## Analysis of Variance Table
##
## Response: responses
## Df Sum Sq Mean Sq F value Pr(>F)
## feedRate 2 3160.50 1580.25 55.0184 1.086e-09 ***
## depthOfCut 3 2125.11 708.37 24.6628 1.652e-07 ***
## feedRate:depthOfCut 6 557.06 92.84 3.2324 0.01797 *
## Residual 24 689.33 28.72
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Response: yields
## Df Sum Sq Mean Sq F value Pr(>F)
## blocks 2 180.67 90.33 3.9069 0.035322 *
## feedRate 2 3160.50 1580.25 68.3463 3.635e-10 ***
## depthOfCut 3 2125.11 708.37 30.6373 4.893e-08 ***
## feedRate:depthOfCut 6 557.06 92.84 4.0155 0.007258 **
## Residual 22 508.67 23.12
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Response: data
## Df Sum Sq Mean Sq F value Pr(>F)
## furnacePosition 1 7160 7160 15.998 0.0017624 **
## tempreture 2 945342 472671 1155.518 0.0008647 ***
## furnacePosition:tempreture 2 818 409 0.914 0.4271101
## Residual 12 5371 448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Response: data2
## Df Sum Sq Mean Sq F value Pr(>F)
## partNum 9 99.017 11.0019 7.3346 3.216e-06 ***
## operator 1 0.417 0.4167 0.6923 0.4269
## partNum:operator 9 5.417 0.6019 0.4012 0.9270
## Residual 40 60.000 1.5000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(GAD)
#5.4
feedRate<-c(rep(0.20,12), rep(0.25,12), rep(0.30,12))
depthOfCut<-rep(c(0.15,0.18,0.20,0.25), 9)
responses<-c(74, 79, 82, 99,
64, 68, 88, 104,
60, 73, 92, 96,
92, 98, 99, 104,
86, 104, 108, 110,
88, 88, 95, 99,
99, 104, 108, 114,
98, 99, 110, 111,
102, 95, 99, 107)
feedRate <- as.fixed(feedRate)
depthOfCut <- as.fixed(depthOfCut)
model<-aov(responses~feedRate+depthOfCut+feedRate*depthOfCut)
gad(model)
interaction.plot(feedRate, depthOfCut, responses)
plot(model)
feedRate20<-mean(74, 79, 82, 99, 64, 68, 88, 104, 60, 73, 92, 96)
feedRate25<-mean(92, 98, 99, 104, 86, 104, 108, 110, 88, 88, 95, 99)
feedRate30<-mean(99, 104, 108, 114,98, 99, 110, 111, 102, 95, 99, 107)
#5.34
k <- c(rep (1,4), rep(2,4), rep(3,4))
blocks <- rep(k,3)
yields<-c(74, 79, 82, 99,
64, 68, 88, 104,
60, 73, 92, 96,
92, 98, 99, 104,
86, 104, 108, 110,
88, 88, 95, 99,
99, 104, 108, 114,
98, 99, 110, 111,
102, 95, 99, 107)
blocks<-as.fixed(blocks)
feedRate<-c(rep(0.20,12), rep(0.25,12), rep(0.30,12))
depthOfCut<-rep(c(0.15,0.18,0.20,0.25), 9)
feedRate <- as.fixed(feedRate)
depthOfCut <- as.fixed(depthOfCut)
dat3 <- cbind(blocks,feedRate,depthOfCut,yields)
dat3<-as.data.frame(dat3)
blockFactorial<-lm(yields~ blocks+feedRate+depthOfCut+ feedRate*depthOfCut)
gad(blockFactorial)
#13.5
tempreture<-c(rep(c(800,825,850),6))
furnacePosition <-c(rep(1,9), rep(2,9))
data<-c(570,1063,565,
565,1080,510,
583,1043,590,
528,988,526,
547,1026,538,
521,1004,532)
tempreture<-as.fixed(tempreture)
furnacePosition<-as.random(furnacePosition)
mixedModel<-aov(data~furnacePosition+tempreture+tempreture*furnacePosition)
gad(mixedModel)
#13.6
data2 <-c(50, 49, 50, 50, 48, 51,
52, 52, 51, 51, 51, 51,
53, 50, 50, 54, 52, 51,
49, 51, 50, 48, 50, 51,
48, 49, 48, 48, 49, 48,
52, 50, 50, 52, 50, 50,
51, 51, 51, 51, 50, 50,
52, 50, 49, 53, 48, 50,
50, 51, 50, 51, 48, 49,
47, 46, 49, 46, 47, 48)
partNum <-c(rep(1,6), rep(2,6), rep(3,6), rep(4,6), rep(5,6), rep(6,6), rep(7,6), rep(8,6), rep(9,6), rep(10,6))
kReplicate <- c(rep(seq(1,3),20))
operator <- rep(c(1,1,1,2,2,2),10)
operator <- as.fixed(operator)
partNum <- as.random(partNum)
#mixedModel2 <- cbind(data2,partNum,operator,kReplicate)
#mixedModel2<-as.data.frame(mixedModel2)
anovaModel <- aov(data2 ~partNum+operator+partNum*operator)
gad(anovaModel)