Question 5.4

library(GAD)
## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.
feedrate<-c(rep(1,12),rep(2,12),rep(3,12))
depthcut<-rep(seq(1,4),9)
Observations<-c(74,79,82,99,64,68,88,104,60,73,92,96,92,98,99,104,86,104,108,110,88,88,95,99,99,104,108,114,98,99,110,111,102,95,99,107)
dat<-data.frame(feedrate,depthcut,Observations)
feedrate<-as.fixed(feedrate)
depthcut<-as.fixed(depthcut)
model<-aov(Observations~depthcut+feedrate+depthcut*feedrate)
GAD::gad(model)
## Analysis of Variance Table
## 
## Response: Observations
##                   Df  Sum Sq Mean Sq F value    Pr(>F)    
## depthcut           3 2125.11  708.37 24.6628 1.652e-07 ***
## feedrate           2 3160.50 1580.25 55.0184 1.086e-09 ***
## depthcut:feedrate  6  557.06   92.84  3.2324   0.01797 *  
## Residual          24  689.33   28.72                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A)Here we can see that for all p values it is less than the significance value i.e. 0.05 hence we reject the null hypothesis and we can say that the result is statistically significant

plot(model)

B)From the Normality plot and residual vs factor plot we can say that our assumption of normality and constant variance is somewhat correct. Hence our data is adequate

mean_0.20<-mean(dat$Observations[1:12])
mean_0.25<-mean(dat$Observations[13:24])
mean_0.30<-mean(dat$Observations[25:36])
mean_0.20
## [1] 81.58333
mean_0.25
## [1] 97.58333
mean_0.30
## [1] 103.8333

C)The point estimate of the mean surface finish at each feed rate is as follows

Mean at 0.20=81.5833

Mean at 0.25=97.5833

Meant at 0.30=103.833

D)Following are the P values

P value of depth of cut = 1.652e-07(Significant)

P value of feed rate = 1.086e-09(significant)

P value of interaction between depth of cut and feed rate = 0.01797(significant)

Question 5.34

block<-c(rep(1,4),rep(2,4),rep(3,4),rep(1,4),rep(2,4),rep(3,4),rep(1,4),rep(2,4),rep(3,4))
blocking<-as.fixed(block)
dat2<-data.frame(depthcut,feedrate,blocking,Observations)
model1<-aov(Observations~depthcut+feedrate+blocking+depthcut*feedrate)
GAD::gad(model1)
## Analysis of Variance Table
## 
## Response: Observations
##                   Df  Sum Sq Mean Sq F value    Pr(>F)    
## depthcut           3 2125.11  708.37 30.6373 4.893e-08 ***
## feedrate           2 3160.50 1580.25 68.3463 3.635e-10 ***
## blocking           2  180.67   90.33  3.9069  0.035322 *  
## depthcut:feedrate  6  557.06   92.84  4.0155  0.007258 ** 
## Residual          22  508.67   23.12                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the above data we can say that blocking has a significant effect of 3.64e-10 which is less than our alpha i.e 0.05

Variance components i=4,j=3,k=3,

variance component for block is (Mean square of blocking-Mean square error)/i*j

=(90.3-23.1)/4*3

=5.6

Question 13.5

Furnace_position<-c(rep(1,9), rep(2,9))
Furnace_Temperature<-rep(seq(1,3),6)
Observation1<-c(570,1063,565,565,1080,510,583,1043,590,528,988,526,547,1026,538,521,1004,532)
dat3<-data.frame(Furnace_position,Furnace_Temperature,Observation1)
Furnace_Temperature<-as.fixed(Furnace_Temperature)
Furnace_position<-as.random(Furnace_position)
model2<-aov(Observation1~Furnace_position+Furnace_Temperature+Furnace_position*Furnace_Temperature)
GAD::gad(model2)
## Analysis of Variance Table
## 
## Response: Observation1
##                                      Df Sum Sq Mean Sq  F value    Pr(>F)    
## Furnace_position                      1   7160    7160   15.998 0.0017624 ** 
## Furnace_Temperature                   2 945342  472671 1155.518 0.0008647 ***
## Furnace_position:Furnace_Temperature  2    818     409    0.914 0.4271101    
## Residual                             12   5371     448                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the above table we can say that the p value of the interaction between temperature and position is larger than alpha i.e 0.05 hence they are not significant while the p value of temperature and position as main effect is less than alpha so they are significant

Q 13.6

Part_No<-c(rep(1,6),rep(2,6),rep(3,6),rep(4,6),rep(5,6),rep(6,6),rep(7,6),rep(8,6),rep(9,6),rep(10,6))
Operator_Measurements<-c(rep(1,3),rep(2,3),rep(1,3),rep(2,3),rep(1,3),rep(2,3),rep(1,3),rep(2,3),rep(1,3),rep(2,3),rep(1,3),rep(2,3),rep(1,3),rep(2,3),rep(1,3),rep(2,3),rep(1,3),rep(2,3),rep(1,3),rep(2,3))
Observation2<-c(50,49,50,50,48,51,52,52,51,51,51,51,53,50,50,54,52,51,49,51,50,48,50,51,48,49,48,48,49,48,52,50,50,52,50,50,51,51,51,51,50,50,52,50,49,53,48,50,50,51,50,51,48,49,47,46,49,46,47,48)
dat4<-data.frame(Part_No,Operator_Measurements,Observation2)
Part_No<-as.random(Part_No)
Operator_Measurements<-as.fixed(Operator_Measurements)
model3<-aov(Observation2~Part_No+Operator_Measurements+Part_No*Operator_Measurements)
GAD::gad(model3)
## Analysis of Variance Table
## 
## Response: Observation2
##                               Df Sum Sq Mean Sq F value    Pr(>F)    
## Part_No                        9 99.017 11.0019  7.3346 3.216e-06 ***
## Operator_Measurements          1  0.417  0.4167  0.6923    0.4269    
## Part_No:Operator_Measurements  9  5.417  0.6019  0.4012    0.9270    
## Residual                      40 60.000  1.5000                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the above table we can conclude that the p value of the interction between operator and part is greater than alpha hence they are not significant

Also the p value of main effect of operator is greater than alpha hence it is non significant too

But the p value of part no is less than 0.05 hence it is significant