 327.8

What if we test the data windows proposed by the paper?

As it was depicted in “The Infrared Telescope Facility (IRTF) spectral library: Spectral diagnostics for cool stars” A&A 549, A129 (2013), the authors M. Cesetti; A. Pizzella; V. D. Ivanov; L. Morelli; E. M. Corsini and E. Dalla Bontà have proposed a set of ranges for signals and for continuum inside the K band, it could make sense to test the same features for BT-SETTL instead of IRTF as they have done, especially whenever the data are inside the wavelenght range for IPAC. This means that the last two rows of the band I don't make sense in the IPAC case and they are not presented.

Just as a remainder those values are:

#
require(xtable)
print(xtable(bi[, 1:7]), "html")
Element From To ContFrom_1 ContTo_1 ContFrom_2 ContTo_2
1 Pa1 8461 8474 8474 8484 8563 8577
2 Ca1 8484 8513 8474 8484 8563 8577
3 Ca2 8522 8562 8474 8484 8563 8577
4 Pa2 8577 8619 8563 8577 8619 8642
5 Ca3 8642 8682 8619 8642 8700 8725
6 Pa3 8730 8772 8700 8725 8776 8792
7 Mg 8802 8811 8776 8792 8815 8850
8 Pa4 8850 8890 8815 8850 8890 8900
9 Pa5 9000 9030 8983 8998 9040 9050
#
lgth <- 3.6
org <- 8461 - lgth
signal2 <- paste(round((bi[, 2] - org)/lgth), round((bi[, 3] - org)/lgth), sep = ":")
noise2 <- paste(round((bi[, 4] - org)/lgth), round((bi[, 5] - org)/lgth), sep = ":")
sn2 <- cbind(signal2, noise2)
xx2 <- apply(sn2, 1, feature_extr, bp_clean)
colnames(xx2) <- as.character(sn2[, 1])
xx2 <- cbind(xx2, unlist(lapply(bp_clean, function(x) {
    return(x$stellarp[1])
})))
colnames(xx2)[10] <- "T"

