Answer 5.4
FeedRate <- c(rep("0.20",12), rep("0.25",12), rep("0.30",12))
Depth <- c("0.15","0.18","0.20","0.25")
Cut <- c(rep(Depth,9))
Data <- c(74, 79, 82, 99, 64, 68, 88, 104, 60, 73, 92, 96, 92, 98, 99, 104, 86, 104, 108, 110, 88, 88, 95, 99, 99, 104, 108, 114, 98, 99, 110, 111, 102, 95, 99, 107)
dat5.4 <- data.frame(FeedRate,Cut,Data)
dat5.4$FeedRate <- as.fixed(dat5.4$FeedRate)
dat5.4$Cut <- as.fixed(dat5.4$Cut)
Model Equation:
\(Y_{ijk}\) = \(\mu\) + \(\alpha_i\) + \(\beta_j\) + \(\alpha\beta_{ij}\) + \(\epsilon_{ijk}\)
Stating Hypothesis:
Interaction:
Null Hypothesis: \(\alpha\beta_{ij} = 0\)
Alternative Hypothesis: \(\alpha\beta_{ij} \neq 0\)
Main Effect:
Null Hypothesis: \(\alpha_i = 0\) For all i
Alternative Hypothesis: \(\alpha_i \neq 0\) for some i
Null Hypothesis: \(\beta_j = 0\)
Alternative Hypothesis: \(\beta_j \neq 0\) for some j
dat.model <- aov(Data~FeedRate+Cut+FeedRate*Cut, data=dat5.4)
GAD::gad(dat.model)
## Analysis of Variance Table
##
## Response: Data
## Df Sum Sq Mean Sq F value Pr(>F)
## FeedRate 2 3160.50 1580.25 55.0184 1.086e-09 ***
## Cut 3 2125.11 708.37 24.6628 1.652e-07 ***
## FeedRate:Cut 6 557.06 92.84 3.2324 0.01797 *
## Residual 24 689.33 28.72
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(a.) Therefore we see that the interaction p value = 0.01797 < alpha = 0.05, we reject the null hypothesis and claim that there is an interaction between the two factors.
And for depth of cut, p = 1.652e-07 and Also, for feed rate, p = 1.086e-09 < 0.05, both also have an effect.
interaction.plot(x.factor=FeedRate, trace.factor=Cut, response=Data)

(b.) The plots seem normally distributed, also the plot for residuals vs fitted shows that varaince are constant.
mean(dat5.4$Data[1:12])
## [1] 81.58333
var(dat5.4$Data[1:12])
## [1] 205.5379
mean(dat5.4$Data[13:24])
## [1] 97.58333
var(dat5.4$Data[13:24])
## [1] 64.08333
mean(dat5.4$Data[25:36])
## [1] 103.8333
var(dat5.4$Data[25:36])
## [1] 36.87879
(c.) Point Estimates:
For Feed Rate 0.20 = The Mean is 81.58333 & Variance is 205.5379
For Feed Rate 0.25 = The Mean is 97.58333 & Variance is 64.08333
For Feed Rate 0.30 = The Mean is 103.8333 & Variance is 36.87879
(d.) P values:
For Interaction of Factors p = 1.086e-09
For Depth of Cut main effect p =1.652e-07
For Feed Rate main effect p =0.01797
Answer 5.34
Model Equation:
\(Y_{ijk}\) = \(\mu\) + \(\alpha_i\) + \(\beta_j\) + \(\gamma_k\) + \(\alpha\beta_{ij}\) + \(\epsilon_{ijk}\)
Stating Hypothesis:
Interaction:
Null Hypothesis: \(\alpha\beta_{ij} = 0\)
Alternative Hypothesis: \(\alpha\beta_{ij} \neq 0\)
Main Effect:
Null Hypothesis: \(\alpha_i = 0\) For all i
Alternative Hypothesis: \(\alpha_i \neq 0\) for some i
Null Hypothesis: \(\beta_j = 0\)
Alternative Hypothesis: \(\beta_j \neq 0\) for some j
FeedRate <- c(rep("0.20",12), rep("0.25",12), rep("0.30",12))
Depth <- c("0.15","0.18","0.20","0.25")
Cut <- c(rep(Depth,9))
Depthn <- c(rep("1",4),rep("2",4),rep("3",4))
Block <- c(rep(Depthn,3))
Data <- c(74, 79, 82, 99, 64, 68, 88, 104, 60, 73, 92, 96, 92, 98, 99, 104, 86, 104, 108, 110, 88, 88, 95, 99, 99, 104, 108, 114, 98, 99, 110, 111, 102, 95, 99, 107)
datn <- data.frame(FeedRate, Cut, Block, Data)
datn$FeedRate <- as.fixed(dat5.4$FeedRate)
datn$Block <- as.factor(datn$Block)
datn$Cut <- as.fixed(dat5.4$Cut)
dat.modeln <- aov(Data~FeedRate+Cut+Block+FeedRate*Cut, data=datn)
summary(dat.modeln)
## Df Sum Sq Mean Sq F value Pr(>F)
## FeedRate 2 3160.5 1580.2 68.346 3.64e-10 ***
## Cut 3 2125.1 708.4 30.637 4.89e-08 ***
## Block 2 180.7 90.3 3.907 0.03532 *
## FeedRate:Cut 6 557.1 92.8 4.015 0.00726 **
## Residuals 22 508.7 23.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Therefore we see that the interaction p value = 0.00726 < alpha = 0.05, we reject the null hypothesis and claim that there is an interaction between the two factors.
