Q3 Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of pˆm1. The x- axis should display pˆm1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy. Hint: In a setting with two classes, pˆm1 = 1 − pˆm2. You could make this plot by hand, but it will be much easier to make in R.
p <- seq(0, 1, 0.01)
gini.index <- 2 * p * (1 - p)
class.error <- 1 - pmax(p, 1 - p)
cross.entropy <- - (p * log(p) + (1 - p) * log(1 - p))
matplot(p, cbind(gini.index, class.error, cross.entropy), col = c("red", "green", "blue"))
Q8. In the lab, a classification tree was applied to the Carseats data set af- ter converting Sales into a qualitative response variable. Now we will seek to predict Sales using regression trees and related approaches, treating the response as a quantitative variable.
library(ISLR)
set.seed(1)
train <- sample(1:nrow(Carseats), nrow(Carseats) / 2)
Carseats.train <- Carseats[train, ]
Carseats.test <- Carseats[-train, ]
library(tree)
tree.carseats <- tree(Sales ~ ., data = Carseats.train)
summary(tree.carseats)
##
## Regression tree:
## tree(formula = Sales ~ ., data = Carseats.train)
## Variables actually used in tree construction:
## [1] "ShelveLoc" "Price" "Age" "Advertising" "CompPrice"
## [6] "US"
## Number of terminal nodes: 18
## Residual mean deviance: 2.167 = 394.3 / 182
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.88200 -0.88200 -0.08712 0.00000 0.89590 4.09900
plot(tree.carseats)
text(tree.carseats, pretty = 0)
yhat <- predict(tree.carseats, newdata = Carseats.test)
mean((yhat - Carseats.test$Sales)^2)
## [1] 4.922039
We may conclude that the Test MSE is about 4.15.
cv.carseats <- cv.tree(tree.carseats)
plot(cv.carseats$size, cv.carseats$dev, type = "b")
tree.min <- which.min(cv.carseats$dev)
points(tree.min, cv.carseats$dev[tree.min], col = "red", cex = 2, pch = 20)
prune.carseats <- prune.tree(tree.carseats, best = 8)
plot(prune.carseats)
text(prune.carseats, pretty = 0)
yhat <- predict(prune.carseats, newdata = Carseats.test)
mean((yhat - Carseats.test$Sales)^2)
## [1] 5.113254
We may see that pruning the tree increases the Test MSE to 5.1.
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
set.seed(1)
bag.car = randomForest(Sales~.,data=Carseats.train,mtry = 10, importance = TRUE)
yhat.bag = predict(bag.car,newdata=Carseats.test)
mean((yhat.bag-Carseats.test$Sales)^2)
## [1] 2.605253
We may see that bagging decreases the Test MSE to 2.6.
importance(bag.car)
## %IncMSE IncNodePurity
## CompPrice 24.8888481 170.182937
## Income 4.7121131 91.264880
## Advertising 12.7692401 97.164338
## Population -1.8074075 58.244596
## Price 56.3326252 502.903407
## ShelveLoc 48.8886689 380.032715
## Age 17.7275460 157.846774
## Education 0.5962186 44.598731
## Urban 0.1728373 9.822082
## US 4.2172102 18.073863
varImpPlot(bag.car)
The most important variables are the price that company charges for car seats at each site and the quality of the shelving location for the car seats at each site. The test MSE associated with the bagegd regression tree is 2.55, almost half that obtained using an optimally-pruned single tree. we can conclude that price and shelveLoc are the most important tools
library(randomForest)
set.seed(1)
rf.car = randomForest(Sales~.,data=Carseats.train,mtry = 3, importance = TRUE)
yhat.rf = predict(rf.car,newdata=Carseats.test)
mean((yhat.rf-Carseats.test$Sales)^2)
## [1] 2.960559
In this case, with m=p‾√, we have a Test MSE of 2.9
Q9. This problem involves the OJ data set which is part of the ISLR package.
set.seed(1)
train <- sample(1:nrow(OJ), 800)
OJ.train <- OJ[train, ]
OJ.test <- OJ[-train, ]
tree.oj <- tree(Purchase ~ ., data = OJ.train)
summary(tree.oj)
##
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "SpecialCH" "ListPriceDiff"
## [5] "PctDiscMM"
## Number of terminal nodes: 9
## Residual mean deviance: 0.7432 = 587.8 / 791
## Misclassification error rate: 0.1588 = 127 / 800
The fitted tree has 8 terminal nodes and a training error rate of 0.165.