Now we perform the regression analysis

Regression analysis against features defined by the paper

# Data
library(mlbench)
xx2 <- as.data.frame(xx2)
X <- xx2[, -10]
rownames(X) <- 1:nrow(X)
X <- data.frame(X)
Y <- xx2$T

# Train some models
model1.2 <- train(X[train, ], Y[train], method = "gbm", trControl = myControl, 
    tuneGrid = expand.grid(.n.trees = 500, .interaction.depth = 15, .shrinkage = 0.01))
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   179505.2703            -nan     0.0100 2999.7639
##      2   176222.9009            -nan     0.0100 3241.0585
##      3   172901.4717            -nan     0.0100 2934.3225
##      4   169667.1975            -nan     0.0100 3220.8566
##      5   166623.3280            -nan     0.0100 2974.8182
##      6   163510.4517            -nan     0.0100 3116.6495
##      7   160608.3036            -nan     0.0100 2427.1911
##      8   157689.6237            -nan     0.0100 3103.6334
##      9   154892.0678            -nan     0.0100 2842.1850
##     10   152084.2028            -nan     0.0100 2820.3490
##     20   126456.2044            -nan     0.0100 2231.3124
##     40    88024.9183            -nan     0.0100 1450.1349
##     60    61850.4447            -nan     0.0100  989.0183
##     80    43944.7714            -nan     0.0100  681.8042
##    100    31593.5294            -nan     0.0100  490.9264
##    120    23273.8276            -nan     0.0100  310.3176
##    140    17431.1366            -nan     0.0100  244.7843
##    160    13389.9791            -nan     0.0100  151.9924
##    180    10540.8409            -nan     0.0100   89.4381
##    200     8537.6642            -nan     0.0100   67.3431
##    220     7157.5164            -nan     0.0100   40.9946
##    240     6125.2327            -nan     0.0100   36.1365
##    260     5397.8501            -nan     0.0100   18.0847
##    280     4815.0077            -nan     0.0100    5.5975
##    300     4353.5064            -nan     0.0100    9.3608
##    320     4062.9146            -nan     0.0100    0.8033
##    340     3815.0816            -nan     0.0100   -4.2488
##    360     3589.8905            -nan     0.0100   -5.6274
##    380     3435.3299            -nan     0.0100   -0.1819
##    400     3274.7753            -nan     0.0100    0.1198
##    420     3116.1421            -nan     0.0100    2.0673
##    440     2992.0271            -nan     0.0100    4.0286
##    460     2901.3278            -nan     0.0100   -6.6097
##    480     2803.9590            -nan     0.0100   -6.4252
##    500     2706.1139            -nan     0.0100   -2.4102
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   180825.4520            -nan     0.0100 2973.5527
##      2   177518.6823            -nan     0.0100 3181.7484
##      3   174285.2087            -nan     0.0100 3145.0823
##      4   171075.4315            -nan     0.0100 3464.0582
##      5   168068.9919            -nan     0.0100 2911.6024
##      6   165038.8581            -nan     0.0100 2497.0558
##      7   162106.8335            -nan     0.0100 2703.8514
##      8   158977.3731            -nan     0.0100 2774.5109
##      9   156120.0265            -nan     0.0100 2672.3726
##     10   153373.7915            -nan     0.0100 2382.8252
##     20   127637.3169            -nan     0.0100 2185.6884
##     40    89027.8923            -nan     0.0100 1526.2525
##     60    62447.8532            -nan     0.0100  931.5913
##     80    44956.3136            -nan     0.0100  674.4151
##    100    32518.4541            -nan     0.0100  516.6597
##    120    23930.9855            -nan     0.0100  336.2858
##    140    17792.1916            -nan     0.0100  233.3713
##    160    13750.5271            -nan     0.0100  159.9434
##    180    10779.7856            -nan     0.0100  104.5254
##    200     8722.1525            -nan     0.0100   52.3108
##    220     7290.0097            -nan     0.0100   42.5161
##    240     6243.3470            -nan     0.0100   33.7543
##    260     5469.5167            -nan     0.0100   18.6068
##    280     4935.0329            -nan     0.0100    7.3636
##    300     4491.5325            -nan     0.0100   -3.3423
##    320     4151.5585            -nan     0.0100    6.7418
##    340     3897.5317            -nan     0.0100    3.6279
##    360     3686.5769            -nan     0.0100   -5.4179
##    380     3501.6547            -nan     0.0100   -5.4786
##    400     3340.1344            -nan     0.0100    3.7817
##    420     3204.3836            -nan     0.0100   -0.8704
##    440     3094.2099            -nan     0.0100   -3.1535
##    460     2984.3495            -nan     0.0100   -1.6709
##    480     2883.8699            -nan     0.0100   -5.3932
##    500     2786.6802            -nan     0.0100   -4.1209
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   181495.0131            -nan     0.0100 3431.5829
##      2   178259.0405            -nan     0.0100 3253.2858
##      3   174998.2265            -nan     0.0100 3076.8431
##      4   171825.5863            -nan     0.0100 2979.5040
##      5   168716.0392            -nan     0.0100 2992.9851
##      6   165607.2882            -nan     0.0100 3227.8931
##      7   162515.7454            -nan     0.0100 3360.6207
##      8   159547.1763            -nan     0.0100 2345.4485
##      9   156777.9943            -nan     0.0100 2596.0992
##     10   153819.3228            -nan     0.0100 2781.1409
##     20   128320.0596            -nan     0.0100 2060.9225
##     40    89559.6612            -nan     0.0100 1499.4603
##     60    63086.5443            -nan     0.0100  977.6693
##     80    45092.5474            -nan     0.0100  662.7457
##    100    32293.4143            -nan     0.0100  525.1598
##    120    23903.7545            -nan     0.0100  285.4262
##    140    17784.5808            -nan     0.0100  253.6610
##    160    13592.2818            -nan     0.0100  153.2398
##    180    10664.0125            -nan     0.0100   92.8379
##    200     8617.7661            -nan     0.0100   79.0921
##    220     7217.8904            -nan     0.0100   37.4188
##    240     6160.6301            -nan     0.0100   20.9726
##    260     5405.0625            -nan     0.0100   22.3642
##    280     4859.7199            -nan     0.0100   22.9117
##    300     4424.8483            -nan     0.0100   10.6652
##    320     4111.0882            -nan     0.0100   -6.8554
##    340     3836.3816            -nan     0.0100    1.8202
##    360     3639.3667            -nan     0.0100    4.9978
##    380     3432.6769            -nan     0.0100    1.6303
##    400     3277.4509            -nan     0.0100    2.3952
##    420     3135.5435            -nan     0.0100   -2.3036
##    440     3026.2148            -nan     0.0100   -1.5381
##    460     2904.7429            -nan     0.0100   -2.4207
##    480     2815.6144            -nan     0.0100   -5.3166
##    500     2713.8354            -nan     0.0100   -0.7372
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   188978.3575            -nan     0.0100 3321.3696
##      2   185511.6124            -nan     0.0100 3522.6453
##      3   182071.9110            -nan     0.0100 3682.0486
##      4   178670.3983            -nan     0.0100 3112.1962
##      5   175324.5700            -nan     0.0100 2727.1816
##      6   172003.2079            -nan     0.0100 3342.8180
##      7   168919.2748            -nan     0.0100 2782.6039
##      8   165853.3229            -nan     0.0100 3339.0452
##      9   162759.4586            -nan     0.0100 2979.9496
##     10   159859.6834            -nan     0.0100 2816.3802
##     20   132972.9068            -nan     0.0100 2570.6327
##     40    92799.5740            -nan     0.0100 1394.3044
##     60    65017.0953            -nan     0.0100 1215.1528
##     80    46084.0764            -nan     0.0100  872.1060
##    100    33234.8458            -nan     0.0100  523.1780
##    120    24318.0874            -nan     0.0100  331.2877
##    140    18130.1539            -nan     0.0100  211.1901
##    160    13943.2487            -nan     0.0100  169.3991
##    180    10853.0002            -nan     0.0100  110.8788
##    200     8746.6246            -nan     0.0100   75.9756
##    220     7275.9326            -nan     0.0100   57.1838
##    240     6186.5867            -nan     0.0100   33.0976
##    260     5411.9512            -nan     0.0100   14.1935
##    280     4834.4253            -nan     0.0100   11.2496
##    300     4436.6512            -nan     0.0100   12.9306
##    320     4120.0534            -nan     0.0100    4.5360
##    340     3857.3379            -nan     0.0100    1.1461
##    360     3659.4685            -nan     0.0100    2.7274
##    380     3476.0231            -nan     0.0100   -1.8682
##    400     3316.6125            -nan     0.0100   -1.6552
##    420     3204.2377            -nan     0.0100   -3.5325
##    440     3079.6737            -nan     0.0100   -4.4105
##    460     2962.3314            -nan     0.0100   -2.4548
##    480     2886.6147            -nan     0.0100   -6.9048
##    500     2797.4217            -nan     0.0100   -3.0123
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   172995.1556            -nan     0.0100 3236.9121
##      2   169735.7046            -nan     0.0100 3388.4420
##      3   166583.7967            -nan     0.0100 3100.5563
##      4   163714.1385            -nan     0.0100 3011.1429
##      5   160789.6735            -nan     0.0100 3246.7711
##      6   157861.6857            -nan     0.0100 2832.0835
##      7   154942.2634            -nan     0.0100 3080.5128
##      8   152284.4334            -nan     0.0100 2934.1241
##      9   149516.6482            -nan     0.0100 2593.3490
##     10   146834.9703            -nan     0.0100 2483.8295
##     20   122305.9652            -nan     0.0100 2208.5315
##     40    85035.9991            -nan     0.0100 1355.9890
##     60    60247.2510            -nan     0.0100 1026.1131
##     80    42989.6458            -nan     0.0100  716.3366
##    100    31173.6986            -nan     0.0100  484.6117
##    120    23059.0727            -nan     0.0100  324.2833
##    140    17228.8974            -nan     0.0100  222.2774
##    160    13274.9002            -nan     0.0100  142.4912
##    180    10530.3479            -nan     0.0100   88.9521
##    200     8690.9026            -nan     0.0100   47.4802
##    220     7337.6798            -nan     0.0100   46.0251
##    240     6334.4432            -nan     0.0100   28.7453
##    260     5571.8850            -nan     0.0100   27.0925
##    280     4972.5692            -nan     0.0100   18.4007
##    300     4545.5782            -nan     0.0100    1.8946
##    320     4205.9717            -nan     0.0100    1.0341
##    340     3953.9478            -nan     0.0100    3.7207
##    360     3692.7394            -nan     0.0100    5.2049
##    380     3519.6278            -nan     0.0100   -2.6352
##    400     3339.6402            -nan     0.0100    0.8791
##    420     3215.7365            -nan     0.0100   -5.1922
##    440     3089.4796            -nan     0.0100   -3.2648
##    460     2978.5958            -nan     0.0100   -7.7196
##    480     2875.5584            -nan     0.0100   -0.9347
##    500     2784.7280            -nan     0.0100   -5.7573
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   179279.5803            -nan     0.0100 3205.5655
##      2   176115.0252            -nan     0.0100 3016.4079
##      3   172773.5500            -nan     0.0100 2965.9869
##      4   169431.2995            -nan     0.0100 2867.5033
##      5   166415.1013            -nan     0.0100 2783.2963
##      6   163297.2002            -nan     0.0100 2972.7472
##      7   160151.9691            -nan     0.0100 3322.7139
##      8   157154.5423            -nan     0.0100 2641.9268
##      9   154290.0311            -nan     0.0100 2457.7545
##     10   151497.3223            -nan     0.0100 2711.5694
##     20   125812.0275            -nan     0.0100 2429.4334
##     40    87662.3312            -nan     0.0100 1616.0243
##     60    61676.9726            -nan     0.0100  939.8541
##     80    43817.9758            -nan     0.0100  722.3703
##    100    31715.6133            -nan     0.0100  400.3167
##    120    23326.0085            -nan     0.0100  286.3828
##    140    17488.6952            -nan     0.0100  220.0964
##    160    13360.9675            -nan     0.0100  137.5304
##    180    10553.3108            -nan     0.0100  110.5324
##    200     8568.4788            -nan     0.0100   61.0138
##    220     7088.2735            -nan     0.0100   38.6506
##    240     6059.2596            -nan     0.0100   37.7442
##    260     5338.0135            -nan     0.0100   24.0160
##    280     4842.1380            -nan     0.0100    3.7248
##    300     4446.9441            -nan     0.0100    3.1917
##    320     4126.8414            -nan     0.0100    4.0153
##    340     3889.2332            -nan     0.0100    7.8309
##    360     3657.9866            -nan     0.0100    2.1652
##    380     3501.5785            -nan     0.0100   -2.2831
##    400     3366.6204            -nan     0.0100    3.5313
##    420     3236.9446            -nan     0.0100   -7.0344
##    440     3112.2066            -nan     0.0100   -1.0359
##    460     3007.0119            -nan     0.0100   -4.9600
##    480     2897.9534            -nan     0.0100   -2.3513
##    500     2807.7334            -nan     0.0100   -5.5899
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   182517.9690            -nan     0.0100 3647.2698
