Data getting
wos_scopus_tos <-
tosr::tosr_load("savedrecs636(1).txt", "savedrecs636(2).txt", "scopusmil.bib") # Create data from searches
[1] 3
Converting your wos collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
Converting your wos collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
Converting your scopus collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
440 duplicated documents have been removed
tree_of_science <-
tosr::tosR("savedrecs636(1).txt", "savedrecs636(2).txt", "scopusmil.bib") # Create data from searches
[1] 3
Converting your wos collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
Converting your wos collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
Converting your scopus collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
440 duplicated documents have been removed
Computing TOS SAP
Computing TOS subfields
wos <-
bibliometrix::convert2df(c("savedrecs636(1).txt",
"savedrecs636(2).txt")) # create dataframe from wos file
Converting your wos collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
scopus <-
bibliometrix::convert2df("scopusmil.bib", # Create dataframe from scopus file
dbsource = "scopus",
format = "bibtex")
Converting your scopus collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
Table 1. Search Criteria
table_1 <-
tibble(wos = length(wos$SR), # Create a dataframe with the values.
scopus = length(scopus$SR),
total = length(wos_scopus_tos$df$SR))
table_1
Figure 1. Languages
main_languages <-
wos_scopus_tos$df |>
select(LA) |>
separate_rows(LA, sep = "; ") |>
count(LA, sort = TRUE) |>
slice(1:5)
other_languages <-
wos_scopus_tos$df |>
separate_rows(LA, sep = "; ") |>
select(LA) |>
count(LA, sort = TRUE) |>
slice(6:n) |>
summarise(n = sum(n)) |>
mutate(LA = "OTHERS") |>
select(LA, n)
Warning in 6:n :
numerical expression has 13 elements: only the first used
languages <-
main_languages |>
bind_rows(other_languages) |>
mutate(percentage = n / sum(n),
percentage = round(percentage,
digits = 2) ) |>
rename(language = LA) |>
select(language, percentage, count = n)
languages
df <- languages |>
rename(value = percentage, group = language) |>
mutate(value = value * 100) |>
select(value, group)
df2 <- df %>%
mutate(csum = rev(cumsum(rev(value))),
pos = value/2 + lead(csum, 1),
pos = if_else(is.na(pos), value/2, pos))
ggplot(df, aes(x = 2 , y = value, fill = fct_inorder(group))) +
geom_col(width = 1, color = 1) +
coord_polar(theta = "y") +
geom_label_repel(data = df2,
aes(y = pos, label = paste0(value, "%")),
size = 4.5, nudge_x = 1, show.legend = FALSE) +
theme(panel.background = element_blank(),
axis.line = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
plot.title = element_text(hjust = 0.5, size = 18)) +
labs(title = "Languages") +
guides(fill = guide_legend(title = "")) +
theme_void() +
xlim(0.5, 2.5)

Table 2. Country production
data_biblio_wos <- biblioAnalysis(wos)
wos_country <-
data_biblio_wos$Countries |>
data.frame() |>
mutate(database = "wos") |>
select(country = Tab, papers = Freq, database ) |>
arrange(desc(papers))
data_biblio_scopus <- biblioAnalysis(scopus)
scopus_country <-
data_biblio_scopus$Countries |>
data.frame() |>
mutate(database = "scopus") |>
select(country = Tab, papers = Freq, database ) |>
arrange(desc(papers))
data_biblio_total <- biblioAnalysis(wos_scopus_tos$df)
total_country <-
data_biblio_total$Countries |>
data.frame() |>
mutate(database = "total") |>
select(country = Tab, papers = Freq, database ) |>
arrange(desc(papers))
wos_scopus_total_country <-
wos_country |>
bind_rows(scopus_country,
total_country) |>
mutate(country = as.character(country)) |>
pivot_wider(names_from = database,
values_from = papers) |>
arrange(desc(total)) |>
slice(1:10) |>
mutate(percentage = total / (table_1 |> pull(total)),
percentage = round(percentage, digits = 2))
wos_scopus_total_country
Table 3. Author production
wos_authors <-
data_biblio_wos$Authors |>
data.frame() |>
rename(authors_wos = AU, papers_wos = Freq) |>
arrange(desc(papers_wos)) |>
slice(1:10) |>
mutate(database_wos = "wos")
scopus_authors <-
data_biblio_scopus$Authors |>
data.frame() |>
rename(authors_scopus = AU, papers_scopus = Freq) |>
arrange(desc(papers_scopus)) |>
slice(1:10) |>
mutate(database_scopus = "scopus")
total_authors <-
data_biblio_total$Authors |>
data.frame() |>
rename(authors_total = AU,
papers_total = Freq) |>
arrange(desc(papers_total)) |>
slice(1:10) |>
mutate(database_total = "total")
wos_scopus_authors <-
wos_authors |>
bind_cols(scopus_authors,
total_authors)
wos_scopus_authors
Table 4. Journal production
wos_journal <-
wos |>
filter(str_detect(DT, "ARTICLE")) |>
select(journal = SO) |>
na.omit() |>
count(journal, sort = TRUE) |>
slice(1:20) |>
rename(publications = n) |>
mutate(database = "wos")
scopus_journal <-
scopus |>
filter(str_detect(DT, "ARTICLE")) |>
select(journal = SO) |>
na.omit() |>
count(journal, sort = TRUE) |>
slice(1:20) |>
rename(publications = n) |>
mutate(database = "scopus")
total_journal <-
wos_scopus_tos$df |>
filter(str_detect(DT, "ARTICLE")) |>
select(journal = SO) |>
na.omit() |>
count(journal, sort = TRUE) |>
slice(1:20) |>
rename(publications = n) |>
mutate(database = "total")
wos_scopus_total_journal <-
wos_journal |>
bind_rows(scopus_journal,
total_journal) |>
pivot_wider(names_from = database,
values_from = publications) |>
arrange(desc(total)) |>
slice(1:10) |>
mutate(percentage = total / table_1 |> pull(total),
percentage = round(percentage, digits = 2))
wos_scopus_total_journal
Figure 4. Tree of Science
Tree of Science
tree_of_science
Clustering analysis
Finding the clusters
nodes <- # Create a dataframe with the fullname of articles
tibble(name = V(wos_scopus_tos$graph)$name) |>
left_join(wos_scopus_tos$nodes,
by = c("name" = "ID_TOS"))
wos_scopus_citation_network_1 <- # Add the article names to the citation network
wos_scopus_tos$graph |>
igraph::set.vertex.attribute(name = "full_name",
index = V(wos_scopus_tos$graph)$name,
value = nodes$CITE)
nodes_1 <- # Create a dataframe with subfields (clusters)
tibble(name = V(wos_scopus_citation_network_1)$name,
cluster = V(wos_scopus_citation_network_1)$subfield,
full_name = V(wos_scopus_citation_network_1)$full_name)
nodes_2 <- # Count the number of articles per cluster
nodes_1 |>
count(cluster, sort = TRUE) |>
mutate(cluster_1 = row_number()) |>
select(cluster, cluster_1)
nodes_3 <-
nodes_1 |>
left_join(nodes_2) |>
rename(subfield = cluster_1) |>
select(name, full_name, subfield)
Joining, by = "cluster"
edge_list <-
get.edgelist(wos_scopus_citation_network_1) |>
data.frame() |>
rename(Source = X1, Target = X2)
wos_scopus_citation_network <-
graph.data.frame(d = edge_list,
directed = TRUE,
vertices = nodes_3)
wos_scopus_citation_network |>
summary()
IGRAPH c8e006d DN-- 6343 18178 --
+ attr: name (v/c), full_name (v/c), subfield (v/n)
Choosing clusters
We proposed the tipping point option to choose the number of clusters. See this paper:
https://www.nature.com/articles/s41598-021-85041-8
clusters <-
tibble(cluster = V(wos_scopus_citation_network)$subfield) |>
count(cluster, sort = TRUE)
clusters |>
ggplot(aes(x = reorder(cluster, n), y = n)) +
geom_point()

Removing not chosen clusters
wos_scopus_citation_network_clusters <-
wos_scopus_citation_network |>
delete.vertices(which(V(wos_scopus_citation_network)$subfield != 1 & # filter clusters
V(wos_scopus_citation_network)$subfield != 2 &
V(wos_scopus_citation_network)$subfield != 3 &
V(wos_scopus_citation_network)$subfield != 4))
wos_scopus_citation_network_clusters |>
summary()
IGRAPH 3760b3c DN-- 4134 11459 --
+ attr: name (v/c), full_name (v/c), subfield (v/n)
Cluster 1
nodes_full_data |>
filter(cluster == 1) |>
select(full_name) |>
mutate(full_name = str_extract(full_name, SPC %R% # Regular expressions
one_or_more(WRD) %R%
SPC %R%
one_or_more(or(WRD, ANY_CHAR))),
full_name = str_remove(full_name, OPEN_PAREN %R%
repeated(DGT, 4) %R%
CLOSE_PAREN %R%
one_or_more(or(WRD,ANY_CHAR))),
full_name = str_trim(full_name)) |>
unnest_tokens(output = word, input = full_name) |> # Tokenization
anti_join(stop_words) |> # Removing stop words
filter(word != "doi",
!str_detect(word, "[0-9]")) |> # WoS data
filter(word == str_remove(word, pattern = "citation"),
word == str_remove(word, pattern = "research"), # Words removed
word == str_remove(word, pattern = "analysis"),
word == str_remove(word, pattern = "science"),
word == str_remove(word, pattern = "social"),
word == str_remove(word, pattern = "innovation")) |>
count(word, sort = TRUE) |>
with(wordcloud(word,
n,
random.order = FALSE,
max.words = 50,
colors=pal))
Joining, by = "word"
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
proceedings could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
european could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
framework could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
perspective could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
urban could not be fit on page. It will not be plotted.