(c)Type in the name of the tree object in order to get a detailed text output. Pick one of the terminal nodes, and interpret the information displayed.
tree.oj
## node), split, n, deviance, yval, (yprob)
## * denotes terminal node
##
## 1) root 800 1073.00 CH ( 0.60625 0.39375 )
## 2) LoyalCH < 0.5036 365 441.60 MM ( 0.29315 0.70685 )
## 4) LoyalCH < 0.280875 177 140.50 MM ( 0.13559 0.86441 )
## 8) LoyalCH < 0.0356415 59 10.14 MM ( 0.01695 0.98305 ) *
## 9) LoyalCH > 0.0356415 118 116.40 MM ( 0.19492 0.80508 ) *
## 5) LoyalCH > 0.280875 188 258.00 MM ( 0.44149 0.55851 )
## 10) PriceDiff < 0.05 79 84.79 MM ( 0.22785 0.77215 )
## 20) SpecialCH < 0.5 64 51.98 MM ( 0.14062 0.85938 ) *
## 21) SpecialCH > 0.5 15 20.19 CH ( 0.60000 0.40000 ) *
## 11) PriceDiff > 0.05 109 147.00 CH ( 0.59633 0.40367 ) *
## 3) LoyalCH > 0.5036 435 337.90 CH ( 0.86897 0.13103 )
## 6) LoyalCH < 0.764572 174 201.00 CH ( 0.73563 0.26437 )
## 12) ListPriceDiff < 0.235 72 99.81 MM ( 0.50000 0.50000 )
## 24) PctDiscMM < 0.196196 55 73.14 CH ( 0.61818 0.38182 ) *
## 25) PctDiscMM > 0.196196 17 12.32 MM ( 0.11765 0.88235 ) *
## 13) ListPriceDiff > 0.235 102 65.43 CH ( 0.90196 0.09804 ) *
## 7) LoyalCH > 0.764572 261 91.20 CH ( 0.95785 0.04215 ) *
We pick the node labelled 8, which is a terminal node because of the asterisk. The split criterion is LoyalCH < 0.035, the number of observations in that branch is 57 with a deviance of 10.07 and an overall prediction for the branch of MM. Less than 2% of the observations in that branch take the value of CH, and the remaining 98% take the value of MM.
plot(tree.oj)
text(tree.oj, pretty = 0)
We may see that the most important indicator of “Purchase” appears to be “LoyalCH”, since the first branch differentiates the intensity of customer brand loyalty to CH. In fact, the top three nodes contain “LoyalCH”.
(e)Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels. What is the test error rate ?
tree.pred <- predict(tree.oj, OJ.test, type = "class")
table(tree.pred, OJ.test$Purchase)
##
## tree.pred CH MM
## CH 160 38
## MM 8 64
1 - (160 + 64) / 270
## [1] 0.1703704
We may conclude that the test error rate is about 17%.
cv.oj <- cv.tree(tree.oj, FUN = prune.misclass)
cv.oj
## $size
## [1] 9 8 7 4 2 1
##
## $dev
## [1] 150 150 149 158 172 315
##
## $k
## [1] -Inf 0.000000 3.000000 4.333333 10.500000 151.000000
##
## $method
## [1] "misclass"
##
## attr(,"class")
## [1] "prune" "tree.sequence"
plot(cv.oj$size, cv.oj$dev, type = "b", xlab = "Tree size", ylab = "Deviance")
We may see that the 2-node tree is the smallest tree with the lowest classification error rate.
prune.oj <- prune.misclass(tree.oj, best = 2)
plot(prune.oj)
text(prune.oj, pretty = 0)
summary(tree.oj)
##
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "SpecialCH" "ListPriceDiff"
## [5] "PctDiscMM"
## Number of terminal nodes: 9
## Residual mean deviance: 0.7432 = 587.8 / 791
## Misclassification error rate: 0.1588 = 127 / 800
summary(prune.oj)
##
## Classification tree:
## snip.tree(tree = tree.oj, nodes = 3:2)
## Variables actually used in tree construction:
## [1] "LoyalCH"
## Number of terminal nodes: 2
## Residual mean deviance: 0.9768 = 779.5 / 798
## Misclassification error rate: 0.205 = 164 / 800
The misclassification error rate is slightly higher for the pruned tree (0.1825 vs 0.165).
prune.pred <- predict(prune.oj, OJ.test, type = "class")
table(prune.pred, OJ.test$Purchase)
##
## prune.pred CH MM
## CH 142 24
## MM 26 78
1 - (142 + 78) / 270
## [1] 0.1851852
In this case, the pruning process increased the test error rate to about 18%, but it produced a way more interpretable tree.