Exercise 6.2

Developing a model to predict permeability could save significant resources for a pharmaceutical company, while at the same time more rapidly identifying molecules that have a sufficient permeability to become a drug:

(a) Start R and use these commands to load the data:

library(AppliedPredictiveModeling)
data(permeability)

The matrix fingerprints contains the 1,107 binary molecular predictors for the 165 compounds, while permeability contains permeability response.

 

(b) The fingerprint predictors indicate the presence or absence of substructures of a molecule and are often sparse meaning that relatively few of the molecules contain each substructure. Filter out the predictors that have low frequencies using the nearZeroVar function from the caret package. How many predictors are left for modeling?

# See how many predictors are present before filtering.
paste(dim(fingerprints)[2], ' predictors exist before filtering.' , sep = '') %>% print()
## [1] "1107 predictors exist before filtering."
# Filter out predictors wirth low frequencies using the nearZeroVar() function.
filteredData <- nearZeroVar(fingerprints)

# Filtered results.
filteredResults <- fingerprints[, - filteredData]

# See how many predictors are present after filtering.
paste(dim(filteredResults)[2], ' predictors remain for modeling after filtering.' , sep = '') %>% print()
## [1] "388 predictors remain for modeling after filtering."

Answer:

388 predictors are left for modeling after filtering out predictors with low frequencies.

 

(c) Split the data into a training and a test set, pre-process the data, and tune a PLS model. How many latent variables are optimal and what is the corresponding resampled estimate of R2?

set.seed(5)

# Split the training data using an 80% training data split.
trainingData <- createDataPartition(permeability, p = 0.8, list = FALSE)
xTrainData <- filteredResults[trainingData, ]
yTrainData <- permeability[trainingData, ]

# Split the test data.
xTestData <- filteredResults[-trainingData, ]
yTestData <- permeability[-trainingData, ]

# Pre-process the data and tune a PLS model.
plsModel <- train(x = xTrainData, y = yTrainData, method = 'pls', metric = 'Rsquared',
                  tuneLength = 20, trControl = trainControl(method = 'cv'), preProcess = c('center', 'scale'))

# Print out the results.
plsModel
## Partial Least Squares 
## 
## 133 samples
## 388 predictors
## 
## Pre-processing: centered (388), scaled (388) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 120, 119, 118, 120, 121, 119, ... 
## Resampling results across tuning parameters:
## 
##   ncomp  RMSE      Rsquared   MAE     
##    1     12.76281  0.3174163  9.801324
##    2     11.70129  0.4751294  8.071228
##    3     11.47024  0.4599176  8.604095
##    4     11.54034  0.4515853  8.726725
##    5     11.22248  0.4617327  8.418250
##    6     11.22014  0.4589468  8.556390
##    7     11.02084  0.4799481  8.311601
##    8     10.96545  0.4838870  8.568745
##    9     11.08967  0.4853797  8.357197
##   10     11.19828  0.4885690  8.378020
##   11     11.43588  0.4713522  8.474291
##   12     11.30182  0.4731638  8.592116
##   13     11.22463  0.4804070  8.487040
##   14     11.27657  0.4826057  8.606557
##   15     11.37346  0.4781552  8.824008
##   16     11.51128  0.4729540  8.970150
##   17     11.79375  0.4598752  9.196114
##   18     11.85114  0.4533310  9.198911
##   19     12.11646  0.4400425  9.382643
##   20     12.31271  0.4301286  9.538435
## 
## Rsquared was used to select the optimal model using the largest value.
## The final value used for the model was ncomp = 10.

Answer:

Using R2 to select the optimal model, 10 latent variables are optimal (ncomp = 10), and the corresponding resampled estimate of R2 is 0.4885690.

 

(d) Predict the response for the test set. What is the test set estimate of R2?

# Predict the response for the test set.
testSetResponsePrediction <- predict(plsModel, xTestData) %>% postResample(obs = yTestData)
testSetResponsePrediction
##      RMSE  Rsquared       MAE 
## 12.523716  0.457552  8.794433

Answer:

The test set estimate of R2 is 0.457552.

 

(e) Try building other models discussed in this chapter. Do any have better predictive performance?

PCR Model

set.seed(5)

# Build a PCR model for performance comparision.
pcrModel <- train(x = xTrainData, y = yTrainData, method = 'pcr', metric = 'Rsquared', 
                  tuneLength = 20, trControl = trainControl(method = 'cv'), preProcess = c('center', 'scale'))

# Print out the results.
pcrModel
## Principal Component Analysis 
## 
## 133 samples
## 388 predictors
## 
## Pre-processing: centered (388), scaled (388) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 120, 119, 121, 119, 119, 120, ... 
## Resampling results across tuning parameters:
## 
##   ncomp  RMSE      Rsquared   MAE      
##    1     14.42118  0.1324585  11.122153
##    2     14.43670  0.1309422  11.135403
##    3     13.61295  0.2867805  10.377237
##    4     12.87381  0.3474533   9.748440
##    5     12.31801  0.3844983   8.967160
##    6     12.21920  0.3878923   8.812631
##    7     12.27294  0.3869846   8.809974
##    8     11.84946  0.4293802   8.465001
##    9     11.99299  0.4287386   8.803507
##   10     11.63500  0.4545615   8.504614
##   11     11.72869  0.4464945   8.599709
##   12     11.60268  0.4500838   8.520559
##   13     11.68449  0.4421662   8.576183
##   14     11.69077  0.4427715   8.631258
##   15     11.65695  0.4453246   8.659155
##   16     11.69982  0.4418126   8.680035
##   17     11.69822  0.4411631   8.642403
##   18     11.53751  0.4807247   8.655468
##   19     11.26883  0.5046219   8.468657
##   20     11.16160  0.5184676   8.411848
## 
## Rsquared was used to select the optimal model using the largest value.
## The final value used for the model was ncomp = 20.

PCR Model Prediction Results

# Predict the response for the test set.
pcrPredictionResults <- predict(pcrModel, xTestData) %>% postResample(obs = yTestData)
pcrPredictionResults
##       RMSE   Rsquared        MAE 
## 13.9603138  0.3241302  9.5628119

 

Ridge Model

set.seed(5)

# Build a Ridge model for performance comparision.
ridgeGrid <- data.frame(.lambda = seq(0, 1, by = 0.1))
ridgeModel <- train(x = xTrainData, y = yTrainData, method = 'ridge', metric = 'Rsquared', 
                    tuneGrid = ridgeGrid, trControl = trainControl(method = 'cv'), preProcess = c('center', 'scale'))

# Print out the results.
ridgeModel
## Ridge Regression 
## 
## 133 samples
## 388 predictors
## 
## Pre-processing: centered (388), scaled (388) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 120, 119, 121, 119, 119, 120, ... 
## Resampling results across tuning parameters:
## 
##   lambda  RMSE      Rsquared   MAE      
##   0.0     12.52803  0.4848279   9.370395
##   0.1     10.74949  0.5706409   8.236826
##   0.2     10.80990  0.5894287   8.237838
##   0.3     11.10459  0.5912255   8.586023
##   0.4     11.51123  0.5895893   8.973789
##   0.5     12.00376  0.5871437   9.383268
##   0.6     12.55219  0.5841590   9.813966
##   0.7     13.15572  0.5813421  10.262435
##   0.8     13.80079  0.5786183  10.760244
##   0.9     14.47974  0.5760086  11.274210
##   1.0     15.18635  0.5735331  11.793268
## 
## Rsquared was used to select the optimal model using the largest value.
## The final value used for the model was lambda = 0.3.

Ridge Model Prediction Results

# Predict the response for the test set.
ridgePredictionResults <- predict(ridgeModel, xTestData) %>% postResample(obs = yTestData)
ridgePredictionResults
##       RMSE   Rsquared        MAE 
## 13.1562787  0.4519973  9.7999235

Answer:

R2 values for each model:

  • PLS Model: 0.457552

  • PCR Model: 0.3241302

  • Ridge Model: 0.4519973

The model with the best R2 value is the original PLS Model.

(f) Would you recommend any of your models to replace the permeability laboratory experiment?

I would not recommend replacing the permeability laboratory experiment with one of my models. The original PLS model has the highest R2 value and is therefore the most accurate model. The Ridge model is close to the PLS model in terms of accuracy (R2 value is 0.4519973), where as the PCR model is the least accurate with an R2 value of 0.3241302.