Cluster 2
nodes_full_data |>
filter(cluster == 2) |>
select(full_name) |>
mutate(full_name = str_extract(full_name, SPC %R% # Regular expressions
one_or_more(WRD) %R%
SPC %R%
one_or_more(or(WRD, ANY_CHAR))),
full_name = str_remove(full_name, OPEN_PAREN %R%
repeated(DGT, 4) %R%
CLOSE_PAREN %R%
one_or_more(or(WRD,ANY_CHAR))),
full_name = str_trim(full_name)) |>
unnest_tokens(output = word, input = full_name) |>
anti_join(stop_words) |>
filter(word != "doi",
!str_detect(word, "[0-9]")) |> # WoS data
filter(word == str_remove(word, pattern = "citation"),
word == str_remove(word, pattern = "research"),
word == str_remove(word, pattern = "analysis"),
word == str_remove(word, pattern = "science"),
word == str_remove(word, pattern = "social"),
word == str_remove(word, pattern = "innovation")) |>
count(word, sort = TRUE) |>
with(wordcloud(word,
n,
random.order = FALSE,
max.words = 50,
colors=pal))
Joining, by = "word"

Cluster 3
cluster_3 <-
wos_scopus_citation_network |>
delete.vertices(which(V(wos_scopus_citation_network)$subfield != 3))
cluster_3_page_rank <-
cluster_3 |>
set.vertex.attribute(name = "page_rank",
value = page_rank(cluster_3)$vector)
cluster_3_df <-
tibble(name = V(cluster_3_page_rank)$name,
full_name = V(cluster_3_page_rank)$full_name,
page_rank = V(cluster_3_page_rank)$page_rank,
cluster = V(cluster_3_page_rank)$subfield,)
nodes_full_data |>
filter(cluster == 3) |>
select(full_name) |>
mutate(full_name = str_extract(full_name, SPC %R% # Regular expressions
one_or_more(WRD) %R%
SPC %R%
one_or_more(or(WRD, ANY_CHAR))),
full_name = str_remove(full_name, OPEN_PAREN %R%
repeated(DGT, 4) %R%
CLOSE_PAREN %R%
one_or_more(or(WRD,ANY_CHAR))),
full_name = str_trim(full_name)) |>
unnest_tokens(output = word, input = full_name) |>
anti_join(stop_words) |>
filter(word != "doi",
!str_detect(word, "[0-9]")) |> # WoS data
filter(word == str_remove(word, pattern = "citation"),
word == str_remove(word, pattern = "research"),
word == str_remove(word, pattern = "analysis"),
word == str_remove(word, pattern = "science"),
word == str_remove(word, pattern = "social"),
word == str_remove(word, pattern = "innovation")) |>
count(word, sort = TRUE) |>
with(wordcloud(word,
n,
random.order = FALSE,
max.words = 50,
colors=pal))
Joining, by = "word"

Cluster 4
cluster_4 <-
wos_scopus_citation_network |>
delete.vertices(which(V(wos_scopus_citation_network)$subfield != 4))
cluster_4_page_rank <-
cluster_4 |>
set.vertex.attribute(name = "page_rank",
value = page_rank(cluster_4)$vector)
cluster_4_df <-
tibble(name = V(cluster_4_page_rank)$name,
full_name = V(cluster_4_page_rank)$full_name,
page_rank = V(cluster_4_page_rank)$page_rank,
cluster = V(cluster_4_page_rank)$subfield,)
nodes_full_data |>
filter(cluster == 4) |>
select(full_name) |>
mutate(full_name = str_extract(full_name, SPC %R% # Regular expressions
one_or_more(WRD) %R%
SPC %R%
one_or_more(or(WRD, ANY_CHAR))),
full_name = str_remove(full_name, OPEN_PAREN %R%
repeated(DGT, 4) %R%
CLOSE_PAREN %R%
one_or_more(or(WRD,ANY_CHAR))),
full_name = str_trim(full_name)) |>
unnest_tokens(output = word, input = full_name) |>
anti_join(stop_words) |>
filter(word != "doi",
!str_detect(word, "[0-9]")) |> # WoS data
filter(word == str_remove(word, pattern = "citation"),
word == str_remove(word, pattern = "research"),
word == str_remove(word, pattern = "analysis"),
word == str_remove(word, pattern = "science"),
word == str_remove(word, pattern = "social"),
word == str_remove(word, pattern = "innovation")) |>
count(word, sort = TRUE) |>
with(wordcloud(word,
n,
random.order = FALSE,
max.words = 50,
colors=pal))
Joining, by = "word"
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
development could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
ecological could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
transformation could not be fit on page. It will not be plotted.
Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors = pal) :
world could not be fit on page. It will not be plotted.