##      2   179031.8736            -nan     0.0100 3655.7960
##      3   175799.6142            -nan     0.0100 3333.3402
##      4   172676.4336            -nan     0.0100 3541.4361
##      5   169548.1994            -nan     0.0100 3264.3092
##      6   166569.6933            -nan     0.0100 2888.2579
##      7   163495.4115            -nan     0.0100 3573.7615
##      8   160397.0187            -nan     0.0100 3002.9564
##      9   157358.9225            -nan     0.0100 3245.6561
##     10   154566.5175            -nan     0.0100 2499.1761
##     20   128358.8575            -nan     0.0100 2436.3006
##     40    88986.8175            -nan     0.0100 1294.8351
##     60    62168.5085            -nan     0.0100 1122.8907
##     80    44051.2339            -nan     0.0100  709.2207
##    100    31627.7691            -nan     0.0100  446.9618
##    120    23144.3449            -nan     0.0100  332.4817
##    140    17263.3393            -nan     0.0100  178.0484
##    160    13143.2036            -nan     0.0100  153.4804
##    180    10264.0264            -nan     0.0100   85.2974
##    200     8140.5642            -nan     0.0100   76.8764
##    220     6723.4846            -nan     0.0100   50.6976
##    240     5658.8507            -nan     0.0100   25.2710
##    260     4874.0243            -nan     0.0100   26.2739
##    280     4335.4220            -nan     0.0100   10.5120
##    300     3926.8164            -nan     0.0100   -0.3095
##    320     3626.8322            -nan     0.0100    4.1181
##    340     3404.1845            -nan     0.0100   -0.9201
##    360     3191.0977            -nan     0.0100   -2.0706
##    380     3023.7782            -nan     0.0100    3.9688
##    400     2876.1742            -nan     0.0100    0.1304
##    420     2766.8987            -nan     0.0100   -2.2918
##    440     2643.8578            -nan     0.0100   -3.3016
##    460     2532.0050            -nan     0.0100   -3.7239
##    480     2443.4387            -nan     0.0100    1.4652
##    500     2371.1017            -nan     0.0100   -2.3705
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   174600.5924            -nan     0.0100 3169.4613
##      2   171309.7858            -nan     0.0100 3186.1089
##      3   168159.2204            -nan     0.0100 3001.6202
##      4   165045.5829            -nan     0.0100 3195.5995
##      5   162133.6508            -nan     0.0100 2816.4002
##      6   159128.0500            -nan     0.0100 2906.3402
##      7   156109.1884            -nan     0.0100 2881.5080
##      8   153276.7232            -nan     0.0100 3057.6898
##      9   150400.1718            -nan     0.0100 2833.3437
##     10   147684.3966            -nan     0.0100 2665.0952
##     20   122549.3737            -nan     0.0100 2137.5452
##     40    85022.8837            -nan     0.0100 1551.0351
##     60    59748.7111            -nan     0.0100 1114.7815
##     80    42142.9650            -nan     0.0100  688.3808
##    100    30290.9210            -nan     0.0100  433.5910
##    120    22035.2992            -nan     0.0100  363.3498
##    140    16303.0516            -nan     0.0100  223.8660
##    160    12415.3710            -nan     0.0100  155.6084
##    180     9720.9932            -nan     0.0100   85.2684
##    200     7720.2844            -nan     0.0100   66.7022
##    220     6350.0669            -nan     0.0100   50.3614
##    240     5411.1661            -nan     0.0100   29.6951
##    260     4713.9957            -nan     0.0100   23.4088
##    280     4154.6366            -nan     0.0100   17.6745
##    300     3750.6629            -nan     0.0100    1.1046
##    320     3463.3701            -nan     0.0100    9.1023
##    340     3218.8032            -nan     0.0100   -7.6162
##    360     3026.9082            -nan     0.0100    0.6782
##    380     2873.1607            -nan     0.0100    0.4097
##    400     2736.7039            -nan     0.0100    0.8775
##    420     2621.4269            -nan     0.0100   -1.4282
##    440     2507.1402            -nan     0.0100    0.9055
##    460     2411.3687            -nan     0.0100   -1.8774
##    480     2331.3798            -nan     0.0100   -1.2368
##    500     2255.6381            -nan     0.0100   -0.9415
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   180469.8446            -nan     0.0100 3679.5024
##      2   177201.4706            -nan     0.0100 3175.6822
##      3   174008.5094            -nan     0.0100 2698.9308
##      4   170781.1306            -nan     0.0100 3113.1618
##      5   167582.8990            -nan     0.0100 2895.8265
##      6   164374.0296            -nan     0.0100 3188.0694
##      7   161274.0559            -nan     0.0100 2543.2860
##      8   158221.8136            -nan     0.0100 2827.1045
##      9   155480.0474            -nan     0.0100 2481.1956
##     10   152681.8567            -nan     0.0100 2891.4468
##     20   126812.3005            -nan     0.0100 2228.8559
##     40    88285.6811            -nan     0.0100 1364.9772
##     60    62018.9479            -nan     0.0100 1248.5178
##     80    44052.3389            -nan     0.0100  636.8643
##    100    31548.0601            -nan     0.0100  495.5048
##    120    23108.6302            -nan     0.0100  345.0690
##    140    17272.3355            -nan     0.0100  234.6738
##    160    13296.9158            -nan     0.0100  130.9732
##    180    10341.7725            -nan     0.0100  104.1902
##    200     8299.1753            -nan     0.0100   67.5559
##    220     6896.1548            -nan     0.0100   33.1171
##    240     5832.8263            -nan     0.0100   31.3242
##    260     5134.8075            -nan     0.0100   11.5208
##    280     4648.3904            -nan     0.0100   10.8295
##    300     4300.9310            -nan     0.0100    2.7361
##    320     3943.7065            -nan     0.0100    6.7716
##    340     3700.9112            -nan     0.0100   -0.0894
##    360     3507.1458            -nan     0.0100   -3.7699
##    380     3333.4464            -nan     0.0100   -0.7246
##    400     3168.7160            -nan     0.0100   -4.1692
##    420     3056.0704            -nan     0.0100   -0.8445
##    440     2931.4171            -nan     0.0100   -6.3130
##    460     2841.0655            -nan     0.0100   -1.3884
##    480     2738.4915            -nan     0.0100    0.4078
##    500     2656.0029            -nan     0.0100   -4.5916
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   182860.2919            -nan     0.0100 3276.4265
##      2   179445.7166            -nan     0.0100 3421.1502
##      3   176132.3555            -nan     0.0100 3238.3076
##      4   172971.6787            -nan     0.0100 3203.8343
##      5   169840.8645            -nan     0.0100 2791.6125
##      6   166771.3150            -nan     0.0100 2807.5394
##      7   163726.4286            -nan     0.0100 3278.5457
##      8   160603.4050            -nan     0.0100 2851.0198
##      9   157747.6073            -nan     0.0100 2463.7585
##     10   155088.1513            -nan     0.0100 2567.0036
##     20   129270.9363            -nan     0.0100 2233.2851
##     40    90055.1959            -nan     0.0100 1646.3305
##     60    63420.5786            -nan     0.0100 1228.2485
##     80    45249.5822            -nan     0.0100  723.4697
##    100    32491.2045            -nan     0.0100  511.3293
##    120    23821.7455            -nan     0.0100  265.9580
##    140    17815.1763            -nan     0.0100  245.9568
##    160    13558.0884            -nan     0.0100  120.5875
##    180    10544.4405            -nan     0.0100   93.5002
##    200     8501.5549            -nan     0.0100   82.3148
##    220     7048.4115            -nan     0.0100   57.1648
##    240     6006.6737            -nan     0.0100   43.6301
##    260     5257.9284            -nan     0.0100    9.3541
##    280     4717.1795            -nan     0.0100   16.0618
##    300     4350.8814            -nan     0.0100   13.6272
##    320     4028.1600            -nan     0.0100    6.0202
##    340     3768.9297            -nan     0.0100   -0.3671
##    360     3568.1596            -nan     0.0100    0.7351
##    380     3394.5545            -nan     0.0100    0.2447
##    400     3239.0968            -nan     0.0100    4.5822
##    420     3099.4722            -nan     0.0100   -1.1503
##    440     2989.6746            -nan     0.0100   -2.9088
##    460     2870.6199            -nan     0.0100   -1.7883
##    480     2748.6058            -nan     0.0100   -4.5451
##    500     2659.2300            -nan     0.0100   -1.5075
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   180440.6791            -nan     0.0100 3100.4125
##      2   177112.1971            -nan     0.0100 3182.7148
##      3   173913.2487            -nan     0.0100 3166.9668
##      4   170689.4250            -nan     0.0100 3379.7501
##      5   167483.5602            -nan     0.0100 3481.9536
##      6   164475.6467            -nan     0.0100 2991.0563
##      7   161530.8266            -nan     0.0100 3443.9415
##      8   158645.7446            -nan     0.0100 2803.7598
##      9   155709.1448            -nan     0.0100 2829.0500
##     10   152860.7098            -nan     0.0100 2639.0452
##     20   127282.8331            -nan     0.0100 1967.0021
##     40    88385.6170            -nan     0.0100 1471.7735
##     60    61751.9119            -nan     0.0100 1144.2616
##     80    43648.3126            -nan     0.0100  738.6915
##    100    31513.3205            -nan     0.0100  488.8777
##    120    22885.1754            -nan     0.0100  277.0776
##    140    16978.2949            -nan     0.0100  235.4224
##    160    12895.5554            -nan     0.0100  140.5023
##    180    10054.5249            -nan     0.0100   82.7152
##    200     8022.3501            -nan     0.0100   82.0318
##    220     6627.3504            -nan     0.0100   49.9360
##    240     5645.6703            -nan     0.0100   33.1690
##    260     4925.0423            -nan     0.0100   13.9627
##    280     4418.6706            -nan     0.0100   17.4003
##    300     4027.1857            -nan     0.0100    9.7678
##    320     3700.1935            -nan     0.0100    5.3503
##    340     3480.2371            -nan     0.0100   -4.0432
##    360     3269.1307            -nan     0.0100    3.0670
##    380     3101.2271            -nan     0.0100    1.5756
##    400     2957.1700            -nan     0.0100   -0.3309
##    420     2820.0983            -nan     0.0100   -5.3358
##    440     2699.7578            -nan     0.0100   -4.4602
##    460     2589.3245            -nan     0.0100    4.4772
##    480     2493.0090            -nan     0.0100   -3.2972
##    500     2407.6555            -nan     0.0100   -2.6806
model2.2 <- train(X[train, ], Y[train], method = "blackboost", trControl = myControl)
model3.2 <- train(X[train, ], Y[train], method = "parRF", trControl = myControl)
model4.2 <- train(X[train, ], Y[train], method = "mlpWeightDecay", trControl = myControl, 
    trace = FALSE)
model5.2 <- train(X[train, ], Y[train], method = "ppr", trControl = myControl)
model6.2 <- train(X[train, ], Y[train], method = "earth", trControl = myControl)
model7.2 <- train(X[train, ], Y[train], method = "glm", trControl = myControl)
model8.2 <- train(X[train, ], Y[train], method = "svmRadial", trControl = myControl)
model9.2 <- train(X[train, ], Y[train], method = "gam", trControl = myControl)
model10.2 <- train(X[train, ], Y[train], method = "glmnet", trControl = myControl)