 

Exercise 6.3

A chemical manufacturing process for a pharmaceutical product was discussed in Sect. 1.4. In this problem, the objective is to understand the relationship between biological measurements of the raw materials (predictors), measurements of the manufacturing process (predictors), and the response of product yield. Biological predictors cannot be changed but can be used to assess the quality of the raw material before processing. On the other hand, manufacturing process predictors can be changed in the manufacturing process. Improving product yield by 1 % will boost revenue by approximately one hundred thousand dollars per batch:

(a) Start R and use these commands to load the data:

library(AppliedPredictiveModeling)
data(ChemicalManufacturingProcess)

The matrix processPredictors contains the 57 predictors (12 describing the input biological material and 45 describing the process predictors) for the 176 manufacturing runs. yield contains the percent yield for each run.

 

(b) A small percentage of cells in the predictor set contain missing values. Use an imputation function to fill in these missing values (e.g., see Sect. 3.8).

# Take a look at which predictors have missing values.
summary(ChemicalManufacturingProcess)
##      Yield       BiologicalMaterial01 BiologicalMaterial02 BiologicalMaterial03
##  Min.   :35.25   Min.   :4.580        Min.   :46.87        Min.   :56.97       
##  1st Qu.:38.75   1st Qu.:5.978        1st Qu.:52.68        1st Qu.:64.98       
##  Median :39.97   Median :6.305        Median :55.09        Median :67.22       
##  Mean   :40.18   Mean   :6.411        Mean   :55.69        Mean   :67.70       
##  3rd Qu.:41.48   3rd Qu.:6.870        3rd Qu.:58.74        3rd Qu.:70.43       
##  Max.   :46.34   Max.   :8.810        Max.   :64.75        Max.   :78.25       
##                                                                                
##  BiologicalMaterial04 BiologicalMaterial05 BiologicalMaterial06
##  Min.   : 9.38        Min.   :13.24        Min.   :40.60       
##  1st Qu.:11.24        1st Qu.:17.23        1st Qu.:46.05       
##  Median :12.10        Median :18.49        Median :48.46       
##  Mean   :12.35        Mean   :18.60        Mean   :48.91       
##  3rd Qu.:13.22        3rd Qu.:19.90        3rd Qu.:51.34       
##  Max.   :23.09        Max.   :24.85        Max.   :59.38       
##                                                                
##  BiologicalMaterial07 BiologicalMaterial08 BiologicalMaterial09
##  Min.   :100.0        Min.   :15.88        Min.   :11.44       
##  1st Qu.:100.0        1st Qu.:17.06        1st Qu.:12.60       
##  Median :100.0        Median :17.51        Median :12.84       
##  Mean   :100.0        Mean   :17.49        Mean   :12.85       
##  3rd Qu.:100.0        3rd Qu.:17.88        3rd Qu.:13.13       
##  Max.   :100.8        Max.   :19.14        Max.   :14.08       
##                                                                
##  BiologicalMaterial10 BiologicalMaterial11 BiologicalMaterial12
##  Min.   :1.770        Min.   :135.8        Min.   :18.35       
##  1st Qu.:2.460        1st Qu.:143.8        1st Qu.:19.73       
##  Median :2.710        Median :146.1        Median :20.12       
##  Mean   :2.801        Mean   :147.0        Mean   :20.20       
##  3rd Qu.:2.990        3rd Qu.:149.6        3rd Qu.:20.75       
##  Max.   :6.870        Max.   :158.7        Max.   :22.21       
##                                                                
##  ManufacturingProcess01 ManufacturingProcess02 ManufacturingProcess03
##  Min.   : 0.00          Min.   : 0.00          Min.   :1.47          
##  1st Qu.:10.80          1st Qu.:19.30          1st Qu.:1.53          
##  Median :11.40          Median :21.00          Median :1.54          
##  Mean   :11.21          Mean   :16.68          Mean   :1.54          
##  3rd Qu.:12.15          3rd Qu.:21.50          3rd Qu.:1.55          
##  Max.   :14.10          Max.   :22.50          Max.   :1.60          
##  NA's   :1              NA's   :3              NA's   :15            
##  ManufacturingProcess04 ManufacturingProcess05 ManufacturingProcess06
##  Min.   :911.0          Min.   : 923.0         Min.   :203.0         
##  1st Qu.:928.0          1st Qu.: 986.8         1st Qu.:205.7         
##  Median :934.0          Median : 999.2         Median :206.8         
##  Mean   :931.9          Mean   :1001.7         Mean   :207.4         
##  3rd Qu.:936.0          3rd Qu.:1008.9         3rd Qu.:208.7         
##  Max.   :946.0          Max.   :1175.3         Max.   :227.4         
##  NA's   :1              NA's   :1              NA's   :2             
##  ManufacturingProcess07 ManufacturingProcess08 ManufacturingProcess09
##  Min.   :177.0          Min.   :177.0          Min.   :38.89         
##  1st Qu.:177.0          1st Qu.:177.0          1st Qu.:44.89         
##  Median :177.0          Median :178.0          Median :45.73         
##  Mean   :177.5          Mean   :177.6          Mean   :45.66         
##  3rd Qu.:178.0          3rd Qu.:178.0          3rd Qu.:46.52         
##  Max.   :178.0          Max.   :178.0          Max.   :49.36         
##  NA's   :1              NA's   :1                                    
##  ManufacturingProcess10 ManufacturingProcess11 ManufacturingProcess12
##  Min.   : 7.500         Min.   : 7.500         Min.   :   0.0        
##  1st Qu.: 8.700         1st Qu.: 9.000         1st Qu.:   0.0        
##  Median : 9.100         Median : 9.400         Median :   0.0        
##  Mean   : 9.179         Mean   : 9.386         Mean   : 857.8        
##  3rd Qu.: 9.550         3rd Qu.: 9.900         3rd Qu.:   0.0        
##  Max.   :11.600         Max.   :11.500         Max.   :4549.0        
##  NA's   :9              NA's   :10             NA's   :1             
##  ManufacturingProcess13 ManufacturingProcess14 ManufacturingProcess15
##  Min.   :32.10          Min.   :4701           Min.   :5904          
##  1st Qu.:33.90          1st Qu.:4828           1st Qu.:6010          
##  Median :34.60          Median :4856           Median :6032          
##  Mean   :34.51          Mean   :4854           Mean   :6039          
##  3rd Qu.:35.20          3rd Qu.:4882           3rd Qu.:6061          
##  Max.   :38.60          Max.   :5055           Max.   :6233          
##                         NA's   :1                                    
##  ManufacturingProcess16 ManufacturingProcess17 ManufacturingProcess18
##  Min.   :   0           Min.   :31.30          Min.   :   0          
##  1st Qu.:4561           1st Qu.:33.50          1st Qu.:4813          
##  Median :4588           Median :34.40          Median :4835          
##  Mean   :4566           Mean   :34.34          Mean   :4810          
##  3rd Qu.:4619           3rd Qu.:35.10          3rd Qu.:4862          
##  Max.   :4852           Max.   :40.00          Max.   :4971          
##                                                                      
##  ManufacturingProcess19 ManufacturingProcess20 ManufacturingProcess21
##  Min.   :5890           Min.   :   0           Min.   :-1.8000       
##  1st Qu.:6001           1st Qu.:4553           1st Qu.:-0.6000       
##  Median :6022           Median :4582           Median :-0.3000       
##  Mean   :6028           Mean   :4556           Mean   :-0.1642       
##  3rd Qu.:6050           3rd Qu.:4610           3rd Qu.: 0.0000       
##  Max.   :6146           Max.   :4759           Max.   : 3.6000       
##                                                                      
##  ManufacturingProcess22 ManufacturingProcess23 ManufacturingProcess24
##  Min.   : 0.000         Min.   :0.000          Min.   : 0.000        
##  1st Qu.: 3.000         1st Qu.:2.000          1st Qu.: 4.000        
##  Median : 5.000         Median :3.000          Median : 8.000        
##  Mean   : 5.406         Mean   :3.017          Mean   : 8.834        
##  3rd Qu.: 8.000         3rd Qu.:4.000          3rd Qu.:14.000        
##  Max.   :12.000         Max.   :6.000          Max.   :23.000        
##  NA's   :1              NA's   :1              NA's   :1             
##  ManufacturingProcess25 ManufacturingProcess26 ManufacturingProcess27
##  Min.   :   0           Min.   :   0           Min.   :   0          
##  1st Qu.:4832           1st Qu.:6020           1st Qu.:4560          
##  Median :4855           Median :6047           Median :4587          
##  Mean   :4828           Mean   :6016           Mean   :4563          
##  3rd Qu.:4877           3rd Qu.:6070           3rd Qu.:4609          
##  Max.   :4990           Max.   :6161           Max.   :4710          
##  NA's   :5              NA's   :5              NA's   :5             
##  ManufacturingProcess28 ManufacturingProcess29 ManufacturingProcess30
##  Min.   : 0.000         Min.   : 0.00          Min.   : 0.000        
##  1st Qu.: 0.000         1st Qu.:19.70          1st Qu.: 8.800        
##  Median :10.400         Median :19.90          Median : 9.100        
##  Mean   : 6.592         Mean   :20.01          Mean   : 9.161        
##  3rd Qu.:10.750         3rd Qu.:20.40          3rd Qu.: 9.700        
##  Max.   :11.500         Max.   :22.00          Max.   :11.200        
##  NA's   :5              NA's   :5              NA's   :5             
##  ManufacturingProcess31 ManufacturingProcess32 ManufacturingProcess33
##  Min.   : 0.00          Min.   :143.0          Min.   :56.00         
##  1st Qu.:70.10          1st Qu.:155.0          1st Qu.:62.00         
##  Median :70.80          Median :158.0          Median :64.00         
##  Mean   :70.18          Mean   :158.5          Mean   :63.54         
##  3rd Qu.:71.40          3rd Qu.:162.0          3rd Qu.:65.00         
##  Max.   :72.50          Max.   :173.0          Max.   :70.00         
##  NA's   :5                                     NA's   :5             
##  ManufacturingProcess34 ManufacturingProcess35 ManufacturingProcess36
##  Min.   :2.300          Min.   :463.0          Min.   :0.01700       
##  1st Qu.:2.500          1st Qu.:490.0          1st Qu.:0.01900       
##  Median :2.500          Median :495.0          Median :0.02000       
##  Mean   :2.494          Mean   :495.6          Mean   :0.01957       
##  3rd Qu.:2.500          3rd Qu.:501.5          3rd Qu.:0.02000       
##  Max.   :2.600          Max.   :522.0          Max.   :0.02200       
##  NA's   :5              NA's   :5              NA's   :5             
##  ManufacturingProcess37 ManufacturingProcess38 ManufacturingProcess39
##  Min.   :0.000          Min.   :0.000          Min.   :0.000         
##  1st Qu.:0.700          1st Qu.:2.000          1st Qu.:7.100         
##  Median :1.000          Median :3.000          Median :7.200         
##  Mean   :1.014          Mean   :2.534          Mean   :6.851         
##  3rd Qu.:1.300          3rd Qu.:3.000          3rd Qu.:7.300         
##  Max.   :2.300          Max.   :3.000          Max.   :7.500         
##                                                                      
##  ManufacturingProcess40 ManufacturingProcess41 ManufacturingProcess42
##  Min.   :0.00000        Min.   :0.00000        Min.   : 0.00         
##  1st Qu.:0.00000        1st Qu.:0.00000        1st Qu.:11.40         
##  Median :0.00000        Median :0.00000        Median :11.60         
##  Mean   :0.01771        Mean   :0.02371        Mean   :11.21         
##  3rd Qu.:0.00000        3rd Qu.:0.00000        3rd Qu.:11.70         
##  Max.   :0.10000        Max.   :0.20000        Max.   :12.10         
##  NA's   :1              NA's   :1                                    
##  ManufacturingProcess43 ManufacturingProcess44 ManufacturingProcess45
##  Min.   : 0.0000        Min.   :0.000          Min.   :0.000         
##  1st Qu.: 0.6000        1st Qu.:1.800          1st Qu.:2.100         
##  Median : 0.8000        Median :1.900          Median :2.200         
##  Mean   : 0.9119        Mean   :1.805          Mean   :2.138         
##  3rd Qu.: 1.0250        3rd Qu.:1.900          3rd Qu.:2.300         
##  Max.   :11.0000        Max.   :2.100          Max.   :2.600         
## 
# Impute the missing values using KNN.
cmpImputed <- preProcess(ChemicalManufacturingProcess, 'knnImpute')
# Predict after imputation.
chemicalMPData <- predict(cmpImputed, ChemicalManufacturingProcess)