And for depth of cut, p = 4.89e-08 and Also, for feed rate, p = 3.64e-10 < 0.05, both also have an effect.
The P value of the Block is = 0.03532 < 0.05, hence we conclude that it has an effect, but in both the cases we do reject the null hypothesis.
interaction.plot(x.factor=FeedRate, trace.factor=Cut, response=Data)

Above is the interaction plot.
Answer 13.5
Model Equation:
\(Y_{ijk}\) = \(\mu\) + \(\alpha_i\) + \(\beta_j\) + \(\alpha\beta_{ij}\) + \(\epsilon_{ijk}\)
Stating Hypothesis:
Interaction:
Null Hypothesis: \(\sigma^2_{\alpha\beta} = 0\)
Alternative Hypothesis: \(\sigma^2_{\alpha\beta} \neq 0\)
Main Effect:
Null Hypothesis: \(\sigma^2_\alpha = 0\)
Alternative Hypothesis: \(\sigma^2_\alpha \neq 0\) for some i
Null Hypothesis: \(\beta_j = 0\) For all j
Alternative Hypothesis: \(\beta_j \neq 0\) for some j
FurnacePosition <- c(rep(1,9),rep(2,9))
pos <- c("800","825","850")
Temperatures <- c(rep(pos,6))
Furnacepos <- c(570, 1063, 565, 565, 1080, 510, 583, 1043, 590, 528, 988, 526, 547, 1026, 538, 521, 1004, 532)
Dat13.5 <- data.frame(FurnacePosition,Temperatures,Furnacepos)
Dat13.5$Temperatures <- as.fixed(Dat13.5$Temperatures)
Dat13.5$FurnacePosition <- as.random(Dat13.5$FurnacePosition)
dat.model13.5 <- aov(Furnacepos~FurnacePosition+Temperatures+FurnacePosition*Temperatures, data = Dat13.5)
GAD::gad(dat.model13.5)
## Analysis of Variance Table
##
## Response: Furnacepos
## Df Sum Sq Mean Sq F value Pr(>F)
## FurnacePosition 1 7160 7160 15.998 0.0017624 **
## Temperatures 2 945342 472671 1155.518 0.0008647 ***
## FurnacePosition:Temperatures 2 818 409 0.914 0.4271101
## Residual 12 5371 448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Therefore we see that the interaction p value = 0.4271101 > alpha = 0.05, we fail to reject the null hypothesis and claim that there is no interaction between the two factors.
And for Temperature, p = 0.0008647 and Also, for Furnace Position, p = 0.0017624 < 0.05, both also have an effect.
Answer 13.6
Model Equation:
\(Y_{ijk}\) = \(\mu\) + \(\alpha_i\) + \(\beta_j\) + \(\alpha\beta_{ij}\) + \(\epsilon_{ijk}\)
Stating Hypothesis:
Interaction:
Null Hypothesis: \(\sigma^2_{\alpha\beta} = 0\)
Alternative Hypothesis: \(\sigma^2_{\alpha\beta} \neq 0\)
Main Effect:
Null Hypothesis: \(\sigma^2_\alpha = 0\)
Alternative Hypothesis: \(\sigma^2_\alpha \neq 0\) for some i
Null Hypothesis: \(\beta_j = 0\) For all j
Alternative Hypothesis: \(\beta_j \neq 0\) for some j
PartNo <- c(rep(1,6), rep(2,6), rep(3,6), rep(4,6), rep(5,6), rep(6,6), rep(7,6), rep(8,6), rep(9,6), rep(10,6))
Measurements <- c("1","1","1","2","2","2")
Operators <- c(rep(Measurements, 10))
Datas <- c(50, 49, 50, 50, 48, 51, 52, 52, 51, 51, 51, 51, 53, 50, 50, 54, 52, 51, 49, 51, 50, 48, 50, 51, 48, 49, 48, 48, 49, 48, 52, 50, 50, 52, 50, 50, 51, 51, 51, 51, 50, 50, 52, 50, 49, 53, 48, 50, 50, 51, 50, 51, 48, 49, 47, 46, 49, 46, 47, 48)
Dat13.6 <- data.frame(PartNo,Operators,Datas)
Dat13.6$Operators <- as.fixed(Dat13.6$Operators)
Dat13.6$PartNo <- as.random(Dat13.6$PartNo)
dat.model13.6 <- aov(Datas~PartNo+Operators+PartNo*Operators, data = Dat13.6)
GAD::gad(dat.model13.6)
## Analysis of Variance Table
##
## Response: Datas
## Df Sum Sq Mean Sq F value Pr(>F)
## PartNo 9 99.017 11.0019 7.3346 3.216e-06 ***
## Operators 1 0.417 0.4167 0.6923 0.4269
## PartNo:Operators 9 5.417 0.6019 0.4012 0.9270
## Residual 40 60.000 1.5000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Therefore we see that the interaction p value = 0.9270 > alpha = 0.05, we fail to reject the null hypothesis and claim that there is no interaction between the two factors.
And for Operators, p = 0.4269 > 0.05, it does not have an effect.
And also, for PartNo, p = 3.216e-06 < 0.05, it has an effect.