FeedRate <- c(rep("0.2",12), rep("0.25",12), rep("0.3",12))
DepthCut <- rep(c("0.15","0.18","0.2","0.25"), 9)
blocks <- c(rep(c(rep("1",4),rep("2",4),rep("3",4)),3))
obs <- c( 74,79,82,99,
64,68,88,104,
60,73,92,96,
92,98,99,104,
86,104,108,110,
88,88,95,99,
99,104,108,114,
98,99,110,111,
102,95,99,107 )
dat<- data.frame(FeedRate,DepthCut,obs)
dat$FeedRate <- as.fixed(dat$FeedRate)
dat$DepthCut <- as.fixed(dat$DepthCut)
model<-aov(obs~dat$FeedRate+dat$DepthCut+dat$FeedRate*dat$DepthCut)
#GAD
GAD::gad(model)
## Analysis of Variance Table
##
## Response: obs
## Df Sum Sq Mean Sq F value Pr(>F)
## dat$FeedRate 2 3160.50 1580.25 55.0184 1.086e-09 ***
## dat$DepthCut 3 2125.11 708.37 24.6628 1.652e-07 ***
## dat$FeedRate:dat$DepthCut 6 557.06 92.84 3.2324 0.01797 *
## Residual 24 689.33 28.72
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The Hypotheses are:
Feed Rate Main Effect: H0 : αi = 0 ∀ i H1 : αi≠ 0 for at least one i
Depth of Cut Main Effect: H0 : βj = 0 ∀ j H1 : βj≠ 0 for at least one j
Feed Rate * Depth of Cut Interaction Effect: H0 : αβij = 0 ∀ ij H1 : αβij≠ 0 for at least one ij
We evaluate the hypothesis for the interaction effect: with a p-value of 0.018, it is not significant to an α = 0.05. Hence, we look at the main effects and find that both factors are significant, with p-values of <0.001 each.
autoplot(model)
The residuals look normal and showing constant variance.
dat %>%
group_by(FeedRate) %>%
summarise_at(vars(obs),
list(name = mean))
## # A tibble: 3 x 2
## FeedRate name
## <fct> <dbl>
## 1 0.2 81.6
## 2 0.25 97.6
## 3 0.3 104.
P-value FeedRate = 1.086e-09
P-value DepthCut = 1.652e-07
P-value interaction = 0.01797
dat$blocks <- as.factor(blocks)
model2<-aov(obs~dat$FeedRate+dat$DepthCut+dat$blocks+dat$FeedRate*dat$DepthCut)
summary(model2)
## Df Sum Sq Mean Sq F value Pr(>F)
## dat$FeedRate 2 3160.5 1580.2 68.346 3.64e-10 ***
## dat$DepthCut 3 2125.1 708.4 30.637 4.89e-08 ***
## dat$blocks 2 180.7 90.3 3.907 0.03532 *
## dat$FeedRate:dat$DepthCut 6 557.1 92.8 4.015 0.00726 **
## Residuals 22 508.7 23.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
It does not appear that blocking was useful in this experiment
Position <- rep(c(1,2),times=9)
Temperature <- rep(c(rep(800,2),rep(825,2),rep(850,2)),3)
BakedDensity <- c(570,528,1063,988,565,526,565,547,1080,1026,510,538,583,521,1043,1004,590,532)
dat1 <- as.data.frame(cbind(Position,Temperature,BakedDensity))
Position <- as.random(Position)
Temperature <- as.fixed(Temperature)
model1<-aov(BakedDensity~Position+Temperature+Position*Temperature)
GAD::gad(model1)
## Analysis of Variance Table
##
## Response: BakedDensity
## Df Sum Sq Mean Sq F value Pr(>F)
## Position 1 7160 7160 15.998 0.0017624 **
## Temperature 2 945342 472671 1155.518 0.0008647 ***
## Position:Temperature 2 818 409 0.914 0.4271101
## Residual 12 5371 448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The interaction effect is not significant at a p-value of 0.427. Hence, we can examine the main effects that are both significant with p-values of 0.0017624 and 0.0008647 and an alpha level of 0.05.
dat2 <- read.csv("13.6.csv",header=TRUE)
partNumber <- dat2$ï..PartNumber
operator <- dat2$Operator
obs <- dat2$Obs
operator <- as.fixed(operator)
partNumber <- as.random(partNumber)
model2<-aov(obs~operator+partNumber+operator*partNumber)
GAD::gad(model2)
## Analysis of Variance Table
##
## Response: obs
## Df Sum Sq Mean Sq F value Pr(>F)
## operator 1 0.267 0.2667 0.4186 0.5338
## partNumber 9 98.400 10.9333 7.6279 2.061e-06 ***
## operator:partNumber 9 5.733 0.6370 0.4444 0.9022
## Residual 40 57.333 1.4333
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The interaction effect is not significant at a p-value of 0.9022. Hence, we can examine the main effects of Operator that is not significant with p-values = 0.5338 and PartNumber that is significant with p-value = 2.061e-06 and an alpha level of 0.05.