 

(c) Split the data into a training and a test set, pre-process the data, and tune a model of your choice from this chapter. What is the optimal value of the performance metric?

set.seed(5)

# Split the training data using an 80% training data split.
trainingData <- createDataPartition(ChemicalManufacturingProcess$Yield, p = 0.8, list = FALSE)
xTrainData <- chemicalMPData[trainingData, ]
yTrainData <- ChemicalManufacturingProcess$Yield[trainingData]

# Split the test data.
xTestData <- chemicalMPData[-trainingData, ]
yTestData <- ChemicalManufacturingProcess$Yield[-trainingData]

# Pre-process the data and tune a PLS model.
plsModel <- train(x = xTrainData, y = yTrainData, method = 'pls', metric = 'Rsquared',
                  tuneLength = 20, trControl = trainControl(method = 'cv'), preProcess = c('center', 'scale'))

# Print out the results.
plsModel
## Partial Least Squares 
## 
## 144 samples
##  58 predictor
## 
## Pre-processing: centered (58), scaled (58) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 129, 128, 131, 130, 129, 130, ... 
## Resampling results across tuning parameters:
## 
##   ncomp  RMSE        Rsquared   MAE       
##    1     1.31187408  0.5757936  0.98205137
##    2     1.63909325  0.6463069  0.97220369
##    3     0.74577523  0.8340859  0.61819233
##    4     1.28254537  0.7507618  0.68430186
##    5     1.40032766  0.7759725  0.63711229
##    6     1.09264563  0.8015110  0.51450403
##    7     0.86777065  0.8294942  0.41581460
##    8     0.62366470  0.8720275  0.31439302
##    9     0.47280576  0.9177633  0.24528345
##   10     0.36241024  0.9409604  0.18255241
##   11     0.28599361  0.9571149  0.14752052
##   12     0.19529391  0.9806123  0.11395188
##   13     0.11537802  0.9946256  0.07874321
##   14     0.10078295  0.9955548  0.06438427
##   15     0.09158776  0.9953864  0.05475921
##   16     0.06902192  0.9977279  0.04422640
##   17     0.06828083  0.9974566  0.03985153
##   18     0.07726584  0.9959235  0.04075533
##   19     0.07056089  0.9962683  0.03488554
##   20     0.06717188  0.9956081  0.03210811
## 
## Rsquared was used to select the optimal model using the largest value.
## The final value used for the model was ncomp = 16.

Answer:

For this question, I tuned a PLS model. Using Rsquared as the performance metric, the optimal value is ncomp = 16, with an R2 of 0.9977279.

 

(d) Predict the response for the test set. What is the value of the performance metric and how does this compare with the resampled performance metric on the training set?

# Predict the response for the test set.
testSetResponsePrediction <- predict(plsModel, xTestData) %>% postResample(obs = yTestData)
testSetResponsePrediction
##       RMSE   Rsquared        MAE 
## 0.04431181 0.99938957 0.03318241

Answer:

The test set R2 is 0.99938957 which is higher than that of the training set.

 

(e) Which predictors are most important in the model you have trained? Do either the biological or process predictors dominate the list?