Exporting files
write_csv(table_1, "table_1.csv") # Exporting table 1
write_csv(wos_scopus_total_country, "table_2_.csv") # Exporting table 2
write_csv(wos_scopus_authors, "table_3.csv") # Exporting table 3
write_csv(wos_scopus_total_journal, "table_4.csv") # Exporting table 4
write_csv(languages, "figure_1.csv") # Exporting data figure 1
write_csv(figure_2_data, "figure_2.csv") # Exporting data figure 2
write.graph(wos_scopus_citation_network, "citation_network_full.graphml", "graphml") # Exporting graph
write.graph(wos_scopus_citation_network_clusters,
"wos_scopus_citation_network_clusters.graphml",
"graphml")
write.csv(tree_of_science, "tree_of_science.csv") # Exporting Tree of Science
write.csv(cluster_1_df, "cluster_1.csv") # Exporting cluster 1
write.csv(cluster_2_df, "cluster_2.csv") # Exporting cluster 2
write.csv(cluster_3_df, "cluster_3.csv") # Exporting cluster 3
write.csv(cluster_4_df, "cluster_4.csv") # Exporting cluster 4
write.csv(nodes_full_data, "nodes_full_data.csv") # Exporting all nodes
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCmVkaXRvcl9vcHRpb25zOiAKICBjaHVua19vdXRwdXRfdHlwZTogaW5saW5lCi0tLQoKIyBDcmVhdGluZyB0aGUgZW52aXJvbm1lbnQKCmBgYHtyfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeSh0b3NyKQpsaWJyYXJ5KGJpYmxpb21ldHJpeCkKbGlicmFyeShsdWJyaWRhdGUpCmxpYnJhcnkoaWdyYXBoKQpsaWJyYXJ5KHRpZHl0ZXh0KQpsaWJyYXJ5KHdvcmRjbG91ZCkKbGlicmFyeShyZWJ1cykKbGlicmFyeShnZ3JlcGVsKSAjIGltcHJvdmUgZG9udXQgdmlzdWFsaXphdGlvbgpgYGAKClRoaXMgdGVtcGxhdGUgaXMgYmFzZWQgaW4gdGhpcyBwYXBlcgoKaHR0cHM6Ly9yZXZpc3Rhcy51Y20uZXMvaW5kZXgucGhwL1JFVkUvYXJ0aWNsZS92aWV3Lzc1NTY2LzQ1NjQ0NTY1NTc0NjcKCkZvciBhIGRldGFpbCBleHBsYW5hdGlvbiBvZiBob3cgdG8gdXNlIGl0LCBwbGVhc2Ugd2F0Y2ggdGhpcyB2aWRlbyAKCmh0dHBzOi8vd3d3LnlvdXR1YmUuY29tL3dhdGNoP3Y9anRLU2lmdk52VE0KCgojIERhdGEgZ2V0dGluZwoKYGBge3J9Cndvc19zY29wdXNfdG9zIDwtIAogIHRvc3I6OnRvc3JfbG9hZCgic2F2ZWRyZWNzNjM2KDEpLnR4dCIsICJzYXZlZHJlY3M2MzYoMikudHh0IiwgInNjb3B1c21pbC5iaWIiKSAgIyBDcmVhdGUgZGF0YSBmcm9tIHNlYXJjaGVzICAgCiAgICAgICAgICAgICAgICAgIAoKdHJlZV9vZl9zY2llbmNlIDwtIAogIHRvc3I6OnRvc1IoInNhdmVkcmVjczYzNigxKS50eHQiLCAic2F2ZWRyZWNzNjM2KDIpLnR4dCIsICJzY29wdXNtaWwuYmliIikgICMgQ3JlYXRlIGRhdGEgZnJvbSBzZWFyY2hlcyAgIAogICAgICAgICAgICAgCgp3b3MgPC0gCiAgYmlibGlvbWV0cml4Ojpjb252ZXJ0MmRmKGMoInNhdmVkcmVjczYzNigxKS50eHQiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAic2F2ZWRyZWNzNjM2KDIpLnR4dCIpKSAgIyBjcmVhdGUgZGF0YWZyYW1lIGZyb20gd29zIGZpbGUKCnNjb3B1cyA8LSAKICBiaWJsaW9tZXRyaXg6OmNvbnZlcnQyZGYoInNjb3B1c21pbC5iaWIiLCAjIENyZWF0ZSBkYXRhZnJhbWUgZnJvbSBzY29wdXMgZmlsZQogICAgICAgICAgICAgICAgICAgICAgICAgICBkYnNvdXJjZSA9ICJzY29wdXMiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgZm9ybWF0ID0gImJpYnRleCIpCmBgYAoKIyMgVGFibGUgMS4gU2VhcmNoIENyaXRlcmlhCgpgYGB7cn0KdGFibGVfMSA8LSAKICB0aWJibGUod29zID0gbGVuZ3RoKHdvcyRTUiksICMgQ3JlYXRlIGEgZGF0YWZyYW1lIHdpdGggdGhlIHZhbHVlcy4KICAgICAgICAgc2NvcHVzID0gbGVuZ3RoKHNjb3B1cyRTUiksIAogICAgICAgICB0b3RhbCA9IGxlbmd0aCh3b3Nfc2NvcHVzX3RvcyRkZiRTUikpCnRhYmxlXzEKYGBgCgojIyBGaWd1cmUgMS4gTGFuZ3VhZ2VzCgpgYGB7cn0KbWFpbl9sYW5ndWFnZXMgPC0gCiAgd29zX3Njb3B1c190b3MkZGYgfD4gCiAgc2VsZWN0KExBKSB8PiAKICBzZXBhcmF0ZV9yb3dzKExBLCBzZXAgPSAiOyAiKSB8PiAKICBjb3VudChMQSwgc29ydCA9IFRSVUUpIHw+IAogIHNsaWNlKDE6NSkKCm90aGVyX2xhbmd1YWdlcyA8LSAKICB3b3Nfc2NvcHVzX3RvcyRkZiB8PiAKICBzZXBhcmF0ZV9yb3dzKExBLCBzZXAgPSAiOyAiKSB8PiAKICBzZWxlY3QoTEEpIHw+IAogIGNvdW50KExBLCBzb3J0ID0gVFJVRSkgfD4gCiAgc2xpY2UoNjpuKSB8PiAKICBzdW1tYXJpc2UobiA9IHN1bShuKSkgfD4gCiAgbXV0YXRlKExBID0gIk9USEVSUyIpIHw+IAogIHNlbGVjdChMQSwgbikKCmxhbmd1YWdlcyA8LSAKICBtYWluX2xhbmd1YWdlcyB8PiAKICBiaW5kX3Jvd3Mob3RoZXJfbGFuZ3VhZ2VzKSB8PiAKICBtdXRhdGUocGVyY2VudGFnZSA9IG4gLyBzdW0obiksCiAgICAgICAgIHBlcmNlbnRhZ2UgPSByb3VuZChwZXJjZW50YWdlLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpZ2l0cyA9IDIpICkgfD4gCiAgcmVuYW1lKGxhbmd1YWdlID0gTEEpIHw+CiAgc2VsZWN0KGxhbmd1YWdlLCBwZXJjZW50YWdlLCBjb3VudCA9IG4pCgpsYW5ndWFnZXMKYGBgCgoKYGBge3J9CmRmIDwtIGxhbmd1YWdlcyB8PiAKICByZW5hbWUodmFsdWUgPSBwZXJjZW50YWdlLCBncm91cCA9IGxhbmd1YWdlKSB8PgogIG11dGF0ZSh2YWx1ZSA9IHZhbHVlICogMTAwKSB8PiAKICBzZWxlY3QodmFsdWUsIGdyb3VwKQoKZGYyIDwtIGRmICU+JSAKICBtdXRhdGUoY3N1bSA9IHJldihjdW1zdW0ocmV2KHZhbHVlKSkpLCAKICAgICAgICAgcG9zID0gdmFsdWUvMiArIGxlYWQoY3N1bSwgMSksCiAgICAgICAgIHBvcyA9IGlmX2Vsc2UoaXMubmEocG9zKSwgdmFsdWUvMiwgcG9zKSkKCmdncGxvdChkZiwgYWVzKHggPSAyICwgeSA9IHZhbHVlLCBmaWxsID0gZmN0X2lub3JkZXIoZ3JvdXApKSkgKwogIGdlb21fY29sKHdpZHRoID0gMSwgY29sb3IgPSAxKSArCiAgY29vcmRfcG9sYXIodGhldGEgPSAieSIpICsKICBnZW9tX2xhYmVsX3JlcGVsKGRhdGEgPSBkZjIsCiAgICAgICAgICAgICAgICAgICBhZXMoeSA9IHBvcywgbGFiZWwgPSBwYXN0ZTAodmFsdWUsICIlIikpLAogICAgICAgICAgICAgICAgICAgc2l6ZSA9IDQuNSwgbnVkZ2VfeCA9IDEsIHNob3cubGVnZW5kID0gRkFMU0UpICsKICB0aGVtZShwYW5lbC5iYWNrZ3JvdW5kID0gZWxlbWVudF9ibGFuaygpLAogICAgICAgIGF4aXMubGluZSA9IGVsZW1lbnRfYmxhbmsoKSwgCiAgICAgICAgYXhpcy50ZXh0ID0gZWxlbWVudF9ibGFuaygpLAogICAgICAgIGF4aXMudGlja3MgPSBlbGVtZW50X2JsYW5rKCksCiAgICAgICAgYXhpcy50aXRsZSA9IGVsZW1lbnRfYmxhbmsoKSwKICAgICAgICBwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41LCBzaXplID0gMTgpKSArCiAgbGFicyh0aXRsZSA9ICJMYW5ndWFnZXMiKSArCiAgZ3VpZGVzKGZpbGwgPSBndWlkZV9sZWdlbmQodGl0bGUgPSAiIikpICsKICB0aGVtZV92b2lkKCkgKwogIHhsaW0oMC41LCAyLjUpCmBgYAoKIyMgRmlndXJlIDIuIFNjaWVudGlmaWMgUHJvZHVjdGlvbgoKYGBge3J9Cndvc19hbnVhbF9wcm9kdWN0aW9uIDwtIAogIHdvcyB8PiAKICBzZWxlY3QoUFkpIHw+IAogIGNvdW50KFBZLCBzb3J0ID0gVFJVRSkgfD4gCiAgbmEub21pdCgpIHw+IAogIGZpbHRlcihQWSA+PSAyMDAwLAogICAgICAgICBQWSA8IHllYXIodG9kYXkoKSkpIHw+IAogIG11dGF0ZShyZWZfdHlwZSA9ICJ3b3MiKQoKc2NvcHVzX2FudWFsX3Byb2R1Y3Rpb24gIDwtIAogIHNjb3B1cyB8PiAKICBzZWxlY3QoUFkpIHw+IAogIGNvdW50KFBZLCBzb3J0ID0gVFJVRSkgfD4gCiAgbmEub21pdCgpIHw+IAogIGZpbHRlcihQWSA+PSAyMDAwLAogICAgICAgICBQWSA8IHllYXIodG9kYXkoKSkpIHw+CiAgbXV0YXRlKHJlZl90eXBlID0gInNjb3B1cyIpCgp0b3RhbF9hbnVhbF9wcm9kdWN0aW9uIDwtIAogIHdvc19zY29wdXNfdG9zJGRmIHw+IAogIHNlbGVjdChQWSkgfD4gCiAgY291bnQoUFksIHNvcnQgPSBUUlVFKSB8PiAKICBuYS5vbWl0KCkgfD4gCiAgZmlsdGVyKFBZID49IDIwMDAsCiAgICAgICAgIFBZIDwgeWVhcih0b2RheSgpKSkgfD4KICBtdXRhdGUocmVmX3R5cGUgPSAidG90YWwiKQoKd29zX3Njb3B1c190b3RhbF9hbm51YWxfcHJvZHVjdGlvbiA8LSAKICB3b3NfYW51YWxfcHJvZHVjdGlvbiB8PiAKICBiaW5kX3Jvd3Moc2NvcHVzX2FudWFsX3Byb2R1Y3Rpb24sCiAgICAgICAgICAgIHRvdGFsX2FudWFsX3Byb2R1Y3Rpb24pIAoKZmlndXJlXzJfZGF0YSA8LSAKICB3b3Nfc2NvcHVzX3RvdGFsX2FubnVhbF9wcm9kdWN0aW9uIHw+IAogIG11dGF0ZShQWSA9IHJlcGxhY2VfbmEoUFksIHJlcGxhY2UgPSAwKSkgfD4gCiAgcGl2b3Rfd2lkZXIobmFtZXNfZnJvbSA9IHJlZl90eXBlLCAKICAgICAgICAgICAgICB2YWx1ZXNfZnJvbSA9IG4pIHw+IAogIGFycmFuZ2UoZGVzYyhQWSkpCgpmaWd1cmVfMl9kYXRhIApgYGAKCmBgYHtyfQp3b3Nfc2NvcHVzX3RvdGFsX2FubnVhbF9wcm9kdWN0aW9uIHw+IAogIGdncGxvdChhZXMoeCA9IFBZLCB5ID0gbiwgY29sb3IgPSByZWZfdHlwZSkpICsKICBnZW9tX2xpbmUoKSArCiAgbGFicyh0aXRsZSA9ICJBbm51YWwgU2NpZW50aWZpYyBQcm9kdWN0aW9uIiwgCiAgICAgICB4ID0gInllYXJzIiwKICAgICAgIHkgPSAicGFwZXJzIikgKwogIHRoZW1lKHBsb3QudGl0bGUgPSBlbGVtZW50X3RleHQoaGp1c3QgPSAwLjUpKSAKYGBgCgojIyBUYWJsZSAyLiBDb3VudHJ5IHByb2R1Y3Rpb24KCmBgYHtyfQpkYXRhX2JpYmxpb193b3MgPC0gYmlibGlvQW5hbHlzaXMod29zKQoKd29zX2NvdW50cnkgPC0gCiAgZGF0YV9iaWJsaW9fd29zJENvdW50cmllcyB8PiAKICBkYXRhLmZyYW1lKCkgfD4gCiAgbXV0YXRlKGRhdGFiYXNlID0gIndvcyIpIHw+IAogIHNlbGVjdChjb3VudHJ5ID0gVGFiLCBwYXBlcnMgPSBGcmVxLCBkYXRhYmFzZSApIHw+IAogIGFycmFuZ2UoZGVzYyhwYXBlcnMpKSAKCmRhdGFfYmlibGlvX3Njb3B1cyA8LSBiaWJsaW9BbmFseXNpcyhzY29wdXMpCgpzY29wdXNfY291bnRyeSA8LSAKICBkYXRhX2JpYmxpb19zY29wdXMkQ291bnRyaWVzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICBtdXRhdGUoZGF0YWJhc2UgPSAic2NvcHVzIikgfD4gCiAgc2VsZWN0KGNvdW50cnkgPSBUYWIsIHBhcGVycyA9IEZyZXEsIGRhdGFiYXNlICkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVycykpIAoKZGF0YV9iaWJsaW9fdG90YWwgPC0gYmlibGlvQW5hbHlzaXMod29zX3Njb3B1c190b3MkZGYpCgp0b3RhbF9jb3VudHJ5IDwtIAogIGRhdGFfYmlibGlvX3RvdGFsJENvdW50cmllcyB8PiAKICBkYXRhLmZyYW1lKCkgfD4gCiAgbXV0YXRlKGRhdGFiYXNlID0gInRvdGFsIikgfD4gCiAgc2VsZWN0KGNvdW50cnkgPSBUYWIsIHBhcGVycyA9IEZyZXEsIGRhdGFiYXNlICkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVycykpIAoKd29zX3Njb3B1c190b3RhbF9jb3VudHJ5IDwtIAogIHdvc19jb3VudHJ5IHw+IAogIGJpbmRfcm93cyhzY29wdXNfY291bnRyeSwgCiAgICAgICAgICAgIHRvdGFsX2NvdW50cnkpIHw+IAogIG11dGF0ZShjb3VudHJ5ID0gYXMuY2hhcmFjdGVyKGNvdW50cnkpKSB8PiAKICBwaXZvdF93aWRlcihuYW1lc19mcm9tID0gZGF0YWJhc2UsIAogICAgICAgICAgICAgIHZhbHVlc19mcm9tID0gcGFwZXJzKSB8PiAKICBhcnJhbmdlKGRlc2ModG90YWwpKSB8PiAKICBzbGljZSgxOjEwKSB8PiAKICBtdXRhdGUocGVyY2VudGFnZSA9IHRvdGFsIC8gKHRhYmxlXzEgfD4gcHVsbCh0b3RhbCkpLAogICAgICAgICBwZXJjZW50YWdlID0gcm91bmQocGVyY2VudGFnZSwgZGlnaXRzID0gMikpCgp3b3Nfc2NvcHVzX3RvdGFsX2NvdW50cnkKYGBgCgojIyBUYWJsZSAzLiBBdXRob3IgcHJvZHVjdGlvbgoKYGBge3J9Cndvc19hdXRob3JzIDwtIAogIGRhdGFfYmlibGlvX3dvcyRBdXRob3JzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICByZW5hbWUoYXV0aG9yc193b3MgPSBBVSwgcGFwZXJzX3dvcyA9IEZyZXEpIHw+IAogIGFycmFuZ2UoZGVzYyhwYXBlcnNfd29zKSkgfD4gCiAgc2xpY2UoMToxMCkgfD4gCiAgbXV0YXRlKGRhdGFiYXNlX3dvcyA9ICJ3b3MiKQoKCnNjb3B1c19hdXRob3JzIDwtIAogIGRhdGFfYmlibGlvX3Njb3B1cyRBdXRob3JzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICByZW5hbWUoYXV0aG9yc19zY29wdXMgPSBBVSwgcGFwZXJzX3Njb3B1cyA9IEZyZXEpIHw+IAogIGFycmFuZ2UoZGVzYyhwYXBlcnNfc2NvcHVzKSkgfD4gCiAgc2xpY2UoMToxMCkgfD4gCiAgbXV0YXRlKGRhdGFiYXNlX3Njb3B1cyA9ICJzY29wdXMiKQoKdG90YWxfYXV0aG9ycyA8LSAKICBkYXRhX2JpYmxpb190b3RhbCRBdXRob3JzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICByZW5hbWUoYXV0aG9yc190b3RhbCA9IEFVLCAKICAgICAgICAgcGFwZXJzX3RvdGFsID0gRnJlcSkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVyc190b3RhbCkpIHw+IAogIHNsaWNlKDE6MTApIHw+IAogIG11dGF0ZShkYXRhYmFzZV90b3RhbCA9ICJ0b3RhbCIpCgp3b3Nfc2NvcHVzX2F1dGhvcnMgPC0gCiAgd29zX2F1dGhvcnMgfD4gCiAgYmluZF9jb2xzKHNjb3B1c19hdXRob3JzLAogICAgICAgICAgICB0b3RhbF9hdXRob3JzKQoKd29zX3Njb3B1c19hdXRob3JzCmBgYAoKIyMgVGFibGUgNC4