# UNIVERSIDAD NACIONAL DEL ALTIPLANO
# INGENIERIA ESTADISTICA E INFORMATICA
# CURSO: SERIES DE TIEMPO
# EJEMPLO 
library(readxl)
## Warning: package 'readxl' was built under R version 4.0.2
Petroleo <- read_excel("E:\\SERIES DE TIEMPO\\TAREA 01\\Petroleo.xlsx")
# View(petroleo1)
attach(Petroleo)
names(Petroleo)
## [1] "Precio"        "Exportaciones"
# Cambiar nombre de la BD
petroleo <- Petroleo
petroleo
## # A tibble: 87 x 2
##    Precio Exportaciones
##     <dbl>         <dbl>
##  1   98.0          981.
##  2  103.          1017.
##  3  101.           893.
##  4   97.8         1057.
##  5   97.9          915.
##  6   97.0          944.
##  7   99.7         1034.
##  8   99.2          978.
##  9   98.1         1007.
## 10   93.9         1012.
## # ... with 77 more rows
# Serie de Tiempo
petroleo.ts<- ts(petroleo,start = 2013,frequency = 12)
petroleo.ts
##             Precio Exportaciones
## Jan 2013  97.98278      980.8128
## Feb 2013 103.35294     1016.6572
## Mar 2013 100.77090      893.4956
## Apr 2013  97.75538     1057.0875
## May 2013  97.90686      914.6077
## Jun 2013  96.99315      943.7099
## Jul 2013  99.67255     1033.8571
## Aug 2013  99.24414      977.7406
## Sep 2013  98.14572     1007.0700
## Oct 2013  93.87329     1011.7472
## Nov 2013  88.48590      984.7709
## Dec 2013  89.40966     1031.8087
## Jan 2014  88.31081      893.0505
## Feb 2014  90.82224     1005.5936
## Mar 2014  91.39522      890.6116
## Apr 2014  93.88863      858.8093
## May 2014  95.08631      900.7373
## Jun 2014  97.01105      877.4955
## Jul 2014  93.32017      863.5452
## Aug 2014  89.50745      946.0628
## Sep 2014  84.12824      949.0946
## Oct 2014  72.50936      882.7212
## Nov 2014  63.47980      934.6265
## Dec 2014  50.18138     1012.5247
## Jan 2015  40.45127      970.9621
## Feb 2015  45.98606      930.4431
## Mar 2015  46.01733      871.8023
## Apr 2015  49.32555      750.1818
## May 2015  52.03910      748.3895
## Jun 2015  52.82573      735.7843
## Jul 2015  45.16595      879.7783
## Aug 2015  38.41927      931.2851
## Sep 2015  36.29036      895.4856
## Oct 2015  34.86077      899.8572
## Nov 2015  32.50883      857.3915
## Dec 2015  26.19610      780.8092
## Jan 2016  23.10238      796.7651
## Feb 2016  23.72933      886.6428
## Mar 2016  28.32656      774.4293
## Apr 2016  31.33582      853.7166
## May 2016  36.72636      980.1193
## Jun 2016  39.80715      967.6453
## Jul 2016  37.97153      904.3905
## Aug 2016  37.74090      973.4510
## Sep 2016  36.82666     1052.1847
## Oct 2016  40.66836     1046.4826
## Nov 2016  38.36162      993.6913
## Dec 2016  42.32596      975.4781
## Jan 2017  44.50008      936.8024
## Feb 2017  44.17497     1088.6730
## Mar 2017  41.93243      965.0702
## Apr 2017  43.22118      976.3228
## May 2017  43.85074      950.1525
## Jun 2017  41.15105     1046.2386
## Jul 2017  43.87771     1117.7205
## Aug 2017  45.55484      967.4410
## Sep 2017  48.16237     1000.4794
## Oct 2017  48.89114     1195.7028
## Nov 2017  53.34505     1264.6378
## Dec 2017  54.05576     1322.8053
## Jan 2018  57.45399     1051.3040
## Feb 2018  56.15676     1354.4276
## Mar 2018  57.22458     1136.2008
## Apr 2018  58.15973     1114.5576
## May 2018  62.89929     1189.2718
## Jun 2018  64.63686     1109.7930
## Jul 2018  66.42162     