plsModel$finalModel$coefficients
## , , 1 comps
## 
##                             .outcome
## Yield                   0.2230087478
## BiologicalMaterial01    0.0795932024
## BiologicalMaterial02    0.1064811572
## BiologicalMaterial03    0.1052266611
## BiologicalMaterial04    0.0786508138
## BiologicalMaterial05    0.0277203722
## BiologicalMaterial06    0.1099507260
## BiologicalMaterial07   -0.0276548821
## BiologicalMaterial08    0.0877427943
## BiologicalMaterial09    0.0291738316
## BiologicalMaterial10    0.0401087581
## BiologicalMaterial11    0.0839400203
## BiologicalMaterial12    0.0912345592
## ManufacturingProcess01 -0.0015157766
## ManufacturingProcess02 -0.0374969959
## ManufacturingProcess03 -0.0188330869
## ManufacturingProcess04 -0.0651952469
## ManufacturingProcess05  0.0135095780
## ManufacturingProcess06  0.0815440230
## ManufacturingProcess07 -0.0193489458
## ManufacturingProcess08 -0.0075696275
## ManufacturingProcess09  0.1134406599
## ManufacturingProcess10  0.0562619501
## ManufacturingProcess11  0.0852541595
## ManufacturingProcess12  0.0882027968
## ManufacturingProcess13 -0.1223772949
## ManufacturingProcess14 -0.0109946524
## ManufacturingProcess15  0.0413461776
## ManufacturingProcess16 -0.0280764951
## ManufacturingProcess17 -0.1068986199
## ManufacturingProcess18 -0.0146285091
## ManufacturingProcess19  0.0164093898
## ManufacturingProcess20 -0.0163047016
## ManufacturingProcess21 -0.0122348444
## ManufacturingProcess22  0.0025584719
## ManufacturingProcess23 -0.0281233010
## ManufacturingProcess24 -0.0528471490
## ManufacturingProcess25  0.0014636234
## ManufacturingProcess26  0.0078292330
## ManufacturingProcess27  0.0001712513
## ManufacturingProcess28  0.0557585277
## ManufacturingProcess29  0.0303882061
## ManufacturingProcess30  0.0526068566
## ManufacturingProcess31 -0.0137774479
## ManufacturingProcess32  0.1312048261
## ManufacturingProcess33  0.0932121949
## ManufacturingProcess34  0.0355304336
## ManufacturingProcess35 -0.0495388115
## ManufacturingProcess36 -0.1218109332
## ManufacturingProcess37 -0.0363875644
## ManufacturingProcess38 -0.0196247116
## ManufacturingProcess39  0.0040873717
## ManufacturingProcess40 -0.0067193136
## ManufacturingProcess41 -0.0037281177
## ManufacturingProcess42 -0.0099422604
## ManufacturingProcess43  0.0413854819
## ManufacturingProcess44  0.0099192935
## ManufacturingProcess45  0.0030533598
## 
## , , 2 comps
## 
##                            .outcome
## Yield                   0.471735828
## BiologicalMaterial01    0.018748653
## BiologicalMaterial02    0.056551401
## BiologicalMaterial03    0.090347085
## BiologicalMaterial04    0.020523676
## BiologicalMaterial05   -0.009726324
## BiologicalMaterial06    0.076883803
## BiologicalMaterial07   -0.085233438
## BiologicalMaterial08    0.024102088
## BiologicalMaterial09   -0.018120583
## BiologicalMaterial10   -0.040700545
## BiologicalMaterial11    0.029519000
## BiologicalMaterial12    0.043530729
## ManufacturingProcess01  0.037629705
## ManufacturingProcess02  0.033141752
## ManufacturingProcess03 -0.037746942
## ManufacturingProcess04 -0.024400792
## ManufacturingProcess05 -0.045650661
## ManufacturingProcess06  0.114569416
## ManufacturingProcess07 -0.052035921
## ManufacturingProcess08 -0.006811906
## ManufacturingProcess09  0.191198053
## ManufacturingProcess10  0.071259313
## ManufacturingProcess11  0.131121341
## ManufacturingProcess12  0.131325287
## ManufacturingProcess13 -0.221919672
## ManufacturingProcess14 -0.030736539
## ManufacturingProcess15  0.037798970
## ManufacturingProcess16 -0.070765067
## ManufacturingProcess17 -0.231329008
## ManufacturingProcess18  0.014860180
## ManufacturingProcess19 -0.026828944
## ManufacturingProcess20  0.010992023
## ManufacturingProcess21 -0.089696995
## ManufacturingProcess22  0.008644570
## ManufacturingProcess23 -0.024852632
## ManufacturingProcess24 -0.043537329
## ManufacturingProcess25 -0.019915878
## ManufacturingProcess26 -0.009833555
## ManufacturingProcess27 -0.021439371
## ManufacturingProcess28 -0.008987614
## ManufacturingProcess29  0.010169004
## ManufacturingProcess30  0.072371116
## ManufacturingProcess31 -0.031537583
## ManufacturingProcess32  0.190499436
## ManufacturingProcess33  0.106353580
## ManufacturingProcess34  0.105368173
## ManufacturingProcess35 -0.064751492
## ManufacturingProcess36 -0.176093971
## ManufacturingProcess37 -0.100540744
## ManufacturingProcess38 -0.016972193
## ManufacturingProcess39  0.049937874
## ManufacturingProcess40  0.001589947
## ManufacturingProcess41 -0.005704726
## ManufacturingProcess42  0.016112563
## ManufacturingProcess43  0.052156330
## ManufacturingProcess44  0.050045900
## ManufacturingProcess45  0.033725670
## 
## , , 3 comps
## 
##                             .outcome
## Yield                   0.7141318113
## BiologicalMaterial01    0.0108311800
## BiologicalMaterial02    0.0367668590
## BiologicalMaterial03    0.0793160450
## BiologicalMaterial04    0.0144178592
## BiologicalMaterial05    0.0068067840
## BiologicalMaterial06    0.0715089524
## BiologicalMaterial07   -0.1455256378
## BiologicalMaterial08   -0.0029108953
## BiologicalMaterial09   -0.0689039329
## BiologicalMaterial10   -0.0582307678
## BiologicalMaterial11    0.0097542289
## BiologicalMaterial12    0.0197815275
## ManufacturingProcess01  0.0583853137
## ManufacturingProcess02  0.0247028683
## ManufacturingProcess03 -0.0188615386
## ManufacturingProcess04  0.0351181460
## ManufacturingProcess05 -0.0908984023
## ManufacturingProcess06  0.0724628480
## ManufacturingProcess07 -0.0903733285
## ManufacturingProcess08 -0.0091700342
## ManufacturingProcess09  0.1501157358
## ManufacturingProcess10  0.0113679267
## ManufacturingProcess11  0.0837563598
## ManufacturingProcess12  0.0777825403
## ManufacturingProcess13 -0.1790369597
## ManufacturingProcess14  0.0412608579
## ManufacturingProcess15  0.1058364744
## ManufacturingProcess16 -0.0291058716
## ManufacturingProcess17 -0.2136059686
## ManufacturingProcess18  0.0523242180
## ManufacturingProcess19  0.0435428818
## ManufacturingProcess20  0.0465274815
## ManufacturingProcess21 -0.1209598732
## ManufacturingProcess22 -0.0020014158
## ManufacturingProcess23 -0.0387873700
## ManufacturingProcess24 -0.0507876832
## ManufacturingProcess25 -0.0007535192
## ManufacturingProcess26  0.0089929915
## ManufacturingProcess27 -0.0024616241
## ManufacturingProcess28 -0.0594929230
## ManufacturingProcess29  0.0386267663
## ManufacturingProcess30  0.0500832039
## ManufacturingProcess31 -0.0138545919
## ManufacturingProcess32  0.2629996272
## ManufacturingProcess33  0.1400367957
## ManufacturingProcess34  0.1524568028
## ManufacturingProcess35 -0.0649136233
## ManufacturingProcess36 -0.2250422761
## ManufacturingProcess37 -0.1567781961
## ManufacturingProcess38 -0.0156283749
## ManufacturingProcess39  0.0919357019
## ManufacturingProcess40  0.0077817200
## ManufacturingProcess41 -0.0048711226
## ManufacturingProcess42  0.0432836060
## ManufacturingProcess43  0.0538165268
## ManufacturingProcess44  0.0732341382
## ManufacturingProcess45  0.0612538433
## 
## , , 4 comps
## 
##                             .outcome
## Yield                   1.0771426927
## BiologicalMaterial01    0.0235360770
## BiologicalMaterial02   -0.0016302878
## BiologicalMaterial03    0.0403695899
## BiologicalMaterial04    0.0033865227
## BiologicalMaterial05    0.0295361607