gSm91cm5hbCBwcm9kdWN0aW9uCgpgYGB7cn0Kd29zX2pvdXJuYWwgPC0gCiAgd29zIHw+IAogIGZpbHRlcihzdHJfZGV0ZWN0KERULCAiQVJUSUNMRSIpKSB8PiAKICBzZWxlY3Qoam91cm5hbCA9IFNPKSB8PiAKICBuYS5vbWl0KCkgfD4gCiAgY291bnQoam91cm5hbCwgc29ydCA9IFRSVUUpIHw+IAogIHNsaWNlKDE6MjApIHw+IAogIHJlbmFtZShwdWJsaWNhdGlvbnMgPSBuKSB8PiAKICBtdXRhdGUoZGF0YWJhc2UgPSAid29zIikKCnNjb3B1c19qb3VybmFsIDwtIAogIHNjb3B1cyB8PiAKICBmaWx0ZXIoc3RyX2RldGVjdChEVCwgIkFSVElDTEUiKSkgfD4gCiAgc2VsZWN0KGpvdXJuYWwgPSBTTykgfD4gCiAgbmEub21pdCgpIHw+IAogIGNvdW50KGpvdXJuYWwsIHNvcnQgPSBUUlVFKSB8PiAKICBzbGljZSgxOjIwKSB8PiAKICByZW5hbWUocHVibGljYXRpb25zID0gbikgfD4gCiAgbXV0YXRlKGRhdGFiYXNlID0gInNjb3B1cyIpCgp0b3RhbF9qb3VybmFsIDwtIAogIHdvc19zY29wdXNfdG9zJGRmIHw+IAogIGZpbHRlcihzdHJfZGV0ZWN0KERULCAiQVJUSUNMRSIpKSB8PiAKICBzZWxlY3Qoam91cm5hbCA9IFNPKSB8PiAKICBuYS5vbWl0KCkgfD4gCiAgY291bnQoam91cm5hbCwgc29ydCA9IFRSVUUpIHw+IAogIHNsaWNlKDE6MjApIHw+IAogIHJlbmFtZShwdWJsaWNhdGlvbnMgPSBuKSB8PiAKICBtdXRhdGUoZGF0YWJhc2UgPSAidG90YWwiKQoKd29zX3Njb3B1c190b3RhbF9qb3VybmFsIDwtIAogIHdvc19qb3VybmFsIHw+IAogIGJpbmRfcm93cyhzY29wdXNfam91cm5hbCwgCiAgICAgICAgICAgIHRvdGFsX2pvdXJuYWwpIHw+IAogIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSBkYXRhYmFzZSwgCiAgICAgICAgICAgICAgdmFsdWVzX2Zyb20gPSBwdWJsaWNhdGlvbnMpIHw+IAogIGFycmFuZ2UoZGVzYyh0b3RhbCkpIHw+IAogIHNsaWNlKDE6MTApIHw+IAogIG11dGF0ZShwZXJjZW50YWdlID0gdG90YWwgLyB0YWJsZV8xIHw+IHB1bGwodG90YWwpLAogICAgICAgICBwZXJjZW50YWdlID0gcm91bmQocGVyY2VudGFnZSwgZGlnaXRzID0gMikpCgoKd29zX3Njb3B1c190b3RhbF9qb3VybmFsCmBgYAoKIyMgRmlndXJlIDMuIENvLWNpdGF0aW9uIG5ldHdvcmsKCiMjIyBBdXRob3IgY28tY2l0YXRpb24gbmV0d29yawoKYGBge3J9Cndvc19zY29wdXNfYXV0aG9yX21ldGF0YWcgPC0gCiAgbWV0YVRhZ0V4dHJhY3Rpb24od29zX3Njb3B1c190b3MkZGYsIEZpZWxkID0gIkNSX0FVIikKCndvc19zY29wdXNfYXV0aG9yX2NvX2NpdGF0aW9uX21hdHJpeCA8LSAKICBiaWJsaW9OZXR3b3JrKE0gPSB3b3Nfc2NvcHVzX2F1dGhvcl9tZXRhdGFnLCAKICAgICAgICAgICAgICAgIGFuYWx5c2lzID0gImNvLWNpdGF0aW9uIiwgCiAgICAgICAgICAgICAgICBuZXR3b3JrID0gImF1dGhvcnMiKQoKcGxvdF9uZXRfYXV0aG9yX2NvX2NpdGF0aW9uIDwtIAogIG5ldHdvcmtQbG90KHdvc19zY29wdXNfYXV0aG9yX2NvX2NpdGF0aW9uX21hdHJpeCwgCiAgICAgICAgICAgICAgd2VpZ2h0ZWQ9VCwgCiAgICAgICAgICAgICAgbiA9IDMwLCAKICAgICAgICAgICAgICBUaXRsZSA9ICJBdXRob3IgQ28tY2l0YXRpb24gTmV0d29yayIsIAogICAgICAgICAgICAgIHR5cGUgPSAiZnJ1Y2h0ZXJtYW4iLCAKICAgICAgICAgICAgICBzaXplPVQsCiAgICAgICAgICAgICAgZWRnZXNpemUgPSA1LAogICAgICAgICAgICAgIGxhYmVsc2l6ZT0wLjcpCmBgYAoKIyMjIEF1dGhvciBDb2xsYWJvcmF0aW9uIG5ldHdvcmsKCmBgYHtyfQp3b3Nfc2NvcHVzX2F1dGhvcl9jb2xsYWJfbWF0cml4IDwtIAogIGJpYmxpb05ldHdvcmsoTSA9IHdvc19zY29wdXNfdG9zJGRmLCAKICAgICAgICAgICAgICAgIGFuYWx5c2lzID0gImNvbGxhYm9yYXRpb24iLCAKICAgICAgICAgICAgICAgIG5ldHdvcmsgPSAiYXV0aG9ycyIpCgpwbG90X2F1dGhvcl9jb2xsYWIgPC0gCiAgbmV0d29ya1Bsb3QoTmV0TWF0cml4ID0gd29zX3Njb3B1c19hdXRob3JfY29sbGFiX21hdHJpeCwgCiAgICAgICAgICAgICAgd2VpZ2h0ZWQ9VCwgbiA9IDMwLCAKICAgICAgICAgICAgICBUaXRsZSA9ICJBdXRob3IgQ29sbGFib3JhdGlvbiBOZXR3b3JrIiwgCiAgICAgICAgICAgICAgdHlwZSA9ICJmcnVjaHRlcm1hbiIsIAogICAgICAgICAgICAgIHNpemU9VCwKICAgICAgICAgICAgICBlZGdlc2l6ZSA9IDUsCiAgICAgICAgICAgICAgbGFiZWxzaXplPTAuNykKYGBgCgojIyMgQ291bnRyeSBDb2xsYWJvcmF0aW9uIE5ldHdvcmsKCmBgYHtyfQp3b3Nfc2NvcHVzX2NvdW50cnlfY29sbGFiX21hdHJpeCA8LSAKICBiaWJsaW9OZXR3b3JrKE0gPSB3b3Nfc2NvcHVzX3RvcyRkZiwgCiAgICAgICAgICAgICAgICBhbmFseXNpcyA9ICJjb2xsYWJvcmF0aW9uIiwgCiAgICAgICAgICAgICAgICBuZXR3b3JrID0gImNvdW50cmllcyIpCgpwbG90X2NvdW50cnlfY29sbGFiIDwtIAogIG5ldHdvcmtQbG90KHdvc19zY29wdXNfY291bnRyeV9jb2xsYWJfbWF0cml4LCAKICAgICAgICAgICAgICB3ZWlnaHRlZD1ULCBuID0gMzAsIAogICAgICAgICAgICAgIFRpdGxlID0gIkNvdW50cnkgQ29sbGFib3JhdGlvbiBOZXR3b3JrIiwgCiAgICAgICAgICAgICAgdHlwZSA9ICJmcnVjaHRlcm1hbiIsIAogICAgICAgICAgICAgIHNpemU9VCwKICAgICAgICAgICAgICBlZGdlc2l6ZSA9IDUsCiAgICAgICAgICAgICAgbGFiZWxzaXplPTAuNykKYGBgCgojIyMgS2V5d29yZCBjby1jaXRhdGlvbiBuZXR3b3JrCgpgYGB7cn0Kd29zX3Njb3B1c19rZXl3b3JkX2NvX29jY3VycmVuY2VfbWF0cml4IDwtIAogIGJpYmxpb05ldHdvcmsoTSA9IHdvc19zY29wdXNfdG9zJGRmLCAKICAgICAgICAgICAgICAgIGFuYWx5c2lzID0gImNvLW9jY3VycmVuY2VzIiwgCiAgICAgICAgICAgICAgICBuZXR3b3JrID0gImtleXdvcmRzIiwgCiAgICAgICAgICAgICAgICBzZXAgPSAiOyIpCgpwbG90X25ldF9jb19vY2N1cnJlbmNlIDwtIAogIG5ldHdvcmtQbG90KHdvc19zY29wdXNfa2V5d29yZF9jb19vY2N1cnJlbmNlX21hdHJpeCwgCiAgICAgICAgICAgICAgd2VpZ2h0ZWQ9VCwgbiA9IDMwLCAKICAgICAgICAgICAgICBUaXRsZSA9ICJLZXl3b3JkIENvLW9jY3VycmVuY2UgTmV0d29yayIsIAogICAgICAgICAgICAgIHR5cGUgPSAiZnJ1Y2h0ZXJtYW4iLCAKICAgICAgICAgICAgICBzaXplPVQsCiAgICAgICAgICAgICAgZWRnZXNpemUgPSA1LAogICAgICAgICAgICAgIGxhYmVsc2l6ZT0wLjcpCmBgYAoKIyMgRmlndXJlIDQuIFRyZWUgb2YgU2NpZW5jZQoKIyMjIFRyZWUgb2YgU2NpZW5jZQoKYGBge3J9CnRyZWVfb2Zfc2NpZW5jZQpgYGAKCiMjIyBDbHVzdGVyaW5nIGFuYWx5c2lzCgpGaW5kaW5nIHRoZSBjbHVzdGVycwoKYGBge3J9Cm5vZGVzIDwtICAjIENyZWF0ZSBhIGRhdGFmcmFtZSB3aXRoIHRoZSBmdWxsbmFtZSBvZiBhcnRpY2xlcyAKICB0aWJibGUobmFtZSA9IFYod29zX3Njb3B1c190b3MkZ3JhcGgpJG5hbWUpIHw+IAogIGxlZnRfam9pbih3b3Nfc2NvcHVzX3RvcyRub2RlcywgCiAgICAgICAgICAgIGJ5ID0gYygibmFtZSIgPSAiSURfVE9TIikpCgp3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfMSA8LSAjIEFkZCB0aGUgYXJ0aWNsZSBuYW1lcyB0byB0aGUgY2l0YXRpb24gbmV0d29yawogIHdvc19zY29wdXNfdG9zJGdyYXBoIHw+IAogIGlncmFwaDo6c2V0LnZlcnRleC5hdHRyaWJ1dGUobmFtZSA9ICJmdWxsX25hbWUiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGluZGV4ID0gVih3b3Nfc2NvcHVzX3RvcyRncmFwaCkkbmFtZSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZSA9IG5vZGVzJENJVEUpCgpub2Rlc18xIDwtICMgQ3JlYXRlIGEgZGF0YWZyYW1lIHdpdGggc3ViZmllbGRzIChjbHVzdGVycykKICB0aWJibGUobmFtZSA9IFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrXzEpJG5hbWUsCiAgICAgICAgIGNsdXN0ZXIgPSBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29ya18xKSRzdWJmaWVsZCwKICAgICAgICAgZnVsbF9uYW1lID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfMSkkZnVsbF9uYW1lKQoKbm9kZXNfMiA8LSAjIENvdW50IHRoZSBudW1iZXIgb2YgYXJ0aWNsZXMgcGVyIGNsdXN0ZXIKICBub2Rlc18xIHw+IAogIGNvdW50KGNsdXN0ZXIsIHNvcnQgPSBUUlVFKSB8PiAKICBtdXRhdGUoY2x1c3Rlcl8xID0gcm93X251bWJlcigpKSB8PiAKICBzZWxlY3QoY2x1c3RlciwgY2x1c3Rlcl8xKQoKbm9kZXNfMyA8LSAKICBub2Rlc18xIHw+IAogIGxlZnRfam9pbihub2Rlc18yKSB8PiAKICByZW5hbWUoc3ViZmllbGQgPSBjbHVzdGVyXzEpIHw+IAogIHNlbGVjdChuYW1lLCBmdWxsX25hbWUsIHN1YmZpZWxkKQoKZWRnZV9saXN0IDwtIAogIGdldC5lZGdlbGlzdCh3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfMSkgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIHJlbmFtZShTb3VyY2UgPSBYMSwgVGFyZ2V0ID0gWDIpCgp3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgPC0gCiAgZ3JhcGguZGF0YS5mcmFtZShkID0gZWRnZV9saXN0LCAKICAgICAgICAgICAgICAgICAgIGRpcmVjdGVkID0gVFJVRSwgCiAgICAgICAgICAgICAgICAgICB2ZXJ0aWNlcyA9IG5vZGVzXzMpCgp3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgfD4gCiAgc3VtbWFyeSgpCmBgYAoKQ2hvb3NpbmcgY2x1c3RlcnMKCldlIHByb3Bvc2VkIHRoZSB0aXBwaW5nIHBvaW50IG9wdGlvbiB0byBjaG9vc2UgdGhlIG51bWJlciBvZiBjbHVzdGVycy4gU2VlIHRoaXMgcGFwZXI6CgpodHRwczovL3d3dy5uYXR1cmUuY29tL2FydGljbGVzL3M0MTU5OC0wMjEtODUwNDEtOAoKYGBge3J9CmNsdXN0ZXJzIDwtIAogIHRpYmJsZShjbHVzdGVyID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkKSB8PiAKICBjb3VudChjbHVzdGVyLCBzb3J0ID0gVFJVRSkKCmNsdXN0ZXJzIHw+IAogIGdncGxvdChhZXMoeCA9IHJlb3JkZXIoY2x1c3RlciwgbiksIHkgPSBuKSkgKwogIGdlb21fcG9pbnQoKSAKYGBgCgpSZW1vdmluZyBub3QgY2hvc2VuIGNsdXN0ZXJzCgpgYGB7cn0Kd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrX2NsdXN0ZXJzIDwtIAogIHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yayB8PiAKICBkZWxldGUudmVydGljZXMod2hpY2goVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDEgJiAjIGZpbHRlciBjbHVzdGVycyAKICAgICAgICAgICAgICAgICAgICAgICAgICBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkc3ViZmllbGQgIT0gMiAmCiAgICAgICAgICAgICAgICAgICAgICAgICAgVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDMgICYKICAgICAgICAgICAgICAgICAgICAgICAgICBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkc3ViZmllbGQgIT0gNCkpCgp3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfY2x1c3RlcnMgfD4gCiAgc3VtbWFyeSgpCmBgYAoKIyMjIENsdXN0ZXIgMQoKYGBge3J9CnBhbCA8LSBicmV3ZXIucGFsKDgsIkRhcmsyIikKCm5vZGVzX2Z1bGxfZGF0YSA8LSAKICB0aWJibGUobmFtZSA9IFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRuYW1lLAogICAgICAgICBjbHVzdGVyID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkLAogICAgICAgICBmdWxsX25hbWUgPSBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkZnVsbF9uYW1lKQoKY2x1c3Rlcl8xIDwtIAogIHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yayB8PiAKICBkZWxldGUudmVydGljZXMod2hpY2goVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDEpKQoKY2x1c3Rlcl8xX3BhZ2VfcmFuayA8LSAKICBjbHVzdGVyXzEgfD4gCiAgc2V0LnZlcnRleC5hdHRyaWJ1dGUobmFtZSA9ICJwYWdlX3JhbmsiLCAKICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZSA9IHBhZ2VfcmFuayhjbHVzdGVyXzEpJHZlY3RvcikKCmNsdXN0ZXJfMV9kZiA8LSAKICB0aWJibGUobmFtZSA9IFYoY2x1c3Rlcl8xX3BhZ2VfcmFuaykkbmFtZSwKICAgICAgICAgZnVsbF9uYW1lID0gVihjbHVzdGVyXzFfcGFnZV9yYW5rKSRmdWxsX25hbWUsCiAgICAgICAgIHBhZ2VfcmFuayA9IFYoY2x1c3Rlcl8xX3BhZ2VfcmFuaykkcGFnZV9yYW5rLAogICAgICAgICBjbHVzdGVyID0gVihjbHVzdGVyXzFfcGFnZV9yYW5rKSRzdWJmaWVsZCwpCgpub2Rlc19mdWxsX2RhdGEgfD4gCiAgZmlsdGVyKGNsdXN0ZXIgPT0gMSkgfD4gCiAgc2VsZWN0KGZ1bGxfbmFtZSkgfD4gCiAgbXV0YXRlKGZ1bGxfbmFtZSA9IHN0cl9leHRyYWN0KGZ1bGxfbmFtZSwgU1BDICVSJSAgIyBSZWd1bGFyIGV4cHJlc3Npb25zIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKFdSRCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNQQyAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUob3IoV1JELCBBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3JlbW92ZShmdWxsX25hbWUsIE9QRU5fUEFSRU4gJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwZWF0ZWQoREdULCA0KSAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBDTE9TRV9QQVJFTiAlUiUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCxBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3RyaW0oZnVsbF9uYW1lKSkgIHw+IAogIHVubmVzdF90b2tlbnMob3V0cHV0ID0gd29yZCwgaW5wdXQgPSBmdWxsX25hbWUpIHw+ICMgVG9rZW5pemF0aW9uCiAgYW50aV9qb2luKHN0b3Bfd29yZHMpIHw+ICAjIFJlbW92aW5nIHN0b3Agd29yZHMKICBmaWx0ZXIod29yZCAhPSAiZG9pIiwKICAgICAgICAgIXN0cl9kZXRlY3Qod29yZCwgIlswLTldIikpIHw+ICAjIFdvUyBkYXRhCiAgZmlsdGVyKHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImNpdGF0aW9uIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInJlc2VhcmNoIiksICAjIFdvcmRzIHJlbW92ZWQKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiYW5hbHlzaXMiKSwgCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNjaWVuY2UiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAic29jaWFsIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImlubm92YXRpb24iKSkgfD4KICBjb3VudCh3b3JkLCBzb3J0ID0gVFJVRSkgfD4gCiAgd2l0aCh3b3JkY2xvdWQod29yZCwgCiAgICAgICAgICAgICAgICAgbiwgCiAgICAgICAgICAgICAgICAgcmFuZG9tLm9yZGVyID0gRkFMU0UsIAogICAgICAgICAgICAgICAgIG1heC53b3JkcyA9IDUwLCAKICAgICAgICAgICAgICAgICBjb2xvcnM9cGFsKSkKYGBgCgojIyMgQ2x1c3RlciAyCgpgYGB7cn0KY2x1c3Rlcl8yIDwtIAogIHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yayB8PiAKICBkZWxldGUudmVydGljZXMod2hpY2goVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDIpKQoKY2x1c3Rlcl8yX3BhZ2VfcmFuayA8LSAKICBjbHVzdGVyXzIgfD4gCiAgc2V0LnZlcnRleC5hdHRyaWJ1dGUobmFtZSA9ICJwYWdlX3JhbmsiLCAKICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZSA9IHBhZ2VfcmFuayhjbHVzdGVyXzIpJHZlY3RvcikKCmNsdXN0ZXJfMl9kZiA8LSAKICB0aWJibGUobmFtZSA9IFYoY2x1c3Rlcl8yX3BhZ2VfcmFuaykkbmFtZSwKICAgICAgICAgZnVsbF9uYW1lID0gVihjbHVzdGVyXzJfcGFnZV9yYW5rKSRmdWxsX25hbWUsCiAgICAgICAgIHBhZ2VfcmFuayA9IFYoY2x1c3Rlcl8yX3BhZ2VfcmFuaykkcGFnZV9yYW5rLAogICAgICAgICBjbHVzdGVyID0gVihjbHVzdGVyXzJfcGFnZV9yYW5rKSRzdWJmaWVsZCwpCgpub2Rlc19mdWxsX2RhdGEgfD4gCiAgZmlsdGVyKGNsdXN0ZXIgPT0gMikgfD4gCiAgc2VsZWN0KGZ1bGxfbmFtZSkgfD4gCiAgbXV0YXRlKGZ1bGxfbmFtZSA9IHN0cl9leHRyYWN0KGZ1bGxfbmFtZSwgU1BDICVSJSAgIyBSZWd1bGFyIGV4cHJlc3Npb25zIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKFdSRCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNQQyAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUob3IoV1JELCBBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3JlbW92ZShmdWxsX25hbWUsIE9QRU5fUEFSRU4gJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwZWF0ZWQoREdULCA0KSAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBDTE9TRV9QQVJFTiAlUiUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCxBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3RyaW0oZnVsbF9uYW1lKSkgIHw+IAogIHVubmVzdF90b2tlbnMob3V0cHV0ID0gd29yZCwgaW5wdXQgPSBmdWxsX25hbWUpIHw+IAogIGFudGlfam9pbihzdG9wX3dvcmRzKSB8PgogIGZpbHRlcih3b3JkICE9ICJkb2kiLAogICAgICAgICAhc3RyX2RldGVjdCh3b3JkLCAiWzAtOV0iKSkgfD4gICMgV29TIGRhdGEKICBmaWx0ZXIod29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiY2l0YXRpb24iKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAicmVzZWFyY2giKSwgCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImFuYWx5c2lzIiksIAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJzY2llbmNlIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNvY2lhbCIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJpbm5vdmF0aW9uIikpIHw+CiAgY291bnQod29yZCwgc29ydCA9IFRSVUUpIHw+IAogIHdpdGgod29yZGNsb3VkKHdvcmQsIAogICAgICAgICAgICAgICAgIG4sIAogICAgICAgICAgICAgICAgIHJhbmRvbS5vcmRlciA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICBtYXgud29yZHMgPSA1MCwgCiAgICAgICAgICAgICAgICAgY29sb3JzPXBhbCkpCmBgYAoKIyMjIENsdXN0ZXIgMwoKYGBge3J9CgpjbHVzdGVyXzMgPC0gCiAgd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrIHw+IAogIGRlbGV0ZS52ZXJ0aWNlcyh3aGljaChWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkc3ViZmllbGQgIT0gMykpCgpjbHVzdGVyXzNfcGFnZV9yYW5rIDwtIAogIGNsdXN0ZXJfMyB8PiAKICBzZXQudmVydGV4LmF0dHJpYnV0ZShuYW1lID0gInBhZ2VfcmFuayIsIAogICAgICAgICAgICAgICAgICAgICAgIHZhbHVlID0gcGFnZV9yYW5rKGNsdXN0ZXJfMykkdmVjdG9yKQoKY2x1c3Rlcl8zX2RmIDwtIAogIHRpYmJsZShuYW1lID0gVihjbHVzdGVyXzNfcGFnZV9yYW5rKSRuYW1lLAogICAgICAgICBmdWxsX25hbWUgPSBWKGNsdXN0ZXJfM19wYWdlX3JhbmspJGZ1bGxfbmFtZSwKICAgICAgICAgcGFnZV9yYW5rID0gVihjbHVzdGVyXzNfcGFnZV9yYW5rKSRwYWdlX3JhbmssCiAgICAgICAgIGNsdXN0ZXIgPSBWKGNsdXN0ZXJfM19wYWdlX3JhbmspJHN1YmZpZWxkLCkKCm5vZGVzX2Z1bGxfZGF0YSB8PiAKICBmaWx0ZXIoY2x1c3RlciA9PSAzKSB8PiAKICBzZWxlY3QoZnVsbF9uYW1lKSB8PiAKICBtdXRhdGUoZnVsbF9uYW1lID0gc3RyX2V4dHJhY3QoZnVsbF9uYW1lLCBTUEMgJVIlICAjIFJlZ3VsYXIgZXhwcmVzc2lvbnMgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUoV1JEKSAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgU1BDICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShvcihXUkQsIEFOWV9DSEFSKSkpLAogICAgICAgICBmdWxsX25hbWUgPSBzdHJfcmVtb3ZlKGZ1bGxfbmFtZSwgT1BFTl9QQVJFTiAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICByZXBlYXRlZChER1QsIDQpICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIENMT1NFX1BBUkVOICVSJQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUob3IoV1JELEFOWV9DSEFSKSkpLAogICAgICAgICBmdWxsX25hbWUgPSBzdHJfdHJpbShmdWxsX25hbWUpKSAgfD4gCiAgdW5uZXN0X3Rva2VucyhvdXRwdXQgPSB3b3JkLCBpbnB1dCA9IGZ1bGxfbmFtZSkgfD4gCiAgYW50aV9qb2luKHN0b3Bfd29yZHMpIHw+CiAgZmlsdGVyKHdvcmQgIT0gImRvaSIsCiAgICAgICAgICFzdHJfZGV0ZWN0KHdvcmQsICJbMC05XSIpKSB8PiAgIyBXb1MgZGF0YSAKICBmaWx0ZXIod29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiY2l0YXRpb24iKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAicmVzZWFyY2giKSwgCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImFuYWx5c2lzIiksIAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJzY2llbmNlIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNvY2lhbCIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJpbm5vdmF0aW9uIikpIHw+CiAgY291bnQod29yZCwgc29ydCA9IFRSVUUpIHw+IAogIHdpdGgod29yZGNsb3VkKHdvcmQsIAogICAgICAgICAgICAgICAgIG4sIAogICAgICAgICAgICAgICAgIHJhbmRvbS5vcmRlciA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICBtYXgud29yZHMgPSA1MCwgCiAgICAgICAgICAgICAgICAgY29sb3JzPXBhbCkpCmBgYAojIyMgQ2x1c3RlciA0CgpgYGB7cn0KCmNsdXN0ZXJfNCA8LSAKICB3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgfD4gCiAgZGVsZXRlLnZlcnRpY2VzKHdoaWNoKFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCAhPSA0KSkKCmNsdXN0ZXJfNF9wYWdlX3JhbmsgPC0gCiAgY2x1c3Rlcl80IHw+IAogIHNldC52ZXJ0ZXguYXR0cmlidXRlKG5hbWUgPSAicGFnZV9yYW5rIiwgCiAgICAgICAgICAgICAgICAgICAgICAgdmFsdWUgPSBwYWdlX3JhbmsoY2x1c3Rlcl80KSR2ZWN0b3IpCgpjbHVzdGVyXzRfZGYgPC0gCiAgdGliYmxlKG5hbWUgPSBWKGNsdXN0ZXJfNF9wYWdlX3JhbmspJG5hbWUsCiAgICAgICAgIGZ1bGxfbmFtZSA9IFYoY2x1c3Rlcl80X3BhZ2VfcmFuaykkZnVsbF9uYW1lLAogICAgICAgICBwYWdlX3JhbmsgPSBWKGNsdXN0ZXJfNF9wYWdlX3JhbmspJHBhZ2VfcmFuaywKICAgICAgICAgY2x1c3RlciA9IFYoY2x1c3Rlcl80X3BhZ2VfcmFuaykkc3ViZmllbGQsKQoKbm9kZXNfZnVsbF9kYXRhIHw+IAogIGZpbHRlcihjbHVzdGVyID09IDQpIHw+IAogIHNlbGVjdChmdWxsX25hbWUpIHw+IAogIG11dGF0ZShmdWxsX25hbWUgPSBzdHJfZXh0cmFjdChmdWxsX25hbWUsIFNQQyAlUiUgICMgUmVndWxhciBleHByZXNzaW9ucyAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShXUkQpICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBTUEMgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCwgQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl9yZW1vdmUoZnVsbF9uYW1lLCBPUEVOX1BBUkVOICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlcGVhdGVkKERHVCwgNCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ0xPU0VfUEFSRU4gJVIlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShvcihXUkQsQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl90cmltKGZ1bGxfbmFtZSkpICB8PiAKICB1bm5lc3RfdG9rZW5zKG91dHB1dCA9IHdvcmQsIGlucHV0ID0gZnVsbF9uYW1lKSB8PiAKICBhbnRpX2pvaW4oc3RvcF93b3JkcykgfD4gCiAgZmlsdGVyKHdvcmQgIT0gImRvaSIsCiAgICAgICAgICFzdHJfZGV0ZWN0KHdvcmQsICJbMC05XSIpKSB8PiAgIyBXb1MgZGF0YQogIGZpbHRlcih3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJjaXRhdGlvbiIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJyZXNlYXJjaCIpLCAKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiYW5hbHlzaXMiKSwgCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNjaWVuY2UiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAic29jaWFsIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImlubm92YXRpb24iKSkgfD4KICBjb3VudCh3b3JkLCBzb3J0ID0gVFJVRSkgfD4gCiAgd2l0aCh3b3JkY2xvdWQod29yZCwgCiAgICAgICAgICAgICAgICAgbiwgCiAgICAgICAgICAgICAgICAgcmFuZG9tLm9yZGVyID0gRkFMU0UsIAogICAgICAgICAgICAgICAgIG1heC53b3JkcyA9IDUwLCAKICAgICAgICAgICAgICAgICBjb2xvcnM9cGFsKSkKYGBgCgojIEV4cG9ydGluZyBmaWxlcwoKYGBge3J9Cgp3cml0ZV9jc3YodGFibGVfMSwgInRhYmxlXzEuY3N2IikgIyBFeHBvcnRpbmcgdGFibGUgMQp3cml0ZV9jc3Yod29zX3Njb3B1c190b3RhbF9jb3VudHJ5LCAidGFibGVfMl8uY3N2IikgICMgRXhwb3J0aW5nIHRhYmxlIDIKd3JpdGVfY3N2KHdvc19zY29wdXNfYXV0aG9ycywgInRhYmxlXzMuY3N2IikgIyBFeHBvcnRpbmcgdGFibGUgMwp3cml0ZV9jc3Yod29zX3Njb3B1c190b3RhbF9qb3VybmFsLCAidGFibGVfNC5jc3YiKSAjIEV4cG9ydGluZyB0YWJsZSA0CgoKd3JpdGVfY3N2KGxhbmd1YWdlcywgImZpZ3VyZV8xLmNzdiIpICMgRXhwb3J0aW5nIGRhdGEgZmlndXJlIDEgCndyaXRlX2NzdihmaWd1cmVfMl9kYXRhLCAiZmlndXJlXzIuY3N2IikgIyBFeHBvcnRpbmcgZGF0YSBmaWd1cmUgMgoKd3JpdGUuZ3JhcGgod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrLCAiY2l0YXRpb25fbmV0d29ya19mdWxsLmdyYXBobWwiLCAiZ3JhcGhtbCIpICMgRXhwb3J0aW5nIGdyYXBoCndyaXRlLmdyYXBoKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29ya19jbHVzdGVycywgCiAgICAgICAgICAgICJ3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfY2x1c3RlcnMuZ3JhcGhtbCIsIAogICAgICAgICAgICAiZ3JhcGhtbCIpCgp3cml0ZS5jc3YodHJlZV9vZl9zY2llbmNlLCAidHJlZV9vZl9zY2llbmNlLmNzdiIpICMgRXhwb3J0aW5nIFRyZWUgb2YgU2NpZW5jZQoKd3JpdGUuY3N2KGNsdXN0ZXJfMV9kZiwgImNsdXN0ZXJfMS5jc3YiKSAjIEV4cG9ydGluZyBjbHVzdGVyIDEKd3JpdGUuY3N2KGNsdXN0ZXJfMl9kZiwgImNsdXN0ZXJfMi5jc3YiKSAjIEV4cG9ydGluZyBjbHVzdGVyIDIKd3JpdGUuY3N2KGNsdXN0ZXJfM19kZiwgImNsdXN0ZXJfMy5jc3YiKSAjIEV4cG9ydGluZyBjbHVzdGVyIDMKd3JpdGUuY3N2KGNsdXN0ZXJfNF9kZiwgImNsdXN0ZXJfNC5jc3YiKSAjIEV4cG9ydGluZyBjbHVzdGVyIDQKCndyaXRlLmNzdihub2Rlc19mdWxsX2RhdGEsICJub2Rlc19mdWxsX2RhdGEuY3N2IikgIyBFeHBvcnRpbmcgYWxsIG5vZGVzCmBgYAoK