Answer 5.4

FeedRate <- c(rep("0.20",12), rep("0.25",12), rep("0.30",12))
Depth <- c("0.15","0.18","0.20","0.25")
Cut <- c(rep(Depth,9))
Data <- c(74, 79, 82, 99, 64, 68, 88, 104, 60, 73, 92, 96, 92, 98, 99, 104, 86, 104, 108, 110, 88, 88, 95, 99, 99, 104, 108, 114, 98, 99, 110, 111, 102, 95, 99, 107)
dat5.4 <- data.frame(FeedRate,Cut,Data)
dat5.4$FeedRate <- as.fixed(dat5.4$FeedRate)
dat5.4$Cut <-  as.fixed(dat5.4$Cut)

Model Equation:

\(Y_{ijk}\) = \(\mu\) + \(\alpha_i\) + \(\beta_j\) + \(\alpha\beta_{ij}\) + \(\epsilon_{ijk}\)

Stating Hypothesis:

Interaction:

Null Hypothesis: \(\alpha\beta_{ij} = 0\)

Alternative Hypothesis: \(\alpha\beta_{ij} \neq 0\)

Main Effect:

Null Hypothesis: \(\alpha_i = 0\) For all i

Alternative Hypothesis: \(\alpha_i \neq 0\) for some i

Null Hypothesis: \(\beta_j = 0\)

Alternative Hypothesis: \(\beta_j \neq 0\) for some j

dat.model <- aov(Data~FeedRate+Cut+FeedRate*Cut, data=dat5.4)
GAD::gad(dat.model)
## Analysis of Variance Table
## 
## Response: Data
##              Df  Sum Sq Mean Sq F value    Pr(>F)    
## FeedRate      2 3160.50 1580.25 55.0184 1.086e-09 ***
## Cut           3 2125.11  708.37 24.6628 1.652e-07 ***
## FeedRate:Cut  6  557.06   92.84  3.2324   0.01797 *  
## Residual     24  689.33   28.72                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(a.) Therefore we see that the interaction p value = 0.01797 < alpha = 0.05, we reject the null hypothesis and claim that there is an interaction between the two factors.

And for depth of cut, p = 1.652e-07 and Also, for feed rate, p = 1.086e-09 < 0.05, both also have an effect.

interaction.plot(x.factor=FeedRate, trace.factor=Cut, response=Data)

Above is the interaction plot.

plot(dat.model)

(b.) The plots seem normally distributed, also the plot for residuals vs fitted shows that varaince are constant.

mean(dat5.4$Data[1:12])
## [1] 81.58333
var(dat5.4$Data[1:12])
## [1] 205.5379
mean(dat5.4$Data[13:24])
## [1] 97.58333
var(dat5.4$Data[13:24])
## [1] 64.08333
mean(dat5.4$Data[25:36])
## [1] 103.8333
var(dat5.4$Data[25:36])
## [1] 36.87879

(c.) Point Estimates:

For Feed Rate 0.20 = The Mean is 81.58333 & Variance is 205.5379

For Feed Rate 0.25 = The Mean is 97.58333 & Variance is 64.08333

For Feed Rate 0.30 = The Mean is 103.8333 & Variance is 36.87879

(d.) P values:

For Interaction of Factors p = 1.086e-09

For Depth of Cut main effect p =1.652e-07

For Feed Rate main effect p =0.01797

Answer 5.34

Model Equation:

\(Y_{ijk}\) = \(\mu\) + \(\alpha_i\) + \(\beta_j\) + \(\gamma_k\) + \(\alpha\beta_{ij}\) + \(\epsilon_{ijk}\)

Stating Hypothesis:

Interaction:

Null Hypothesis: \(\alpha\beta_{ij} = 0\)

Alternative Hypothesis: \(\alpha\beta_{ij} \neq 0\)

Main Effect:

Null Hypothesis: \(\alpha_i = 0\) For all i

Alternative Hypothesis: \(\alpha_i \neq 0\) for some i

Null Hypothesis: \(\beta_j = 0\)

Alternative Hypothesis: \(\beta_j \neq 0\) for some j

FeedRate <- c(rep("0.20",12), rep("0.25",12), rep("0.30",12))
Depth <- c("0.15","0.18","0.20","0.25")
Cut <- c(rep(Depth,9))
Depthn <- c(rep("1",4),rep("2",4),rep("3",4))
Block <- c(rep(Depthn,3))
Data <- c(74, 79, 82, 99, 64, 68, 88, 104, 60, 73, 92, 96, 92, 98, 99, 104, 86, 104, 108, 110, 88, 88, 95, 99, 99, 104, 108, 114, 98, 99, 110, 111, 102, 95, 99, 107)
datn <- data.frame(FeedRate, Cut, Block, Data)
datn$FeedRate <- as.fixed(dat5.4$FeedRate)
datn$Block <- as.factor(datn$Block)
datn$Cut <-  as.fixed(dat5.4$Cut)

dat.modeln <- aov(Data~FeedRate+Cut+Block+FeedRate*Cut, data=datn)
summary(dat.modeln)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## FeedRate      2 3160.5  1580.2  68.346 3.64e-10 ***
## Cut           3 2125.1   708.4  30.637 4.89e-08 ***
## Block         2  180.7    90.3   3.907  0.03532 *  
## FeedRate:Cut  6  557.1    92.8   4.015  0.00726 ** 
## Residuals    22  508.7    23.1                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Therefore we see that the interaction p value = 0.00726 < alpha = 0.05, we reject the null hypothesis and claim that there is an interaction between the two factors.