# Make a list of all the models
all.models.2 <- list(model1.2, model2.2, model3.2, model4.2, model5.2, model6.2, 
    model7.2, model8.2, model9.2, model10.2)
names(all.models.2) <- sapply(all.models.2, function(x) x$method)
sort(sapply(all.models.2, function(x) min(x$results$RMSE)))
##          earth          parRF            gbm     blackboost            ppr 
##          78.60          80.46          83.10          93.53          95.11 
##            gam         glmnet      svmRadial            glm mlpWeightDecay 
##         105.75         118.37         120.30         121.31         848.45

# Make a greedy ensemble - currently can only use RMSE
greedy2 <- caretEnsemble(all.models.2, iter = 1000L)
sort(greedy2$weights, decreasing = TRUE)
##     earth       ppr       gbm     parRF svmRadial 
##     0.350     0.302     0.181     0.139     0.028
greedy2$error
## RMSE 
##   NA

# Make a linear regression ensemble
linear2 <- caretStack(all.models.2, method = "glm", trControl = trainControl(method = "cv"))
summary(linear2$ens_model$finalModel)
## 
## Call:
## NULL
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -227.01   -33.03     0.08    33.12   286.51  
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -30.16806   46.91697   -0.64   0.5212    
## gbm             -0.08941    0.20510   -0.44   0.6635    
## blackboost      -0.05583    0.15000   -0.37   0.7103    
## parRF            0.59976    0.18695    3.21   0.0016 ** 
## mlpWeightDecay  -0.01050    0.00778   -1.35   0.1792    
## ppr              0.08408    0.07323    1.15   0.2527    
## earth            0.46575    0.08943    5.21  6.1e-07 ***
## glm              0.42244    0.32901    1.28   0.2011    
## svmRadial        0.05336    0.06510    0.82   0.4136    
## gam              0.01835    0.05323    0.34   0.7308    
## glmnet          -0.48088    0.34360   -1.40   0.1637    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 3598)
## 
##     Null deviance: 28979141  on 162  degrees of freedom
## Residual deviance:   546892  on 152  degrees of freedom
##   (68 observations deleted due to missingness)
## AIC: 1810
## 
## Number of Fisher Scoring iterations: 2
linear2$error
##   parameter  RMSE Rsquared RMSESD RsquaredSD
## 1      none 66.79   0.9752  28.26    0.02341

# Predict for test set:
preds2 <- data.frame(sapply(all.models.2, predict, newdata = X[!train, ]))
preds2$ENS_greedy <- predict(greedy2, newdata = X[!train, ])
preds2$ENS_linear <- predict(linear2, newdata = X[!train, ])
sort(sqrt(colMeans((preds2 - Y[!train])^2)))
##     ENS_greedy     ENS_linear          earth            gbm          parRF 
##          56.09          58.02          79.14          85.49          86.65 
##            ppr     blackboost            glm         glmnet      svmRadial 
##          93.80         100.94         114.86         115.35         127.46 
##            gam mlpWeightDecay 
##         139.70        1044.69

