5.4: Feed Rate and Depth of Cut Block Experiment

Hypothesis:

\[ \\ H_o:\alpha_i = 0 \;\; H_a: \alpha_i \neq 0 \\ H_o:\beta_j = 0 \;\; H_a: \beta_j \neq 0 \\ H_o:\alpha\beta_{ij} = 0 \;\; H_a: \alpha\beta_{ij} \neq 0 \]
## Analysis of Variance Table
## 
## Response: responses
##                     Df  Sum Sq Mean Sq F value    Pr(>F)    
## feedRate             2 3160.50 1580.25 55.0184 1.086e-09 ***
## depthOfCut           3 2125.11  708.37 24.6628 1.652e-07 ***
## feedRate:depthOfCut  6  557.06   92.84  3.2324   0.01797 *  
## Residual            24  689.33   28.72                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The normal distribution plot appears to be relatively straight. On the other hand there is some minute curvenees to the graph. Furthermore, the rediusals plot fors somewhat of a straight line. This tells us that this data set is grod engouht to reun a form of the ANOVA test. The interaction plot does not show parallelism which shows the interaction are significant.

As we can see from the graph, the p-value of the main effects as well as the interaction are significant. Therefore we reject the null hypothesis. The p-value of the feedRate is 1.086e-09 and the p-value of the depth of Cut is 1.652e-07. The p-value of the interaction is 0.01797. The mean of the feed rate 0.2 is 74. The mean of feed rate 0.25 is 92. The mean of feed rate 0.3 is 99.

5.34: Feed Rate and Depth of Cut Block Factorial Experiment

## Analysis of Variance Table
## 
## Response: yields
##                     Df  Sum Sq Mean Sq F value    Pr(>F)    
## blocks               2  180.67   90.33  3.9069  0.035322 *  
## feedRate             2 3160.50 1580.25 68.3463 3.635e-10 ***
## depthOfCut           3 2125.11  708.37 30.6373 4.893e-08 ***
## feedRate:depthOfCut  6  557.06   92.84  4.0155  0.007258 ** 
## Residual            22  508.67   23.12                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The \(MS_{Error}\) decreased slightly when blocks where implemneted. This did not significantly alter the results.

13.5: Mixed Experiment: Feed Rate and Depth of Cut Factorial

\[ \\ H_o:\alpha_i = 0 \;\; H_a: \alpha_i \neq 0 \\ H_o:\sigma_{\beta}^2 = 0 \;\; H_a: \sigma_{\beta}^2 \neq 0 \\ H_o:\sigma_{\alpha\beta}^2 = 0 \;\; H_a: \sigma_{\alpha\beta}^2 \neq 0 \]
## Analysis of Variance Table
## 
## Response: data
##                            Df Sum Sq Mean Sq  F value    Pr(>F)    
## furnacePosition             1   7160    7160   15.998 0.0017624 ** 
## tempreture                  2 945342  472671 1155.518 0.0008647 ***
## furnacePosition:tempreture  2    818     409    0.914 0.4271101    
## Residual                   12   5371     448                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-values from the ANOVA table shows us that the main effects are significant and the interaction effect is insignificant.

13.6: Operator and Part Number Mixed Experiments

\[ \\ H_o:\alpha_i = 0 \;\; H_a: \alpha_i \neq 0 \\ H_o:\sigma_{\beta}^2 = 0 \;\; H_a: \sigma_{\beta}^2 \neq 0 \\ H_o:\sigma_{\alpha\beta}^2 = 0 \;\; H_a: \sigma_{\alpha\beta}^2 \neq 0 \]
## Analysis of Variance Table
## 
## Response: data2
##                  Df Sum Sq Mean Sq F value    Pr(>F)    
## partNum           9 99.017 11.0019  7.3346 3.216e-06 ***
## operator          1  0.417  0.4167  0.6923    0.4269    
## partNum:operator  9  5.417  0.6019  0.4012    0.9270    
## Residual         40 60.000  1.5000                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-values from the ANOVA table shows us that the only main effects that is significant is the part number effect. The interaction effect and the effect of the operator factor are insignificant.