And for depth of cut, p = 4.89e-08 and Also, for feed rate, p = 3.64e-10 < 0.05, both also have an effect.

The P value of the Block is = 0.03532 < 0.05, hence we conclude that it has an effect, but in both the cases we do reject the null hypothesis.

interaction.plot(x.factor=FeedRate, trace.factor=Cut, response=Data)

Above is the interaction plot.

Answer 13.5

Model Equation:

\(Y_{ijk}\) = \(\mu\) + \(\alpha_i\) + \(\beta_j\) + \(\alpha\beta_{ij}\) + \(\epsilon_{ijk}\)

Stating Hypothesis:

Interaction:

Null Hypothesis: \(\sigma^2_{\alpha\beta} = 0\)

Alternative Hypothesis: \(\sigma^2_{\alpha\beta} \neq 0\)

Main Effect:

Null Hypothesis: \(\sigma^2_\alpha = 0\)

Alternative Hypothesis: \(\sigma^2_\alpha \neq 0\) for some i

Null Hypothesis: \(\beta_j = 0\) For all j

Alternative Hypothesis: \(\beta_j \neq 0\) for some j

FurnacePosition <- c(rep(1,9),rep(2,9))
pos <- c("800","825","850")
Temperatures <- c(rep(pos,6))
Furnacepos <- c(570, 1063, 565, 565, 1080, 510, 583, 1043, 590, 528, 988, 526, 547, 1026, 538, 521, 1004, 532)
Dat13.5 <- data.frame(FurnacePosition,Temperatures,Furnacepos)
Dat13.5$Temperatures <- as.fixed(Dat13.5$Temperatures)
Dat13.5$FurnacePosition <- as.random(Dat13.5$FurnacePosition)

dat.model13.5 <- aov(Furnacepos~FurnacePosition+Temperatures+FurnacePosition*Temperatures, data = Dat13.5)
GAD::gad(dat.model13.5)
## Analysis of Variance Table
## 
## Response: Furnacepos
##                              Df Sum Sq Mean Sq  F value    Pr(>F)    
## FurnacePosition               1   7160    7160   15.998 0.0017624 ** 
## Temperatures                  2 945342  472671 1155.518 0.0008647 ***
## FurnacePosition:Temperatures  2    818     409    0.914 0.4271101    
## Residual                     12   5371     448                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Therefore we see that the interaction p value = 0.4271101 > alpha = 0.05, we fail to reject the null hypothesis and claim that there is no interaction between the two factors.

And for Temperature, p = 0.0008647 and Also, for Furnace Position, p = 0.0017624 < 0.05, both also have an effect.

Answer 13.6

Model Equation:

\(Y_{ijk}\) = \(\mu\) + \(\alpha_i\) + \(\beta_j\) + \(\alpha\beta_{ij}\) + \(\epsilon_{ijk}\)

Stating Hypothesis:

Interaction:

Null Hypothesis: \(\sigma^2_{\alpha\beta} = 0\)

Alternative Hypothesis: \(\sigma^2_{\alpha\beta} \neq 0\)

Main Effect:

Null Hypothesis: \(\sigma^2_\alpha = 0\)

Alternative Hypothesis: \(\sigma^2_\alpha \neq 0\) for some i

Null Hypothesis: \(\beta_j = 0\) For all j

Alternative Hypothesis: \(\beta_j \neq 0\) for some j

PartNo <- c(rep(1,6), rep(2,6), rep(3,6), rep(4,6), rep(5,6), rep(6,6), rep(7,6), rep(8,6), rep(9,6), rep(10,6))
Measurements <- c("1","1","1","2","2","2")
Operators <- c(rep(Measurements, 10))
Datas <- c(50, 49, 50, 50, 48, 51, 52, 52, 51, 51, 51, 51, 53, 50, 50, 54, 52, 51, 49, 51, 50, 48, 50, 51, 48, 49, 48, 48, 49, 48, 52, 50, 50, 52, 50, 50, 51, 51, 51, 51, 50, 50, 52, 50, 49, 53, 48, 50, 50, 51, 50, 51, 48, 49, 47, 46, 49, 46, 47, 48)
Dat13.6 <- data.frame(PartNo,Operators,Datas)
Dat13.6$Operators <- as.fixed(Dat13.6$Operators)
Dat13.6$PartNo <- as.random(Dat13.6$PartNo)

dat.model13.6 <-  aov(Datas~PartNo+Operators+PartNo*Operators, data = Dat13.6)
GAD::gad(dat.model13.6)
## Analysis of Variance Table
## 
## Response: Datas
##                  Df Sum Sq Mean Sq F value    Pr(>F)    
## PartNo            9 99.017 11.0019  7.3346 3.216e-06 ***
## Operators         1  0.417  0.4167  0.6923    0.4269    
## PartNo:Operators  9  5.417  0.6019  0.4012    0.9270    
## Residual         40 60.000  1.5000                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Therefore we see that the interaction p value = 0.9270 > alpha = 0.05, we fail to reject the null hypothesis and claim that there is no interaction between the two factors.

And for Operators, p = 0.4269 > 0.05, it does not have an effect.

And also, for PartNo, p = 3.216e-06 < 0.05, it has an effect.