Now we can test the paper's second proposal for continuous range: Just as a remainder those values are:

#
require(xtable)
print(xtable(bi[, 1:7]), "html")
Element From To ContFrom_1 ContTo_1 ContFrom_2 ContTo_2
1 Pa1 8461 8474 8474 8484 8563 8577
2 Ca1 8484 8513 8474 8484 8563 8577
3 Ca2 8522 8562 8474 8484 8563 8577
4 Pa2 8577 8619 8563 8577 8619 8642
5 Ca3 8642 8682 8619 8642 8700 8725
6 Pa3 8730 8772 8700 8725 8776 8792
7 Mg 8802 8811 8776 8792 8815 8850
8 Pa4 8850 8890 8815 8850 8890 8900
9 Pa5 9000 9030 8983 8998 9040 9050
#
lgth <- 3.6
org <- 8461 - lgth
signal3 <- paste(round((bi[1:8, 2] - org)/lgth), round((bi[1:8, 3] - org)/lgth), 
    sep = ":")
noise3 <- paste(round((bi[1:8, 6] - org)/lgth), round((bi[1:8, 7] - org)/lgth), 
    sep = ":")
sn3 <- cbind(signal3, noise3)
xx3 <- apply(sn3, 1, feature_extr, bp_clean)
colnames(xx3) <- as.character(sn3[, 1])
xx3 <- cbind(xx3, unlist(lapply(bp_clean, function(x) {
    return(x$stellarp[1])
})))
colnames(xx3)[9] <- "T"