## BiologicalMaterial06    0.0598437080
## BiologicalMaterial07   -0.0981669027
## BiologicalMaterial08    0.0189273263
## BiologicalMaterial09   -0.1045010781
## BiologicalMaterial10   -0.0652513578
## BiologicalMaterial11    0.0067989591
## BiologicalMaterial12    0.0428405383
## ManufacturingProcess01  0.0711387887
## ManufacturingProcess02  0.0023445809
## ManufacturingProcess03 -0.0275220894
## ManufacturingProcess04  0.1368063883
## ManufacturingProcess05 -0.1056314972
## ManufacturingProcess06 -0.0016953876
## ManufacturingProcess07 -0.1140601804
## ManufacturingProcess08 -0.0111194569
## ManufacturingProcess09  0.1339796038
## ManufacturingProcess10  0.0528446964
## ManufacturingProcess11  0.0504085681
## ManufacturingProcess12  0.0056181063
## ManufacturingProcess13 -0.1394229040
## ManufacturingProcess14 -0.0002529728
## ManufacturingProcess15  0.0728263071
## ManufacturingProcess16 -0.0527991821
## ManufacturingProcess17 -0.1234042830
## ManufacturingProcess18  0.0168398210
## ManufacturingProcess19  0.1330141071
## ManufacturingProcess20  0.0099077816
## ManufacturingProcess21 -0.0168499861
## ManufacturingProcess22 -0.0383176631
## ManufacturingProcess23 -0.0687766522
## ManufacturingProcess24 -0.0942335145
## ManufacturingProcess25 -0.0230453250
## ManufacturingProcess26 -0.0134702595
## ManufacturingProcess27 -0.0223904164
## ManufacturingProcess28 -0.1248089823
## ManufacturingProcess29  0.0353520960
## ManufacturingProcess30 -0.0104895509
## ManufacturingProcess31 -0.0358215056
## ManufacturingProcess32  0.2507246247
## ManufacturingProcess33  0.0701952747
## ManufacturingProcess34  0.1915868192
## ManufacturingProcess35 -0.0314996061
## ManufacturingProcess36 -0.1722480089
## ManufacturingProcess37 -0.1982781469
## ManufacturingProcess38 -0.0566228348
## ManufacturingProcess39  0.0891315637
## ManufacturingProcess40 -0.0132566646
## ManufacturingProcess41 -0.0314969087
## ManufacturingProcess42  0.0018503097
## ManufacturingProcess43  0.0716673670
## ManufacturingProcess44  0.0140400485
## ManufacturingProcess45  0.0171759686
## 
## , , 5 comps
## 
##                             .outcome
## Yield                   1.335181e+00
## BiologicalMaterial01    3.487662e-02
## BiologicalMaterial02   -2.750899e-02
## BiologicalMaterial03    3.236428e-02
## BiologicalMaterial04    1.386994e-03
## BiologicalMaterial05    2.639571e-02
## BiologicalMaterial06    5.329128e-02
## BiologicalMaterial07   -2.952928e-02
## BiologicalMaterial08    4.817090e-02
## BiologicalMaterial09   -8.397355e-02
## BiologicalMaterial10   -6.106703e-02
## BiologicalMaterial11    3.715850e-02
## BiologicalMaterial12    8.226965e-02
## ManufacturingProcess01  6.737211e-02
## ManufacturingProcess02 -2.150750e-03
## ManufacturingProcess03 -4.742119e-02
## ManufacturingProcess04  1.857298e-01
## ManufacturingProcess05 -1.022033e-01
## ManufacturingProcess06 -6.210120e-02
## ManufacturingProcess07 -1.167661e-01
## ManufacturingProcess08 -3.437335e-02
## ManufacturingProcess09  1.494633e-01
## ManufacturingProcess10  5.004265e-02
## ManufacturingProcess11  4.085372e-02
## ManufacturingProcess12  4.753169e-04
## ManufacturingProcess13 -1.140991e-01
## ManufacturingProcess14 -6.162316e-03
## ManufacturingProcess15  6.438391e-02
## ManufacturingProcess16 -5.933918e-02
## ManufacturingProcess17 -8.262249e-02
## ManufacturingProcess18 -5.835025e-04
## ManufacturingProcess19  1.530590e-01
## ManufacturingProcess20 -1.042232e-02
## ManufacturingProcess21  1.929605e-02
## ManufacturingProcess22 -3.444237e-02
## ManufacturingProcess23 -3.696840e-02
## ManufacturingProcess24 -9.030733e-02
## ManufacturingProcess25  5.746658e-03
## ManufacturingProcess26  1.537308e-02
## ManufacturingProcess27  6.665453e-03
## ManufacturingProcess28 -1.484697e-01
## ManufacturingProcess29  6.867123e-02
## ManufacturingProcess30 -2.699838e-03
## ManufacturingProcess31  5.957617e-05
## ManufacturingProcess32  1.902620e-01
## ManufacturingProcess33 -1.498849e-02
## ManufacturingProcess34  1.732369e-01
## ManufacturingProcess35  3.399793e-02
## ManufacturingProcess36 -6.716699e-02
## ManufacturingProcess37 -1.954759e-01
## ManufacturingProcess38 -3.041325e-02
## ManufacturingProcess39  1.231936e-01
## ManufacturingProcess40  1.973955e-02
## ManufacturingProcess41  5.461690e-04
## ManufacturingProcess42  1.768242e-02
## ManufacturingProcess43  8.138114e-02
## ManufacturingProcess44  1.312379e-02
## ManufacturingProcess45  3.371311e-02
## 
## , , 6 comps
## 
##                            .outcome
## Yield                   1.459293499
## BiologicalMaterial01    0.053717388
## BiologicalMaterial02   -0.031289327
## BiologicalMaterial03    0.041818322
## BiologicalMaterial04    0.005218815
## BiologicalMaterial05    0.022410489
## BiologicalMaterial06    0.059310270
## BiologicalMaterial07   -0.008418522
## BiologicalMaterial08    0.055845005
## BiologicalMaterial09   -0.070715951
## BiologicalMaterial10   -0.056978946
## BiologicalMaterial11    0.046690936
## BiologicalMaterial12    0.096473197
## ManufacturingProcess01  0.058916277
## ManufacturingProcess02  0.004614015
## ManufacturingProcess03 -0.066003783
## ManufacturingProcess04  0.191116856
## ManufacturingProcess05 -0.094017390
## ManufacturingProcess06 -0.090961954
## ManufacturingProcess07 -0.096331915
## ManufacturingProcess08 -0.054687719
## ManufacturingProcess09  0.157661528
## ManufacturingProcess10  0.012493002
## ManufacturingProcess11  0.029094768
## ManufacturingProcess12  0.010832610
## ManufacturingProcess13 -0.093748328
## ManufacturingProcess14  0.017491545
## ManufacturingProcess15  0.075141848
## ManufacturingProcess16 -0.049553670
## ManufacturingProcess17 -0.071478098
## ManufacturingProcess18  0.004295553
## ManufacturingProcess19  0.139926266
## ManufacturingProcess20 -0.008716326
## ManufacturingProcess21  0.009383753
## ManufacturingProcess22 -0.022800618
## ManufacturingProcess23 -0.005885021
## ManufacturingProcess24 -0.074386255
## ManufacturingProcess25 -0.016045688
## ManufacturingProcess26 -0.007686530
## ManufacturingProcess27 -0.017162180
## ManufacturingProcess28 -0.156846103
## ManufacturingProcess29  0.044796963
## ManufacturingProcess30 -0.029082585
## ManufacturingProcess31 -0.013974195
## ManufacturingProcess32  0.162983504
## ManufacturingProcess33 -0.043671608
## ManufacturingProcess34  0.122347489
## ManufacturingProcess35  0.051215790
## ManufacturingProcess36 -0.024139303
## ManufacturingProcess37 -0.167881797
## ManufacturingProcess38 -0.023741882
## ManufacturingProcess39  0.113873822
## ManufacturingProcess40  0.043385936
## ManufacturingProcess41  0.023633384
## ManufacturingProcess42  0.002595191
## ManufacturingProcess43  0.069696392
## ManufacturingProcess44 -0.009934311
## ManufacturingProcess45  0.025865518
## 
## , , 7 comps
## 
##                            .outcome
## Yield                   1.563020469
## BiologicalMaterial01    0.075840082
## BiologicalMaterial02   -0.040555690
## BiologicalMaterial03    0.036679279
## BiologicalMaterial04    0.005663225
## BiologicalMaterial05    0.012755184
## BiologicalMaterial06    0.055115350
## BiologicalMaterial07   -0.008954414
## BiologicalMaterial08    0.045971525
## BiologicalMaterial09   -0.085486677
## BiologicalMaterial10   -0.055344789
## BiologicalMaterial11    0.018925709
## BiologicalMaterial12    0.075224773
## ManufacturingProcess01  0.042108287
## ManufacturingProcess02  