All Code


library(GAD)

#5.4

feedRate<-c(rep(0.20,12), rep(0.25,12), rep(0.30,12))
depthOfCut<-rep(c(0.15,0.18,0.20,0.25), 9)
responses<-c(74, 79, 82, 99,
             64, 68, 88, 104,
             60, 73, 92, 96,
             92, 98, 99, 104,
             86, 104, 108, 110,
             88, 88, 95, 99,
             99, 104, 108, 114,
             98, 99, 110, 111,
            102, 95, 99, 107)

feedRate <- as.fixed(feedRate)
depthOfCut <- as.fixed(depthOfCut)
model<-aov(responses~feedRate+depthOfCut+feedRate*depthOfCut)
gad(model)
interaction.plot(feedRate, depthOfCut, responses)
plot(model)
feedRate20<-mean(74, 79, 82, 99, 64, 68, 88, 104, 60, 73, 92, 96)
feedRate25<-mean(92, 98, 99, 104, 86, 104, 108, 110, 88, 88, 95, 99)
feedRate30<-mean(99, 104, 108, 114,98, 99, 110, 111, 102, 95, 99, 107)


#5.34

k <- c(rep (1,4), rep(2,4), rep(3,4))
blocks <- rep(k,3)
yields<-c(74, 79, 82, 99,
             64, 68, 88, 104,
             60, 73, 92, 96,
             92, 98, 99, 104,
             86, 104, 108, 110,
             88, 88, 95, 99,
             99, 104, 108, 114,
             98, 99, 110, 111,
            102, 95, 99, 107)
blocks<-as.fixed(blocks)
feedRate<-c(rep(0.20,12), rep(0.25,12), rep(0.30,12))
depthOfCut<-rep(c(0.15,0.18,0.20,0.25), 9)
feedRate <- as.fixed(feedRate)
depthOfCut <- as.fixed(depthOfCut)
dat3 <- cbind(blocks,feedRate,depthOfCut,yields)
dat3<-as.data.frame(dat3)
blockFactorial<-lm(yields~ blocks+feedRate+depthOfCut+ feedRate*depthOfCut)
gad(blockFactorial)


#13.5
tempreture<-c(rep(c(800,825,850),6))
furnacePosition <-c(rep(1,9), rep(2,9))
data<-c(570,1063,565,
            565,1080,510,
            583,1043,590,
            528,988,526,
            547,1026,538,
            521,1004,532)
tempreture<-as.fixed(tempreture)
furnacePosition<-as.random(furnacePosition)
mixedModel<-aov(data~furnacePosition+tempreture+tempreture*furnacePosition)
gad(mixedModel)

#13.6
data2 <-c(50, 49, 50, 50, 48, 51,
          52, 52, 51, 51, 51, 51,
          53, 50, 50, 54, 52, 51,
          49, 51, 50, 48, 50, 51,
          48, 49, 48, 48, 49, 48,
          52, 50, 50, 52, 50, 50,
          51, 51, 51, 51, 50, 50,
          52, 50, 49, 53, 48, 50,
          50, 51, 50, 51, 48, 49,
          47, 46, 49, 46, 47, 48)
partNum <-c(rep(1,6), rep(2,6), rep(3,6), rep(4,6), rep(5,6), rep(6,6), rep(7,6), rep(8,6), rep(9,6), rep(10,6))
kReplicate <- c(rep(seq(1,3),20))
operator <- rep(c(1,1,1,2,2,2),10)
operator <- as.fixed(operator)
partNum <- as.random(partNum)
#mixedModel2 <- cbind(data2,partNum,operator,kReplicate)
#mixedModel2<-as.data.frame(mixedModel2)
anovaModel <- aov(data2 ~partNum+operator+partNum*operator)
gad(anovaModel)