Now we perform the regression analysis

Regression analysis against features defined by the paper

# Data
xx3 <- as.data.frame(xx3)
X <- xx3[, -9]
rownames(X) <- 1:nrow(X)
X <- data.frame(X)
Y <- xx3$T

# Train some models
model1.3 <- train(X[train, ], Y[train], method = "gbm", trControl = myControl, 
    tuneGrid = expand.grid(.n.trees = 500, .interaction.depth = 15, .shrinkage = 0.01))
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   179566.1840            -nan     0.0100 2621.9613
##      2   176659.2868            -nan     0.0100 2738.6662
##      3   173579.7064            -nan     0.0100 2726.1078
##      4   170523.7419            -nan     0.0100 2496.3388
##      5   167748.5838            -nan     0.0100 2780.0482
##      6   164891.8726            -nan     0.0100 2498.8200
##      7   162083.1620            -nan     0.0100 3116.1065
##      8   159293.9758            -nan     0.0100 2976.9081
##      9   156468.9843            -nan     0.0100 2530.0339
##     10   153724.5900            -nan     0.0100 2366.0815
##     20   130338.4727            -nan     0.0100 2036.2892
##     40    93984.0785            -nan     0.0100 1503.2754
##     60    68555.5787            -nan     0.0100 1072.2220
##     80    51017.3575            -nan     0.0100  732.5624
##    100    38424.5499            -nan     0.0100  606.2867
##    120    29701.8834            -nan     0.0100  361.0850
##    140    23526.9228            -nan     0.0100  289.0111
##    160    19133.4319            -nan     0.0100  173.3200
##    180    15928.3574            -nan     0.0100  134.2242
##    200    13352.3107            -nan     0.0100   91.0118
##    220    11688.8270            -nan     0.0100   45.7836
##    240    10437.7279            -nan     0.0100   41.9977
##    260     9367.5149            -nan     0.0100   31.8559
##    280     8617.9287            -nan     0.0100   26.4581
##    300     7959.9910            -nan     0.0100   25.7075
##    320     7486.5455            -nan     0.0100   10.3768
##    340     7036.9560            -nan     0.0100    5.1615
##    360     6659.1549            -nan     0.0100   -0.7522
##    380     6326.3950            -nan     0.0100    1.9460
##    400     6011.6865            -nan     0.0100    0.8108
##    420     5736.4294            -nan     0.0100   -1.1695
##    440     5462.4868            -nan     0.0100    0.9490
##    460     5224.2741            -nan     0.0100   -5.8521
##    480     5024.1811            -nan     0.0100    4.9038
##    500     4855.5353            -nan     0.0100   -5.3560
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   181148.6440            -nan     0.0100 2834.8250
##      2   178058.2331            -nan     0.0100 2823.5337
##      3   174946.5444            -nan     0.0100 3528.9515
##      4   172116.4034            -nan     0.0100 2506.8680
##      5   169130.5996            -nan     0.0100 2791.6772
##      6   166232.6561            -nan     0.0100 3145.4744
##      7   163481.9174            -nan     0.0100 2721.5650
##      8   160673.9457            -nan     0.0100 2678.3519
##      9   157957.3791            -nan     0.0100 2676.7843
##     10   155236.3587            -nan     0.0100 2882.1456
##     20   130775.2031            -nan     0.0100 1935.4905
##     40    94578.0575            -nan     0.0100 1399.9701
##     60    69239.9742            -nan     0.0100 1107.8551
##     80    51125.9785            -nan     0.0100  772.1597
##    100    38582.7416            -nan     0.0100  499.9567
##    120    30277.8340            -nan     0.0100  202.3704
##    140    23942.5285            -nan     0.0100  241.1376
##    160    19414.7269            -nan     0.0100  179.9009
##    180    16137.8431            -nan     0.0100  127.4908
##    200    13826.6294            -nan     0.0100   54.0967
##    220    12141.4407            -nan     0.0100   76.1656
##    240    10969.9855            -nan     0.0100   34.6293
##    260    10020.4568            -nan     0.0100   12.0504
##    280     9259.4305            -nan     0.0100   22.7728
##    300     8605.8387            -nan     0.0100   18.1694
##    320     8004.7115            -nan     0.0100   -5.1857
##    340     7524.2830            -nan     0.0100    5.3877
##    360     7130.9518            -nan     0.0100   -7.0527
##    380     6752.3726            -nan     0.0100    3.1441
##    400     6436.6907            -nan     0.0100   -8.1831
##    420     6122.3549            -nan     0.0100   -3.1630
##    440     5855.3640            -nan     0.0100    3.5278
##    460     5596.1898            -nan     0.0100    3.9990
##    480     5376.3726            -nan     0.0100   -7.6329
##    500     5171.0719            -nan     0.0100    0.1239
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   181785.3879            -nan     0.0100 3401.2717
##      2   178744.8464            -nan     0.0100 3086.3122
##      3   175864.9903            -nan     0.0100 2514.4860
##      4   173039.5793            -nan     0.0100 2356.8688
##      5   170112.0847            -nan     0.0100 2962.6008
##      6   167249.8613            -nan     0.0100 3027.3424
##      7   164572.3390            -nan     0.0100 2555.3766
##      8   161787.1299            -nan     0.0100 2372.8361
##      9   158921.4923            -nan     0.0100 2465.5379
##     10   156087.7744            -nan     0.0100 2082.3709
##     20   131663.8273            -nan     0.0100 2215.2868
##     40    95176.5145            -nan     0.0100 1350.3604
##     60    70019.4901            -nan     0.0100 1079.1526
##     80    51788.3950            -nan     0.0100  733.3068
##    100    39072.0086            -nan     0.0100  473.7427
##    120    30352.7235            -nan     0.0100  299.9521
##    140    24204.1332            -nan     0.0100  182.1418
##    160    19501.3181            -nan     0.0100  169.5382
##    180    16297.1787            -nan     0.0100   61.6725
##    200    13903.8095            -nan     0.0100   62.7457
##    220    12254.4502            -nan     0.0100   89.8760
##    240    10879.6528            -nan     0.0100   44.2730
##    260     9790.1809            -nan     0.0100   18.1243
##    280     8959.7935            -nan     0.0100   30.6953
##    300     8297.6673            -nan     0.0100   -0.7273
##    320     7810.9063            -nan     0.0100    8.2419
##    340     7384.8115            -nan     0.0100   -6.1816
##    360     7020.0634            -nan     0.0100  -10.5691
##    380     6643.8831            -nan     0.0100   -0.0793
##    400     6331.9502            -nan     0.0100    0.9820
##    420     6041.3156            -nan     0.0100   -5.8254
##    440     5771.6551            -nan     0.0100   -9.5565
##    460     5505.0068            -nan     0.0100   -4.1051
##    480     5298.3372            -nan     0.0100   -2.2239
##    500     5089.9243            -nan     0.0100    9.6792
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   189264.5732            -nan     0.0100 2926.2008
##      2   186008.8419            -nan     0.0100 3304.0369
##      3   182732.3176            -nan     0.0100 3448.8369
##      4   179588.4223            -nan     0.0100 3194.4014
##      5   176366.1138            -nan     0.0100 3330.2371
##      6   173099.0366            -nan     0.0100 3199.0724
##      7   169857.2161            -nan     0.0100 2803.5306
##      8   166868.8995            -nan     0.0100 3179.7922
##      9   163888.1060            -nan     0.0100 2890.5185
##     10   161113.8024            -nan     0.0100 2262.7972
##     20   135931.0078            -nan     0.0100 2334.4333
##     40    97207.2742            -nan     0.0100 1556.3939
##     60    70621.3896            -nan     0.0100 1218.0312
##     80    52193.7722            -nan     0.0100  705.5964
##    100    39506.5742            -nan     0.0100  484.3078
##    120    30756.9930            -nan     0.0100  361.5291
##    140    23993.6930            -nan     0.0100  231.4748
##    160    19595.9465            -nan     0.0100  168.3160
##    180    16423.8607            -nan     0.0100   64.9630
##    200    14100.2914            -nan     0.0100   86.1904
##    220    12227.3915            -nan     0.0100   76.7572
##    240    10854.9830            -nan     0.0100   32.7396
##    260     9838.4245            -nan     0.0100   39.9594
##    280     9050.6279            -nan     0.0100   -7.8451
##    300     8404.4775            -nan     0.0100   19.0361
##    320     7811.9232            -nan     0.0100    8.5431
##    340     7356.3325            -nan     0.0100    7.3920
##    360     6929.0701            -nan     0.0100    4.2989
##    380     6571.0561            -nan     0.0100   -1.3371
##    400     6224.0760            -nan     0.0100   -4.0158
##    420     5929.2286            -nan     0.0100   11.9530
##    440     5677.0798            -nan     0.0100   -2.6767
##    460     5454.0039            -nan     0.0100   -0.0152
##    480     5203.3535            -nan     0.0100  -12.7383
##    500     4991.8279            -nan     0.0100   -4.9561
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   173229.5834            -nan     0.0100 2651.0837
##      2   170226.4154            -nan     0.0100 2668.1732
##      3   167322.9507            -nan     0.0100 2734.8576
##      4   164378.0551            -nan     0.0100 2964.8315
##      5   161452.7818            -nan     0.0100 2704.4132
##      6   158850.8250            -nan     0.0100 2845.3269
##      7   156267.0713            -nan     0.0100 2033.8974
##      8   153587.8927            -nan     0.0100 2724.6752
##      9   150936.6174            -nan     0.0100 2472.6181
##     10   148436.8000            -nan     0.0100 2199.6339
##     20   125367.2740            -nan     0.0100 2083.4240
##     40    90440.0727            -nan     0.0100 1698.9837
##     60    66245.8837            -nan     0.0100  891.3377
##     80    49712.8094            -nan     0.0100  668.1216
##    100    38106.0451            -nan     0.0100  416.3251
##    120    29715.6115            -nan     0.0100  312.1839
##    140    23844.8153            -nan     0.0100  218.0027
##    160    19367.9363            -nan     0.0100  156.0783
##    180    16107.4915            -nan     0.0100   95.8917
##    200    13748.3317            -nan     0.0100   75.6262
##    220    11973.6048            -nan     0.0100   60.9875
##    240    10511.2279            -nan     0.0100   53.2894
##    260     9415.4189            -nan     0.0100   32.6098
##    280     8563.1447            -nan     0.0100    3.0606
##    300     7924.2144            -nan     0.0100   15.1118
##    320     7402.2232            -nan     0.0100   25.0855
##    340     6942.4853            -nan     0.0100    2.0323
##    360     6600.0813            -nan     0.0100   -5.1250
##    380     6224.4596            -nan     0.0100   -7.8986
##    400     5933.3582            -nan     0.0100   -5.6039
##    420     5643.5761            -nan     0.0100  -10.0801
##    440     5392.6246            -nan     0.0100   -3.0571
##    460     5175.3882            -nan     0.0100    0.7056
##    480     4976.1496            -nan     0.0100    7.2388
##    500     4783.6004            -nan     0.0100   -1.9476
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   179462.4403            -nan     0.0100 3368.5161
##      2   176240.8765            -nan     0.0100 2745.5834
##      3   173199.0424            -nan     0.0100 2973.8038
##      4   170244.7051            -nan     0.0100 2739.8035
##      5   167135.1119            -nan     0.0100 3047.7570
##      6   164312.2984            -nan     0.0100 2746.8008
##      7   161444.8150            -nan     0.0100 2768.9470
##      8   158717.8046            -nan     0.0100 2752.2280
##      9   155847.6878            -nan     0.0100 2519.1673
##     10   153146.2275            -nan     0.0100 2402.3151
##     20   129420.3067            -nan     0.0100 2000.4558
##     40    92916.7073            -nan     0.0100 1439.8153
##     60    67743.7707            -nan     0.0100  822.1993
##     80    50255.2367            -nan     0.0100  690.6133
##    100    38370.2116            -nan     0.0100  501.2803
##    120    29824.1831            -nan     0.0100  324.2014
##    140    23682.1509            -nan     0.0100  159.8312
##    160    19300.1632            -nan     0.0100   92.7044
##    180    16228.1517            -nan     0.0100   66.1609
##    200    13658.1654            -nan     0.0100  111.0190
##    220    11914.8863            -nan     0.0100   16.7632
##    240    10705.3513            -nan     0.0100   28.6346
##    260     9635.0968            -nan     0.0100   44.0888
##    280     8904.2135            -nan     0.0100   26.1533
##    300     8237.9890            -nan     0.0100   16.1300
##    320     7744.2652            -nan     0.0100   -2.2557
##    340     7300.0689            -nan     0.0100    4.6130
##    360     6966.7833            -nan     0.0100    6.0302
##    380     6636.7568            -nan     0.0100   -1.2152
##    400     6328.0984            -nan     0.0100    1.1963
##    420     6048.8618            -nan     0.0100   -3.2227
##    440     5795.2011            -nan     0.0100    2.8643
##    460     5553.9079            -nan     0.0100   -5.0997
##    480     5319.6494            -nan     0.0100    6.5264
##    500     5064.5218            -nan     0.0100    9.5895
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   182936.4019            -nan     0.0100 2807.4657