0.005328189
## ManufacturingProcess03 -0.080316435
## ManufacturingProcess04  0.172144039
## ManufacturingProcess05 -0.089480876
## ManufacturingProcess06 -0.099328896
## ManufacturingProcess07 -0.062288779
## ManufacturingProcess08 -0.071407790
## ManufacturingProcess09  0.156442078
## ManufacturingProcess10 -0.012163366
## ManufacturingProcess11  0.022048266
## ManufacturingProcess12  0.035153769
## ManufacturingProcess13 -0.080930261
## ManufacturingProcess14  0.024185645
## ManufacturingProcess15  0.069702285
## ManufacturingProcess16 -0.047836031
## ManufacturingProcess17 -0.053849001
## ManufacturingProcess18  0.003774477
## ManufacturingProcess19  0.116470872
## ManufacturingProcess20 -0.011944203
## ManufacturingProcess21  0.022251818
## ManufacturingProcess22 -0.029856801
## ManufacturingProcess23  0.009264319
## ManufacturingProcess24 -0.035288307
## ManufacturingProcess25 -0.002799609
## ManufacturingProcess26  0.003721116
## ManufacturingProcess27 -0.006679803
## ManufacturingProcess28 -0.139683640
## ManufacturingProcess29  0.052644652
## ManufacturingProcess30 -0.029010078
## ManufacturingProcess31  0.006201196
## ManufacturingProcess32  0.150304825
## ManufacturingProcess33 -0.047998988
## ManufacturingProcess34  0.051829810
## ManufacturingProcess35  0.042540053
## ManufacturingProcess36 -0.007076030
## ManufacturingProcess37 -0.122958864
## ManufacturingProcess38 -0.030691531
## ManufacturingProcess39  0.091556381
## ManufacturingProcess40  0.045615445
## ManufacturingProcess41  0.020694863
## ManufacturingProcess42 -0.022659751
## ManufacturingProcess43  0.053683891
## ManufacturingProcess44 -0.042897356
## ManufacturingProcess45  0.002910505
## 
## , , 8 comps
## 
##                            .outcome
## Yield                   1.631452029
## BiologicalMaterial01    0.089238811
## BiologicalMaterial02   -0.046673281
## BiologicalMaterial03    0.031472775
## BiologicalMaterial04    0.007326098
## BiologicalMaterial05    0.003415200
## BiologicalMaterial06    0.048521288
## BiologicalMaterial07   -0.017906474
## BiologicalMaterial08    0.043828797
## BiologicalMaterial09   -0.088681726
## BiologicalMaterial10   -0.048979583
## BiologicalMaterial11    0.001680336
## BiologicalMaterial12    0.059600191
## ManufacturingProcess01  0.019684220
## ManufacturingProcess02 -0.002984544
## ManufacturingProcess03 -0.087690936
## ManufacturingProcess04  0.151701632
## ManufacturingProcess05 -0.090688944
## ManufacturingProcess06 -0.089089419
## ManufacturingProcess07 -0.030635251
## ManufacturingProcess08 -0.066994188
## ManufacturingProcess09  0.143399041
## ManufacturingProcess10 -0.023331596
## ManufacturingProcess11  0.016283658
## ManufacturingProcess12  0.051632822
## ManufacturingProcess13 -0.066599373
## ManufacturingProcess14  0.020832500
## ManufacturingProcess15  0.055818819
## ManufacturingProcess16 -0.050390643
## ManufacturingProcess17 -0.028061174
## ManufacturingProcess18  0.001724367
## ManufacturingProcess19  0.097766822
## ManufacturingProcess20 -0.015749730
## ManufacturingProcess21  0.047587134
## ManufacturingProcess22 -0.025936859
## ManufacturingProcess23  0.021184894
## ManufacturingProcess24 -0.006143600
## ManufacturingProcess25 -0.006226420
## ManufacturingProcess26 -0.001236202
## ManufacturingProcess27 -0.011741254
## ManufacturingProcess28 -0.112210777
## ManufacturingProcess29  0.047174658
## ManufacturingProcess30 -0.039096020
## ManufacturingProcess31  0.007927786
## ManufacturingProcess32  0.141843404
## ManufacturingProcess33 -0.049948571
## ManufacturingProcess34  0.009126640
## ManufacturingProcess35  0.029729597
## ManufacturingProcess36 -0.003511351
## ManufacturingProcess37 -0.097401441
## ManufacturingProcess38 -0.016268384
## ManufacturingProcess39  0.094859682
## ManufacturingProcess40  0.037258877
## ManufacturingProcess41  0.007065496
## ManufacturingProcess42 -0.008926206
## ManufacturingProcess43  0.045530372
## ManufacturingProcess44 -0.037261294
## ManufacturingProcess45  0.014005259
## 
## , , 9 comps
## 
##                            .outcome
## Yield                   1.705880092
## BiologicalMaterial01    0.097350664
## BiologicalMaterial02   -0.054042479
## BiologicalMaterial03    0.018507061
## BiologicalMaterial04    0.012301059
## BiologicalMaterial05    0.011231265
## BiologicalMaterial06    0.037661691
## BiologicalMaterial07   -0.045145010
## BiologicalMaterial08    0.050379317
## BiologicalMaterial09   -0.086329401
## BiologicalMaterial10   -0.030437448
## BiologicalMaterial11   -0.009716355
## BiologicalMaterial12    0.045112979
## ManufacturingProcess01  0.019896703
## ManufacturingProcess02 -0.016460492
## ManufacturingProcess03 -0.060306948
## ManufacturingProcess04  0.141305937
## ManufacturingProcess05 -0.060206361
## ManufacturingProcess06 -0.058621050
## ManufacturingProcess07  0.008536599
## ManufacturingProcess08 -0.042149548
## ManufacturingProcess09  0.128197899
## ManufacturingProcess10 -0.029362114
## ManufacturingProcess11  0.032701827
## ManufacturingProcess12  0.046302239
## ManufacturingProcess13 -0.051697723
## ManufacturingProcess14  0.017532029
## ManufacturingProcess15  0.046402780
## ManufacturingProcess16 -0.025720179
## ManufacturingProcess17 -0.010216423
## ManufacturingProcess18  0.012038276
## ManufacturingProcess19  0.058832531
## ManufacturingProcess20 -0.002709116
## ManufacturingProcess21  0.057773503
## ManufacturingProcess22 -0.017617005
## ManufacturingProcess23  0.018220522
## ManufacturingProcess24  0.008462316
## ManufacturingProcess25 -0.009774932
## ManufacturingProcess26 -0.005630772
## ManufacturingProcess27 -0.013164124
## ManufacturingProcess28 -0.088987256
## ManufacturingProcess29  0.041849791
## ManufacturingProcess30 -0.030509614
## ManufacturingProcess31  0.010263567
## ManufacturingProcess32  0.111147964
## ManufacturingProcess33 -0.076998902
## ManufacturingProcess34 -0.022969067
## ManufacturingProcess35 -0.001303592
## ManufacturingProcess36  0.004876027
## ManufacturingProcess37 -0.061916851
## ManufacturingProcess38 -0.008922824
## ManufacturingProcess39  0.082361656
## ManufacturingProcess40  0.024497121
## ManufacturingProcess41 -0.013315418
## ManufacturingProcess42  0.008419222
## ManufacturingProcess43  0.031859405
## ManufacturingProcess44 -0.035822946
## ManufacturingProcess45  0.024677182
## 
## , , 10 comps
## 
##                             .outcome
## Yield                   1.7573951717
## BiologicalMaterial01    0.0915226481
## BiologicalMaterial02   -0.0573545307
## BiologicalMaterial03    0.0218374558
## BiologicalMaterial04    0.0040554124
## BiologicalMaterial05    0.0172902375
## BiologicalMaterial06    0.0336880423
## BiologicalMaterial07   -0.0460103048
## BiologicalMaterial08    0.0532213455
## BiologicalMaterial09   -0.0659209903
## BiologicalMaterial10   -0.0295710108
## BiologicalMaterial11   -0.0101117849
## BiologicalMaterial12    0.0423762218
## ManufacturingProcess01  0.0113259364
## ManufacturingProcess02 -0.0067148182
## ManufacturingProcess03 -0.0474393412
## ManufacturingProcess04  0.1174870588
## ManufacturingProcess05 -0.0508954356
## ManufacturingProcess06 -0.0314334648
## ManufacturingProcess07  0.0253450984
## ManufacturingProcess08 -0.0196970547
## ManufacturingProcess09  0.0980023187
## ManufacturingProcess10 -0.0408242565
## ManufacturingProcess11  0.0203520954
## ManufacturingProcess12  0.0501410175
## ManufacturingProcess13 -0.0329153325
## ManufacturingProcess14  0.0091641313
## ManufacturingProcess15  0.0219474405
## ManufacturingProcess16 -0.0198823984
## ManufacturingProcess17  0.0049792675
## ManufacturingProcess18  0.0320432055
## ManufacturingProcess19  0.0246172088
## ManufacturingProcess20  0.0177356156
## ManufacturingProcess21  0.0574698372
## ManufacturingProcess22  0.0018492738
## ManufacturingProcess23  0.0138236790
## ManufacturingProcess24 -0.0050244048
## ManufacturingProcess25 -0.0038295295
## ManufacturingProcess26 -0.0021168743
## ManufacturingProcess27 -0.0076065581
## ManufacturingProcess28 -0.0666680316
## ManufacturingProcess29  0.0382250725
## ManufacturingProcess30 -0.0337239093
## ManufacturingProcess31  0.0241009467
## ManufacturingProcess32  0.0956815841
## ManufacturingProcess33 -0.0998404240
## ManufacturingProcess34 -0.0230901635
## ManufacturingProcess35 -0.0282696097
## ManufacturingProcess36 -0.0005795083
## ManufacturingProcess37 -0.0371307479
## ManufacturingProcess38 -0.0130612170
## ManufacturingProcess39  0.0533551976
## ManufacturingProcess40  0.0214757377
## ManufacturingProcess41 -0.0214838596
## ManufacturingProcess42  0.0167872577
## ManufacturingProcess43  0.0283754204
## ManufacturingProcess44 -0.0415655650
## ManufacturingProcess45  0.0322430717
## 
## , , 11 comps
## 
##                            .outcome
## Yield                   1.782643407
## BiologicalMaterial01    0.072635702
## BiologicalMaterial02   -0.060937110
## BiologicalMaterial03    0.018258275
## BiologicalMaterial04   -0.004729540
## BiologicalMaterial05    0.025471743
## BiologicalMaterial06    0.028812042
## BiologicalMaterial07   -0.036252454
## BiologicalMaterial08    0.050700049
## BiologicalMaterial09   -0.062280601
## BiologicalMaterial10   -0.035686569
## BiologicalMaterial11   -0.012912804
## BiologicalMaterial12    0.040719688
## ManufacturingProcess01  0.005508308
## ManufacturingProcess02 -0.004804960
## ManufacturingProcess03 -0.035969147
## ManufacturingProcess04  0.092807418
## ManufacturingProcess05 -0.033543367
## ManufacturingProcess06 -0.014030415
## ManufacturingProcess07  0.024427216
## ManufacturingProcess08 -0.008077062
## ManufacturingProcess09  0.076972108
## ManufacturingProcess10 -0.043708912
## ManufacturingProcess11  0.020883389
## ManufacturingProcess12  0.048588898
## ManufacturingProcess13 -0.021604218
## ManufacturingProcess14  0.006770813
## ManufacturingProcess15  0.017133327
## ManufacturingProcess16 -0.008141278
## ManufacturingProcess17  0.009751923
## ManufacturingProcess18  0.017087909
## ManufacturingProcess19  0.012551786
## ManufacturingProcess20  0.004482082
## ManufacturingProcess21  0.049399972
## ManufacturingProcess22  0.008976794
## ManufacturingProcess23  0.003990441
## ManufacturingProcess24 -0.005417368
## ManufacturingProcess25 -0.003945094
## ManufacturingProcess26 -0.003102213
## ManufacturingProcess27 -0.007313051
## ManufacturingProcess28 -0.051926275
## ManufacturingProcess29  0.034461236
## ManufacturingProcess30 -0.035686067
## ManufacturingProcess31  0.027695578
## ManufacturingProcess32  0.092459231
## ManufacturingProcess33 -0.100097105
## ManufacturingProcess34 -0.023993165
## ManufacturingProcess35 -0.033464439
## ManufacturingProcess36 -0.004780266
## ManufacturingProcess37 -0.025502902
## ManufacturingProcess38 -0.016740988
## ManufacturingProcess39  0.038090573
## ManufacturingProcess40  0.031997464
## ManufacturingProcess41 -0.011241127
## ManufacturingProcess42  0.022415711
## ManufacturingProcess43  0.034354794
## ManufacturingProcess44 -0.045764235
## ManufacturingProcess45  0.039997864
## 
## , , 12 comps
## 
##                             .outcome
## Yield                   1.806393e+00
## BiologicalMaterial01    5.587982e-02
## BiologicalMaterial02   -6.267144e-02
## BiologicalMaterial03    1.922191e-02
## BiologicalMaterial04   -1.350034e-04
## BiologicalMaterial05    2.318266e-02
## BiologicalMaterial06    2.041549e-02
## BiologicalMaterial07   -1.924623e-02
## BiologicalMaterial08    5.120080e-02
## BiologicalMaterial09   -4.765669e-02
## BiologicalMaterial10   -2.762722e-02
## BiologicalMaterial11   -1.785965e-02
## BiologicalMaterial12    3.206317e-02
## ManufacturingProcess01  4.331125e-03
## ManufacturingProcess02  6.996855e-03
## ManufacturingProcess03 -2.089822e-02
## ManufacturingProcess04  6.596278e-02
## ManufacturingProcess05 -1.610039e-02
## ManufacturingProcess06 -7.262284e-03
## ManufacturingProcess07  1.611134e-02
## ManufacturingProcess08  1.106887e-03
## ManufacturingProcess09  5.609330e-02
## ManufacturingProcess10 -4.620164e-02
## ManufacturingProcess11  2.069470e-02
## ManufacturingProcess12  4.275714e-02
## ManufacturingProcess13 -1.125658e-02
## ManufacturingProcess14  2.742612e-03
## ManufacturingProcess15  1.153726e-02
## ManufacturingProcess16  8.564202e-04
## ManufacturingProcess17  7.794724e-03
## ManufacturingProcess18  7.994966e-03
## ManufacturingProcess19 -1.857516e-03
## ManufacturingProcess20 -3.299769e-03
## ManufacturingProcess21  3.062725e-02
## ManufacturingProcess22  2.748054e-03
## ManufacturingProcess23 -1.153564e-02
## ManufacturingProcess24  6.474715e-04
## ManufacturingProcess25 -4.731592e-03
## ManufacturingProcess26 -4.674593e-03
## ManufacturingProcess27 -8.176868e-03
## ManufacturingProcess28 -3.624047e-02
## ManufacturingProcess29  2.883057e-02
## ManufacturingProcess30 -3.886633e-02
## ManufacturingProcess31  3.132757e-02
## ManufacturingProcess32  9.358843e-02
## ManufacturingProcess33 -8.980702e-02
## ManufacturingProcess34 -2.279323e-02
## ManufacturingProcess35 -1.732325e-02
## ManufacturingProcess36 -5.175226e-05
## ManufacturingProcess37 -1.802730e-02
## ManufacturingProcess38 -1.513608e-02
## ManufacturingProcess39  2.278514e-02
## ManufacturingProcess40  2.079937e-02
## ManufacturingProcess41 -2.034144e-02
## ManufacturingProcess42  2.645905e-02
## ManufacturingProcess43  4.052741e-02
## ManufacturingProcess44 -4.900922e-02
## ManufacturingProcess45  4.725320e-02
## 
## , , 13 comps
## 
##                             .outcome
## Yield                   1.8225966347
## BiologicalMaterial01    0.0366611015
## BiologicalMaterial02   -0.0589687927
## BiologicalMaterial03    0.0220552939
## BiologicalMaterial04    0.0046018616
## BiologicalMaterial05    0.0241241625
## BiologicalMaterial06    0.0171582515
## BiologicalMaterial07   -0.0043737113
## BiologicalMaterial08    0.0485910043
## BiologicalMaterial09   -0.0405397599
## BiologicalMaterial10   -0.0225500951
## BiologicalMaterial11   -0.0243504149
## BiologicalMaterial12    0.0254885691
## ManufacturingProcess01  0.0092111430
## ManufacturingProcess02  0.0061951957
## ManufacturingProcess03 -0.0177197378
## ManufacturingProcess04  0.0430515184
## ManufacturingProcess05 -0.0045838503
## ManufacturingProcess06 -0.0035466905
## ManufacturingProcess07  0.0018500086
## ManufacturingProcess08  0.0017181374
## ManufacturingProcess09  0.0417898609
## ManufacturingProcess10 -0.0327512330
## ManufacturingProcess11  0.0222081606
## ManufacturingProcess12  0.0308353121
## ManufacturingProcess13 -0.0037277771
## ManufacturingProcess14 -0.0094143720
## ManufacturingProcess15  0.0061558991
## ManufacturingProcess16  0.0076601577
## ManufacturingProcess17  0.0071858859
## ManufacturingProcess18  0.0135317347
## ManufacturingProcess19 -0.0019976836
## ManufacturingProcess20  0.0036921877
## ManufacturingProcess21  