1155.8421
## Aug 2018  64.26567     1181.0645
## Sep 2018  68.36348     1205.8530
## Oct 2018  71.15330     1026.6360
## Nov 2018  59.82583     1134.6351
## Dec 2018  51.86867     1198.1957
## Jan 2019  54.05666     1071.4520
## Feb 2019  57.37981     1475.2783
## Mar 2019  59.46449     1150.2987
## Apr 2019  62.07703     1023.4217
## May 2019  60.33674     1204.6957
## Jun 2019  56.90537      995.0349
## Jul 2019  57.87580     1078.6825
## Aug 2019  49.58496     1081.3750
## Sep 2019  55.05522      994.5735
## Oct 2019  51.00463      963.0636
## Nov 2019  50.68969     1114.4386
## Dec 2019  54.54901     1066.4297
## Jan 2020  49.79299     1212.2405
## Feb 2020  44.63505      990.4275
## Mar 2020  28.92302     1079.1894
# Graficar la BD de petroleo 
plot(petroleo.ts)

# Grafico para la BD de Precio
precio.ts <- ts(petroleo.ts[,1],start = 2013,frequency = 12)
precio.ts
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2013  97.98278 103.35294 100.77090  97.75538  97.90686  96.99315  99.67255
## 2014  88.31081  90.82224  91.39522  93.88863  95.08631  97.01105  93.32017
## 2015  40.45127  45.98606  46.01733  49.32555  52.03910  52.82573  45.16595
## 2016  23.10238  23.72933  28.32656  31.33582  36.72636  39.80715  37.97153
## 2017  44.50008  44.17497  41.93243  43.22118  43.85074  41.15105  43.87771
## 2018  57.45399  56.15676  57.22458  58.15973  62.89929  64.63686  66.42162
## 2019  54.05666  57.37981  59.46449  62.07703  60.33674  56.90537  57.87580
## 2020  49.79299  44.63505  28.92302                                        
##            Aug       Sep       Oct       Nov       Dec
## 2013  99.24414  98.14572  93.87329  88.48590  89.40966
## 2014  89.50745  84.12824  72.50936  63.47980  50.18138
## 2015  38.41927  36.29036  34.86077  32.50883  26.19610
## 2016  37.74090  36.82666  40.66836  38.36162  42.32596
## 2017  45.55484  48.16237  48.89114  53.34505  54.05576
## 2018  64.26567  68.36348  71.15330  59.82583  51.86867
## 2019  49.58496  55.05522  51.00463  50.68969  54.54901
## 2020
plot(precio.ts)

# Grafico para la BD de Exportaciones
Export.ts <- ts(petroleo.ts[,2],start = 2013,frequency = 12)
Export.ts
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2013  980.8128 1016.6572  893.4956 1057.0875  914.6077  943.7099 1033.8571
## 2014  893.0505 1005.5936  890.6116  858.8093  900.7373  877.4955  863.5452
## 2015  970.9621  930.4431  871.8023  750.1818  748.3895  735.7843  879.7783
## 2016  796.7651  886.6428  774.4293  853.7166  980.1193  967.6453  904.3905
## 2017  936.8024 1088.6730  965.0702  976.3228  950.1525 1046.2386 1117.7205
## 2018 1051.3040 1354.4276 1136.2008 1114.5576 1189.2718 1109.7930 1155.8421
## 2019 1071.4520 1475.2783 1150.2987 1023.4217 1204.6957  995.0349 1078.6825
## 2020 1212.2405  990.4275 1079.1894                                        
##            Aug       Sep       Oct       Nov       Dec
## 2013  977.7406 1007.0700 1011.7472  984.7709 1031.8087
## 2014  946.0628  949.0946  882.7212  934.6265 1012.5247
## 2015  931.2851  895.4856  899.8572  857.3915  780.8092
## 2016  973.4510 1052.1847 1046.4826  993.6913  975.4781
## 2017  967.4410 1000.4794 1195.7028 1264.6378 1322.8053
## 2018 1181.0645 1205.8530 1026.6360 1134.6351 1198.1957
## 2019 1081.3750  994.5735  963.0636 1114.4386 1066.4297
## 2020
plot(Export.ts)