##      2   179756.3749            -nan     0.0100 2957.1046
##      3   176724.3716            -nan     0.0100 3457.4348
##      4   173640.2099            -nan     0.0100 2690.3381
##      5   170330.2543            -nan     0.0100 2927.3921
##      6   167369.0985            -nan     0.0100 2652.8371
##      7   164501.3667            -nan     0.0100 2623.1646
##      8   161549.0555            -nan     0.0100 3151.7976
##      9   158897.2106            -nan     0.0100 2784.9175
##     10   156256.7982            -nan     0.0100 2736.2576
##     20   131507.0971            -nan     0.0100 2158.5961
##     40    94106.5642            -nan     0.0100 1523.4950
##     60    68470.1355            -nan     0.0100 1067.4575
##     80    50658.4512            -nan     0.0100  617.7061
##    100    38199.3240            -nan     0.0100  506.3356
##    120    29291.4820            -nan     0.0100  268.7774
##    140    23197.4276            -nan     0.0100  158.6767
##    160    18595.0609            -nan     0.0100  162.7028
##    180    15483.8263            -nan     0.0100   91.4352
##    200    13126.5313            -nan     0.0100   52.8197
##    220    11392.4692            -nan     0.0100   17.8204
##    240    10165.0389            -nan     0.0100   -2.4090
##    260     9189.3820            -nan     0.0100   27.2830
##    280     8442.5933            -nan     0.0100   20.8993
##    300     7813.9645            -nan     0.0100   -3.9987
##    320     7322.9756            -nan     0.0100   -8.9000
##    340     6927.1496            -nan     0.0100    4.4926
##    360     6558.7543            -nan     0.0100   -0.8569
##    380     6209.5350            -nan     0.0100    1.6222
##    400     5925.4225            -nan     0.0100    0.1678
##    420     5637.5081            -nan     0.0100    0.6345
##    440     5402.1077            -nan     0.0100    2.4633
##    460     5193.1335            -nan     0.0100   -0.4239
##    480     4995.6673            -nan     0.0100    3.4323
##    500     4826.4523            -nan     0.0100   -8.4073
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   174787.4389            -nan     0.0100 3110.3479
##      2   171718.1785            -nan     0.0100 2987.4545
##      3   168778.0557            -nan     0.0100 2782.5033
##      4   165943.7311            -nan     0.0100 3073.6618
##      5   163078.4283            -nan     0.0100 2583.3264
##      6   160301.0984            -nan     0.0100 2843.6553
##      7   157361.4836            -nan     0.0100 3158.2566
##      8   154672.6792            -nan     0.0100 2529.6080
##      9   152042.1118            -nan     0.0100 2889.5818
##     10   149387.4932            -nan     0.0100 2302.8602
##     20   125683.5360            -nan     0.0100 1790.7486
##     40    89655.6297            -nan     0.0100 1232.1691
##     60    64663.8927            -nan     0.0100  934.0812
##     80    47577.5596            -nan     0.0100  634.5400
##    100    35776.3747            -nan     0.0100  412.8421
##    120    27434.0845            -nan     0.0100  312.5651
##    140    21672.3733            -nan     0.0100  127.8818
##    160    17374.5318            -nan     0.0100  157.6080
##    180    14396.1942            -nan     0.0100  104.6725
##    200    12090.5177            -nan     0.0100   48.1162
##    220    10465.6561            -nan     0.0100   36.6877
##    240     9270.9668            -nan     0.0100   26.3449
##    260     8375.4793            -nan     0.0100    1.4242
##    280     7664.8130            -nan     0.0100   25.0894
##    300     7075.1418            -nan     0.0100   10.4083
##    320     6547.9254            -nan     0.0100   10.4218
##    340     6157.7988            -nan     0.0100    2.6614
##    360     5812.5073            -nan     0.0100   11.9035
##    380     5471.0562            -nan     0.0100   -2.4089
##    400     5200.6719            -nan     0.0100    0.4957
##    420     4953.4745            -nan     0.0100   -1.5098
##    440     4724.2374            -nan     0.0100    5.8585
##    460     4512.1398            -nan     0.0100    7.8548
##    480     4329.1907            -nan     0.0100  -14.5750
##    500     4112.1262            -nan     0.0100    0.5445
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   180703.9045            -nan     0.0100 3031.2231
##      2   177504.0154            -nan     0.0100 3047.7842
##      3   174338.2587            -nan     0.0100 3006.2147
##      4   171279.0168            -nan     0.0100 3092.8211
##      5   168371.3532            -nan     0.0100 2831.8515
##      6   165487.7448            -nan     0.0100 2105.9190
##      7   162574.0956            -nan     0.0100 3035.3538
##      8   159765.2974            -nan     0.0100 2504.5210
##      9   156920.9972            -nan     0.0100 2444.1827
##     10   154199.7560            -nan     0.0100 2452.7513
##     20   129713.6562            -nan     0.0100 2186.9821
##     40    92624.0792            -nan     0.0100 1258.2625
##     60    66965.5971            -nan     0.0100 1026.3151
##     80    49414.7247            -nan     0.0100  758.6917
##    100    37091.6863            -nan     0.0100  400.5053
##    120    28721.3207            -nan     0.0100  245.0791
##    140    22719.1458            -nan     0.0100  178.0906
##    160    18406.9594            -nan     0.0100  138.2401
##    180    15422.5973            -nan     0.0100   98.5417
##    200    13078.9720            -nan     0.0100   27.8512
##    220    11475.8889            -nan     0.0100   63.8040
##    240    10251.1206            -nan     0.0100   23.7009
##    260     9356.1380            -nan     0.0100   29.3687
##    280     8621.4824            -nan     0.0100   -9.9701
##    300     8078.8754            -nan     0.0100    8.4473
##    320     7578.9853            -nan     0.0100    9.9314
##    340     7207.0600            -nan     0.0100    6.8375
##    360     6872.9900            -nan     0.0100    4.6350
##    380     6549.0513            -nan     0.0100   -7.4846
##    400     6262.3230            -nan     0.0100   -2.8231
##    420     6016.5508            -nan     0.0100   -1.1674
##    440     5792.0194            -nan     0.0100   -7.4770
##    460     5585.8304            -nan     0.0100   -3.3386
##    480     5392.9033            -nan     0.0100   -4.8489
##    500     5207.1838            -nan     0.0100    3.6022
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   183324.6567            -nan     0.0100 2922.5451
##      2   180203.1692            -nan     0.0100 3245.2051
##      3   177047.2529            -nan     0.0100 3242.2776
##      4   173978.7361            -nan     0.0100 2975.2453
##      5   170718.2585            -nan     0.0100 3211.6862
##      6   167587.0142            -nan     0.0100 3589.0981
##      7   164977.3801            -nan     0.0100 2491.5285
##      8   162081.5923            -nan     0.0100 2733.0393
##      9   159323.0115            -nan     0.0100 2636.5640
##     10   156642.4499            -nan     0.0100 2632.6399
##     20   132421.7483            -nan     0.0100 2345.9481
##     40    95557.5859            -nan     0.0100 1635.3704
##     60    69751.2155            -nan     0.0100  864.2972
##     80    51469.9692            -nan     0.0100  671.2258
##    100    38885.4113            -nan     0.0100  352.1480
##    120    30146.1308            -nan     0.0100  241.4681
##    140    23615.6746            -nan     0.0100  329.2660
##    160    19062.1049            -nan     0.0100  189.5163
##    180    15934.7462            -nan     0.0100  104.1434
##    200    13670.2872            -nan     0.0100   93.0511
##    220    11936.9142            -nan     0.0100   74.2831
##    240    10601.9442            -nan     0.0100   24.7828
##    260     9580.6299            -nan     0.0100   22.2149
##    280     8779.7606            -nan     0.0100    9.3704
##    300     8160.6745            -nan     0.0100    9.2278
##    320     7662.8121            -nan     0.0100   11.5221
##    340     7224.2026            -nan     0.0100    5.4115
##    360     6846.0840            -nan     0.0100    7.8479
##    380     6494.8587            -nan     0.0100    4.9660
##    400     6175.3573            -nan     0.0100   -0.0957
##    420     5890.1894            -nan     0.0100    1.7910
##    440     5614.7788            -nan     0.0100   -5.5687
##    460     5387.3615            -nan     0.0100    0.9808
##    480     5166.8443            -nan     0.0100    4.4705
##    500     4997.5806            -nan     0.0100   -0.7284
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1   180726.4753            -nan     0.0100 3152.6085
##      2   177543.7120            -nan     0.0100 2685.7379
##      3   174479.0182            -nan     0.0100 2992.7591
##      4   171292.3605            -nan     0.0100 3317.9167
##      5   168213.6594            -nan     0.0100 3287.4026
##      6   165393.0422            -nan     0.0100 2859.8833
##      7   162448.9293            -nan     0.0100 2630.8900
##      8   159635.7169            -nan     0.0100 2885.0815
##      9   156914.9836            -nan     0.0100 2416.3707
##     10   154281.9010            -nan     0.0100 2502.3046
##     20   129709.0922            -nan     0.0100 2038.3363
##     40    92643.2271            -nan     0.0100 1523.4916
##     60    67262.1752            -nan     0.0100  872.9210
##     80    49824.9036            -nan     0.0100  729.8286
##    100    37568.3283            -nan     0.0100  422.6178
##    120    28850.5041            -nan     0.0100  269.9710
##    140    22506.3190            -nan     0.0100  189.9546
##    160    18018.6006            -nan     0.0100  176.8485
##    180    14856.5266            -nan     0.0100   99.0966
##    200    12570.9374            -nan     0.0100   44.5280
##    220    10934.2805            -nan     0.0100   44.1732
##    240     9754.5259            -nan     0.0100   18.9974
##    260     8745.8011            -nan     0.0100    9.8663
##    280     8015.5328            -nan     0.0100   24.6065
##    300     7449.1435            -nan     0.0100   14.2684
##    320     6947.6187            -nan     0.0100   16.0260
##    340     6534.1345            -nan     0.0100    4.1627
##    360     6171.7758            -nan     0.0100    8.4227
##    380     5854.0290            -nan     0.0100    3.3418
##    400     5563.9130            -nan     0.0100    4.4084
##    420     5318.5039            -nan     0.0100   -4.8066
##    440     5085.0558            -nan     0.0100   -2.3260
##    460     4860.4562            -nan     0.0100   -7.9730
##    480     4658.8874            -nan     0.0100   -0.6596
##    500     4478.6384            -nan     0.0100   -1.2806
model2.3 <- train(X[train, ], Y[train], method = "blackboost", trControl = myControl)
model3.3 <- train(X[train, ], Y[train], method = "parRF", trControl = myControl)
model4.3 <- train(X[train, ], Y[train], method = "mlpWeightDecay", trControl = myControl, 
    trace = FALSE)
model5.3 <- train(X[train, ], Y[train], method = "ppr", trControl = myControl)
model6.3 <- train(X[train, ], Y[train], method = "earth", trControl = myControl)
model7.3 <- train(X[train, ], Y[train], method = "glm", trControl = myControl)
model8.3 <- train(X[train, ], Y[train], method = "svmRadial", trControl = myControl)
model9.3 <- train(X[train, ], Y[train], method = "gam", trControl = myControl)
model10.3 <- train(X[train, ], Y[train], method = "glmnet", trControl = myControl)

