R Markdown
Assignment Overview
Using the “cars” dataset in R, build a linear model for stopping distance as a function of speed and replicate the analysis of your textbook chapter 3 (visualization, quality evaluation of the model, and residual analysis.
data(cars)LINEAR REGRESSION
Stopping distance: dependent variable (y) or response variable
Speed: independent variable (x) or predictor variable
Visualization
plot(cars$speed,cars$dist, main="Cars",
xlab="Speed", ylab="Dist") ### Linear Model ### Based on the linear model function output, our function for the line would be: ### f(x) = 3.932x - 17.579
#y(dependent variable ) ~ x(independent variable)
attach(cars)
cars.lm <- lm(dist~speed)
cars.lm##
## Call:
## lm(formula = dist ~ speed)
##
## Coefficients:
## (Intercept) speed
## -17.579 3.932
plot(speed,dist,main="Cars Linear Regression Model")
abline(cars.lm) ### Evaluating the model
summary(cars.lm)##
## Call:
## lm(formula = dist ~ speed)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.069 -9.525 -2.272 9.215 43.201
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.5791 6.7584 -2.601 0.0123 *
## speed 3.9324 0.4155 9.464 1.49e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
Residual Analysis
plot(fitted(cars.lm),resid(cars.lm), main="Residuals")
abline(0, 0)qqnorm(resid(cars.lm))
qqline(resid(cars.lm))plot(cars.lm)