What's the best thing about Switzerland?
I don't know, but its flag is a big plus!
From Ch9.5, the differential equation is
\[ \frac{d^2 U}{dx^2} = 0 \]
\[ \begin{aligned} U''(x) &= 0 \\ U'(x) &= C_1 \\ U(x) &= C_1 x + C_2 \end{aligned} \]
\[ \small{ \begin{aligned} U(x) &= C_1 x + C_2 \\ & = C_1 x + u_i \\ U(L) &= C_1 L + u_i > u_o \end{aligned} } \]
We know \[ \small{ U(L) = C_1 L + u_i > u_o } \]
From Ch9.2 and 9.4, we can use formulas for heat conduction and Newton's Law at \( x=L \) to find \( C_1 \):
\[ \small{ \begin{aligned} J(L)A &= h A\left(U(L)- u_o \right) \\ J(L) &= h \left(U(L)- u_o \right) \\ U(L) &= \frac{J(L)}{h} + u_o \\ C_1 L + u_i & = \frac{J(L)}{h} + u_o\\ C_1 &= \frac{J(L)}{hL} + \frac{u_o - u_i}{L} \end{aligned} } \]
\[ \small{ \begin{aligned} U(x) & = C_1 x + u_i \\ U'(L) & = C_1 \\ C_1 & = \frac{J(L)}{hL} + \frac{u_o - u_i}{L} \end{aligned} } \]
\[ \small{ J(L) = -k U'(L) = -k C_1 } \]
\[ \small{ C_1 = -\frac{kC_1}{hL} + \frac{u_o - u_i}{L} } \]
Solve for \( C_1 \): \[ \small{ \begin{aligned} C_1 & = -\frac{kC_1}{hL} + \frac{u_o - u_i}{L} \\ L C_1 &= -\frac{k}{h} C_1 + u_o - u_i \\ \left(L + \frac{k}{h}\right) C_1 &= u_o - u_i \\ C_1 &= \frac{u_o - u_i}{L + \frac{k}{h}} \end{aligned} } \]
Thus \[ U(x) = \left(\frac{u_o - u_i}{L + \frac{k}{h}}\right) x + u_i \]
\[ U(x) = \left(\frac{u_o - u_i}{L + \frac{k}{h}}\right) x + u_i \]
Ch11.2Ex1 <- function(h) {
ui <- 20 #20C = 68F
uo <- 5 #5C = 41F
L <- 0.15 #Wall thickness (meters)
k <- 0.5 #Conductivity of brick
#h <- 10 #Convective heat transfer coeff
U <- function(x){(uo-ui)/(L+k/h)*x+ui}
Convective heat transfer coefficient: \( h=10 \)
\[ U(x) = \left(\frac{u_o - u_i}{L + \frac{k}{h}}\right) x + u_i \]
ui <- 20 #20C = 68F
uo <- 5 #5C = 41F
L <- 0.15 #Wall thickness (meters)
k <- 0.5 #Conductivity of brick
h <- 10 #Convective heat transfer coeff
Convective heat transfer coefficient: \( h=5 \)
\[ U(x) = \left(\frac{u_o - u_i}{L + \frac{k}{h}}\right) x + u_i \]
ui <- 20 #20C = 68F
uo <- 5 #5C = 41F
L <- 0.15 #Wall thickness (meters)
k <- 0.5 #Conductivity of brick
h <- 5 #Convective heat transfer coeff
Convective heat transfer coefficient: \( h=100 \)
\[ U(x) = \left(\frac{u_o - u_i}{L + \frac{k}{h}}\right) x + u_i \]
ui <- 20 #20C = 68F
uo <- 5 #5C = 41F
L <- 0.15 #Wall thickness (meters)
k <- 0.5 #Conductivity of brick
h <- 100 #Convective heat transfer coeff
\[ \begin{aligned} J(x) &= -k \, U'(x) \\ J(L) &= -k \, C_1 \\ & = -k \frac{u_o - u_i}{L + \frac{k}{h}} \\ & = \frac{u_i - u_o}{\frac{L}{k} + \frac{1}{h}} \end{aligned} \]
\[ J(L) = \frac{u_i - u_o}{\frac{L}{k} + \frac{1}{h}} \, \small{\frac{W}{m^2} } \]
\[ J(L) = \frac{u_i - u_o}{\frac{L}{k} + \frac{1}{h}} \, \small{\frac{W}{m^2} } \]
Ch11.2Ex2 <- function(L,k) {
ui <- 20 #20C = 68F
uo <- 5 #5C = 41F
#L = thickness (meters)
#k = Conductivity
h <- 10 #Convective heat transfer coeff
(J <- (ui-uo)/(L/k+1/h)) }
Ch11.2Ex2(0.15,0.5)
[1] 37.5
Ch11.2Ex2(0.005,0.8)
[1] 141.1765
\[ J = \frac{u_i - u_o}{R}, \,R = \frac{L}{k} + \frac{1}{h} = R_1 + R_2 \]
Here
Resistance to heat flow through material, \( L/k \), increases with width of the material \( L \) and decreases with the conductivity \( k \), as we might expect.
\[ J = \frac{u_i - u_o}{\frac{1}{h_i} + \frac{L}{k} + \frac{1}{h_o}} \]
Ch11.2Ex3 <- function(L,k) {
ui <- 20 #20C = 68F
uo <- 5 #5C = 41F
#L = thickness (meters)
#k = Conductivity
hi <- 10 #Convective heat transfer coeff
ho <- 10 #Convective heat transfer coeff
(J <- (ui-uo)/(1/hi + L/k + 1/ho)) }
c1 <- Ch11.2Ex2(0.15,0.5)
c2 <- Ch11.2Ex3(0.15,0.5)
(c <- c(c1,c2))
[1] 37.5 30.0
c1 <- Ch11.2Ex2(0.005,0.8)
c2 <- Ch11.2Ex3(0.005,0.8)
(c <- c(c1,c2))
[1] 141.17647 72.72727
\[ R = \frac{1}{h_i} + \frac{L_1}{k_1} + \frac{L}{k} + \frac{1}{h_o} \]
Ch11.2Ex4<-function(L,k){
ui <- 20 #20C = 68F
uo <- 5 #5C = 41F
#L = thickness (meters)
#k = Conductivity
hi<-10 #Convective coeff
ho<-10 #Convective coeff
L1<-2 #R2.0 batts: L1/K1 = 2.0
k1<-1 #R2.0 batts: L1/K1 = 2.0
(J<-(ui-uo)/(1/hi+L1/k1+L/k+1/ho))}
c1 <- Ch11.2Ex3(0.15,0.5)
c2 <- Ch11.2Ex4(0.15,0.5)
(c <- c(c1,c2))
[1] 30 6