# Make a list of all the models
all.models.3 <- list(model1.3, model2.3, model3.3, model4.3, model5.3, model6.3, 
    model7.3, model8.3, model9.3, model10.3)
names(all.models.3) <- sapply(all.models.3, function(x) x$method)
sort(sapply(all.models.3, function(x) min(x$results$RMSE)))
##            ppr          parRF            gbm      svmRadial          earth 
##          86.98         103.13         111.30         126.72         127.93 
##     blackboost         glmnet            glm            gam mlpWeightDecay 
##         131.64         138.68         139.24         335.74         690.92

# Make a greedy ensemble - currently can only use RMSE
greedy3 <- caretEnsemble(all.models.3, iter = 1000L)
sort(greedy3$weights, decreasing = TRUE)
##       ppr     parRF svmRadial     earth       gam 
##     0.612     0.176     0.120     0.085     0.007
greedy2$error
## RMSE 
##   NA

# Make a linear regression ensemble
linear3 <- caretStack(all.models.3, method = "glm", trControl = trainControl(method = "cv"))
summary(linear3$ens_model$finalModel)
## 
## Call:
## NULL
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -427.6   -38.2    -0.9    41.5   295.9  
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -87.51138   58.77245   -1.49   0.1379    
## gbm             -0.20529    0.13974   -1.47   0.1432    
## blackboost      -0.12120    0.09562   -1.27   0.2063    
## parRF            0.64070    0.15657    4.09    6e-05 ***
## mlpWeightDecay  -0.00366    0.01540   -0.24   0.8122    
## ppr              0.59662    0.06697    8.91   <2e-16 ***
## earth            0.10394    0.05814    1.79   0.0752 .  
## glm              1.29235    0.68077    1.90   0.0590 .  
## svmRadial        0.15966    0.05853    2.73   0.0069 ** 
## gam              0.00203    0.01068    0.19   0.8491    
## glmnet          -1.43762    0.69907   -2.06   0.0409 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 6324)
## 
##     Null deviance: 42463442  on 230  degrees of freedom
## Residual deviance:  1391319  on 220  degrees of freedom
## AIC: 2690
## 
## Number of Fisher Scoring iterations: 2
linear3$error
##   parameter  RMSE Rsquared RMSESD RsquaredSD
## 1      none 83.49   0.9614  24.76    0.02408

# Predict for test set:
preds3 <- data.frame(sapply(all.models.3, predict, newdata = X[!train, ]))
preds3$ENS_greedy <- predict(greedy3, newdata = X[!train, ])
preds3$ENS_linear <- predict(linear3, newdata = X[!train, ])
sort(sqrt(colMeans((preds3 - Y[!train])^2)))
##     ENS_linear     ENS_greedy            gam            ppr          parRF 
##          100.8          105.4          116.3          118.4          134.5 
##            gbm          earth      svmRadial         glmnet            glm 
##          135.4          136.8          143.9          146.4          146.8 
##     blackboost mlpWeightDecay 
##          148.4          813.2