Setup

Load Libraries Into Session

library(GAD)
library(knitr)
library(kableExtra)

Question 1

An article in Quality Progress (May 2011, pp. 42-48) describes the use of factorial experiments to improve a silver powder production process. This product is used in conductive pastes to manufacture a wide variety of products ranging from silicon wafers to elastic membrane switches. We consider powder density (g/cm^2) as the response variable and critical characteristics of this product. The data is shown below.

Reading in Data from GitHub

SilverPowderData<-read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/PowderProduction.csv")

names(SilverPowderData)[names(SilverPowderData) == "ï..Ammonium"] <- "Ammonium"

kable(SilverPowderData, align = 'c', col.names=c("Ammonium (%)", "Stir Rate (RPM)", "Temperature (C)", "Density")) %>% kable_styling(bootstrap_options = "striped", full_width = F, position = "center", latex_options = "hold_position")
Ammonium (%) Stir Rate (RPM) Temperature (C) Density
2 100 8 14.68
2 100 8 15.18
30 100 8 15.12
30 100 8 17.48
2 150 8 7.54
2 150 8 6.66
30 150 8 12.46
30 150 8 12.62
2 100 40 10.95
2 100 40 17.68
30 100 40 12.65
30 100 40 15.96
2 150 40 8.03
2 150 40 8.84
30 150 40 14.96
30 150 40 14.96

Part A

Write the model equation for a full factorial model.

\(y_{ijk} + \alpha_i + \beta_j + \gamma_k + \alpha\beta_{ij} + \alpha\gamma_{ik} + \beta\gamma_{jk} + \alpha\beta\gamma_{ijk} + \epsilon{ijkl}\)

Part B

Using \(\alpha = 0.05\), determine which factors are deemed significant. Report final p-values of significant factors and include interaction plots.

*Assume Ammonium, Stir Rate, and Temperature are factors with fixed effects, each with two levels, and the design is replicated twice.

Manipulating Data

SilverPowderData$Ammonium <- as.fixed(SilverPowderData$Ammonium)
SilverPowderData$StirRate <- as.fixed(SilverPowderData$StirRate)
SilverPowderData$Temperature <- as.fixed(SilverPowderData$Temperature)
str(SilverPowderData)
## 'data.frame':    16 obs. of  4 variables:
##  $ Ammonium   : Factor w/ 2 levels "2","30": 1 1 2 2 1 1 2 2 1 1 ...
##  $ StirRate   : Factor w/ 2 levels "100","150": 1 1 1 1 2 2 2 2 1 1 ...
##  $ Temperature: Factor w/ 2 levels "8","40": 1 1 1 1 1 1 1 1 2 2 ...
##  $ Density    : num  14.68 15.18 15.12 17.48 7.54 ...

We can see above that R is now reading Ammonium, Stir Rate, and Temperature as factors with fixed effects, each with two levels.

Running GAD

SilverPowderModel <- aov(SilverPowderData$Density~SilverPowderData$Ammonium+
                  SilverPowderData$StirRate+SilverPowderData$Temperature                   +SilverPowderData$Ammonium*SilverPowderData$StirRate+
                  SilverPowderData$Ammonium*SilverPowderData$Temperature                +SilverPowderData$StirRate*SilverPowderData$Temperature+
      SilverPowderData$Ammonium*SilverPowderData$StirRate*SilverPowderData$Temperature)
GAD::gad(SilverPowderModel)
## Analysis of Variance Table
## 
## Response: SilverPowderData$Density
##                                                                                  Df
## SilverPowderData$Ammonium                                                         1
## SilverPowderData$StirRate                                                         1
## SilverPowderData$Temperature                                                      1
## SilverPowderData$Ammonium:SilverPowderData$StirRate                               1
## SilverPowderData$Ammonium:SilverPowderData$Temperature                            1
## SilverPowderData$StirRate:SilverPowderData$Temperature                            1
## SilverPowderData$Ammonium:SilverPowderData$StirRate:SilverPowderData$Temperature  1
## Residual                                                                          8
##                                                                                  Sum Sq
## SilverPowderData$Ammonium                                                        44.389
## SilverPowderData$StirRate                                                        70.686
## SilverPowderData$Temperature                                                      0.328
## SilverPowderData$Ammonium:SilverPowderData$StirRate                              28.117
## SilverPowderData$Ammonium:SilverPowderData$Temperature                            0.022
## SilverPowderData$StirRate:SilverPowderData$Temperature                           10.128
## SilverPowderData$Ammonium:SilverPowderData$StirRate:SilverPowderData$Temperature  1.519
## Residual                                                                         31.762
##                                                                                  Mean Sq
## SilverPowderData$Ammonium                                                         44.389
## SilverPowderData$StirRate                                                         70.686
## SilverPowderData$Temperature                                                       0.328
## SilverPowderData$Ammonium:SilverPowderData$StirRate                               28.117
## SilverPowderData$Ammonium:SilverPowderData$Temperature                             0.022
## SilverPowderData$StirRate:SilverPowderData$Temperature                            10.128
## SilverPowderData$Ammonium:SilverPowderData$StirRate:SilverPowderData$Temperature   1.519
## Residual                                                                           3.970
##                                                                                  F value
## SilverPowderData$Ammonium                                                        11.1803
## SilverPowderData$StirRate                                                        17.8037
## SilverPowderData$Temperature                                                      0.0826
## SilverPowderData$Ammonium:SilverPowderData$StirRate                               7.0817
## SilverPowderData$Ammonium:SilverPowderData$Temperature                            0.0055
## SilverPowderData$StirRate:SilverPowderData$Temperature                            2.5510
## SilverPowderData$Ammonium:SilverPowderData$StirRate:SilverPowderData$Temperature  0.3826
## Residual                                                                                
##                                                                                    Pr(>F)
## SilverPowderData$Ammonium                                                        0.010175
## SilverPowderData$StirRate                                                        0.002918
## SilverPowderData$Temperature                                                     0.781170
## SilverPowderData$Ammonium:SilverPowderData$StirRate                              0.028754
## SilverPowderData$Ammonium:SilverPowderData$Temperature                           0.942808
## SilverPowderData$StirRate:SilverPowderData$Temperature                           0.148890
## SilverPowderData$Ammonium:SilverPowderData$StirRate:SilverPowderData$Temperature 0.553412
## Residual                                                                                 
##                                                                                    
## SilverPowderData$Ammonium                                                        * 
## SilverPowderData$StirRate                                                        **
## SilverPowderData$Temperature                                                       
## SilverPowderData$Ammonium:SilverPowderData$StirRate                              * 
## SilverPowderData$Ammonium:SilverPowderData$Temperature                             
## SilverPowderData$StirRate:SilverPowderData$Temperature                             
## SilverPowderData$Ammonium:SilverPowderData$StirRate:SilverPowderData$Temperature   
## Residual                                                                           
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The following P-values were calculated:

Ammonium: 0.010175 ***significant

Stir Rate: 0.002918 ***significant

Temperature: 0.781170 ***not significant

Interaction of Ammonium and Stir Rate: 0.028754 ***significant

Interaction of Ammonium and Temperature: 0.942808 ***not significant

Interaction of Stir Rate and Temperature: 0.148890 ***not significant

Interaction of Ammonium, Stir Rate, and Temperature: 0.553412 ***not significant

Interaction Plot

The only significant interaction is between Ammonium and Stir Rate so we will create an interaction plot for that.

interaction.plot(SilverPowderData$Ammonium, SilverPowderData$StirRate, SilverPowderData$Density)

Question 2

A full factorial experiment was conducted to determine whether either firing temperature or furnace position affects the baked density of a carbon anode.

Creating Data Frame and Table

Position <- c(1,1,1,1,1,1,1,1,1,
              2,2,2,2,2,2,2,2,2)
Temperature <-  c(800,825,850,800,825,850,
                  800,825,850,800,825,850,
                  800,825,850,800,825,850)
Density <-  c(570,1063,565,565,1080,510,
              583,1043,590,528,988,526,
              547,1026,538,521,1004,532)

BakingData <- data.frame(Position,Temperature,Density)

kable(BakingData, align = 'c') %>% kable_styling(bootstrap_options = "striped", full_width = F, position = "center", latex_options = "hold_position")
Position Temperature Density
1 800 570
1 825 1063
1 850 565
1 800 565
1 825 1080
1 850 510
1 800 583
1 825 1043
1 850 590
2 800 528
2 825 988
2 850 526
2 800 547
2 825 1026
2 850 538
2 800 521
2 825 1004
2 850 532

Part A

Assume that both Temperature and Position are fixed effects. Report p-values.

Manipulating Data

Position <- as.fixed(Position)
Temperature <- as.fixed(Temperature)
BakingModelA <- aov(Density~Position+Temperature+Position*Temperature)
gad(BakingModelA)
## Analysis of Variance Table
## 
## Response: Density
##                      Df Sum Sq Mean Sq  F value   Pr(>F)    
## Position              1   7160    7160   15.998 0.001762 ** 
## Temperature           2 945342  472671 1056.117 3.25e-14 ***
## Position:Temperature  2    818     409    0.914 0.427110    
## Residual             12   5371     448                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Resulting P-values

Position: 0.001762

Temperature: 3.25*10^-14

Position:Temperature: 0.427110

Part B

Assume that both Temperature and Position are random effects. Report p-values.

Manipulating Data

Position <- as.random(Position)
Temperature <- as.random(Temperature)
BakingModelB <- aov(Density~Position+Temperature+Position*Temperature)
gad(BakingModelB)
## Analysis of Variance Table
## 
## Response: Density
##                      Df Sum Sq Mean Sq  F value    Pr(>F)    
## Position              1   7160    7160   17.504 0.0526583 .  
## Temperature           2 945342  472671 1155.518 0.0008647 ***
## Position:Temperature  2    818     409    0.914 0.4271101    
## Residual             12   5371     448                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Resulting P-values

Position: 0.0526583

Temperature: 0.0008647

Position:Temperature: 0.427110

Part C

Assume the Position effect is fixed and the Temperature effect is random. Report p-values.

Manipulating Data

Position <- as.fixed(Position)
Temperature <- as.random(Temperature)
BakingModelC <- aov(Density~Position+Temperature+Position*Temperature)
gad(BakingModelC)
## Analysis of Variance Table
## 
## Response: Density
##                      Df Sum Sq Mean Sq  F value   Pr(>F)    
## Position              1   7160    7160   17.504  0.05266 .  
## Temperature           2 945342  472671 1056.117 3.25e-14 ***
## Position:Temperature  2    818     409    0.914  0.42711    
## Residual             12   5371     448                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Resulting P-values

Position: 0.0566

Temperature: 3.25*10^-14

Position:Temperature: 0.427110

Part D

Comment on similarities and/or differences between the p-values in parts a,b,c.

Conclusions

The p-value for Position is <0.05 (meaning Position is significant) when both Position and Temperature are fixed effects, but it is >0.05 (meaning not significant) when Temperature is a random effect, whether or not Position is a fixed or random effect.

The p-value for Temperature is <0.05 (meaning Temperature is significant) whether it is a fixed or random effect.

The p-value for Position-Temperature Interaction is >0.05 (meaning Position-Temperature Interaction is not significant) whether Position and Temperature are fixed or random effects.