0.0184368662
## ManufacturingProcess22  0.0004223328
## ManufacturingProcess23 -0.0105029591
## ManufacturingProcess24  0.0074993774
## ManufacturingProcess25 -0.0068904573
## ManufacturingProcess26 -0.0067337302
## ManufacturingProcess27 -0.0096190078
## ManufacturingProcess28 -0.0210349996
## ManufacturingProcess29  0.0268226737
## ManufacturingProcess30 -0.0387362637
## ManufacturingProcess31  0.0302727899
## ManufacturingProcess32  0.0924675046
## ManufacturingProcess33 -0.0772453071
## ManufacturingProcess34 -0.0237542829
## ManufacturingProcess35 -0.0110858147
## ManufacturingProcess36  0.0050863819
## ManufacturingProcess37 -0.0112224786
## ManufacturingProcess38 -0.0142136148
## ManufacturingProcess39  0.0166396361
## ManufacturingProcess40  0.0178141261
## ManufacturingProcess41 -0.0185722318
## ManufacturingProcess42  0.0289023239
## ManufacturingProcess43  0.0248955467
## ManufacturingProcess44 -0.0483748803
## ManufacturingProcess45  0.0481641292
## 
## , , 14 comps
## 
##                             .outcome
## Yield                   1.833872e+00
## BiologicalMaterial01    2.248075e-02
## BiologicalMaterial02   -5.418434e-02
## BiologicalMaterial03    2.737517e-02
## BiologicalMaterial04    8.326831e-03
## BiologicalMaterial05    1.509847e-02
## BiologicalMaterial06    1.488645e-02
## BiologicalMaterial07    7.807956e-05
## BiologicalMaterial08    4.743898e-02
## BiologicalMaterial09   -2.727509e-02
## BiologicalMaterial10   -1.810432e-02
## BiologicalMaterial11   -2.957128e-02
## BiologicalMaterial12    2.145679e-02
## ManufacturingProcess01  1.567233e-02
## ManufacturingProcess02  5.986595e-03
## ManufacturingProcess03 -1.143540e-02
## ManufacturingProcess04  3.166964e-02
## ManufacturingProcess05 -1.823566e-03
## ManufacturingProcess06  4.521815e-03
## ManufacturingProcess07 -1.598621e-03
## ManufacturingProcess08  6.778216e-03
## ManufacturingProcess09  3.207842e-02
## ManufacturingProcess10 -2.470554e-02
## ManufacturingProcess11  2.134995e-02
## ManufacturingProcess12  1.698516e-02
## ManufacturingProcess13  1.928183e-03
## ManufacturingProcess14 -1.684326e-02
## ManufacturingProcess15  2.538160e-03
## ManufacturingProcess16  6.966233e-03
## ManufacturingProcess17  6.481230e-03
## ManufacturingProcess18  1.042673e-02
## ManufacturingProcess19 -1.033791e-03
## ManufacturingProcess20  8.322129e-04
## ManufacturingProcess21  8.833523e-03
## ManufacturingProcess22  1.763324e-03
## ManufacturingProcess23 -6.501093e-03
## ManufacturingProcess24  9.010134e-03
## ManufacturingProcess25 -6.614555e-03
## ManufacturingProcess26 -6.527646e-03
## ManufacturingProcess27 -9.455287e-03
## ManufacturingProcess28 -1.463077e-02
## ManufacturingProcess29  2.629323e-02
## ManufacturingProcess30 -3.958404e-02
## ManufacturingProcess31  3.145313e-02
## ManufacturingProcess32  8.993551e-02
## ManufacturingProcess33 -6.406937e-02
## ManufacturingProcess34 -2.692433e-02
## ManufacturingProcess35 -7.644215e-03
## ManufacturingProcess36  9.589518e-03
## ManufacturingProcess37 -1.005650e-02
## ManufacturingProcess38 -1.430304e-02
## ManufacturingProcess39  1.264748e-02
## ManufacturingProcess40  1.709748e-02
## ManufacturingProcess41 -1.461458e-02
## ManufacturingProcess42  2.937654e-02
## ManufacturingProcess43  7.314294e-03
## ManufacturingProcess44 -4.689582e-02
## ManufacturingProcess45  4.332599e-02
## 
## , , 15 comps
## 
##                             .outcome
## Yield                   1.843203e+00
## BiologicalMaterial01    9.843033e-03
## BiologicalMaterial02   -4.988842e-02
## BiologicalMaterial03    2.743352e-02
## BiologicalMaterial04    8.419748e-03
## BiologicalMaterial05    3.578734e-03
## BiologicalMaterial06    1.154720e-02
## BiologicalMaterial07   -4.227468e-03
## BiologicalMaterial08    4.451614e-02
## BiologicalMaterial09   -1.771489e-02
## BiologicalMaterial10   -1.604032e-02
## BiologicalMaterial11   -3.555490e-02
## BiologicalMaterial12    1.857182e-02
## ManufacturingProcess01  1.217496e-02
## ManufacturingProcess02 -1.074804e-03
## ManufacturingProcess03 -3.442368e-03
## ManufacturingProcess04  1.009155e-02
## ManufacturingProcess05 -5.057128e-03
## ManufacturingProcess06  8.393467e-03
## ManufacturingProcess07 -6.861061e-05
## ManufacturingProcess08  4.334813e-03
## ManufacturingProcess09  2.707802e-02
## ManufacturingProcess10 -1.617178e-02
## ManufacturingProcess11  2.281755e-02
## ManufacturingProcess12  8.444068e-03
## ManufacturingProcess13  7.690229e-03
## ManufacturingProcess14 -1.759912e-02
## ManufacturingProcess15  5.786948e-03
## ManufacturingProcess16  5.718369e-03
## ManufacturingProcess17  6.106505e-03
## ManufacturingProcess18  1.034000e-02
## ManufacturingProcess19  2.790811e-03
## ManufacturingProcess20  2.409012e-04
## ManufacturingProcess21 -3.318273e-04
## ManufacturingProcess22  1.892400e-03
## ManufacturingProcess23 -2.122283e-03
## ManufacturingProcess24  9.863577e-04
## ManufacturingProcess25 -7.359240e-03
## ManufacturingProcess26 -7.044747e-03
## ManufacturingProcess27 -1.034840e-02
## ManufacturingProcess28 -7.849322e-03
## ManufacturingProcess29  2.670715e-02
## ManufacturingProcess30 -3.800994e-02
## ManufacturingProcess31  2.933801e-02
## ManufacturingProcess32  8.029094e-02
## ManufacturingProcess33 -5.563486e-02
## ManufacturingProcess34 -2.047807e-02
## ManufacturingProcess35 -3.426016e-03
## ManufacturingProcess36  1.813656e-02
## ManufacturingProcess37 -6.517072e-03
## ManufacturingProcess38 -1.189510e-02
## ManufacturingProcess39  1.287481e-02
## ManufacturingProcess40  1.257082e-02
## ManufacturingProcess41 -1.134649e-02
## ManufacturingProcess42  2.830292e-02
## ManufacturingProcess43  3.809129e-03
## ManufacturingProcess44 -4.498462e-02
## ManufacturingProcess45  2.920015e-02
## 
## , , 16 comps
## 
##                            .outcome
## Yield                   1.847117143
## BiologicalMaterial01    0.004387738
## BiologicalMaterial02   -0.046428585
## BiologicalMaterial03    0.028625649
## BiologicalMaterial04    0.007784843
## BiologicalMaterial05    0.002700292
## BiologicalMaterial06    0.010871170
## BiologicalMaterial07   -0.006723763
## BiologicalMaterial08    0.041911393
## BiologicalMaterial09   -0.012638280
## BiologicalMaterial10   -0.016072135
## BiologicalMaterial11   -0.035165328
## BiologicalMaterial12    0.017665844
## ManufacturingProcess01  0.013575767
## ManufacturingProcess02 -0.002891557
## ManufacturingProcess03  0.001797602
## ManufacturingProcess04  0.002613222
## ManufacturingProcess05 -0.006175172
## ManufacturingProcess06  0.004870618
## ManufacturingProcess07 -0.001877019
## ManufacturingProcess08 -0.002209169
## ManufacturingProcess09  0.023130921
## ManufacturingProcess10 -0.012933000
## ManufacturingProcess11  0.022009590
## ManufacturingProcess12  0.007801960
## ManufacturingProcess13  0.009395445
## ManufacturingProcess14 -0.017674095
## ManufacturingProcess15  0.006016079
## ManufacturingProcess16  0.002585072
## ManufacturingProcess17  0.005743767
## ManufacturingProcess18  0.008511425
## ManufacturingProcess19  0.002376059
## ManufacturingProcess20 -0.002233343
## ManufacturingProcess21 -0.003497861
## ManufacturingProcess22 -0.001212689
## ManufacturingProcess23 -0.002932385
## ManufacturingProcess24 -0.002306453
## ManufacturingProcess25 -0.007397091
## ManufacturingProcess26 -0.007059687
## ManufacturingProcess27 -0.010738352
## ManufacturingProcess28 -0.007964952
## ManufacturingProcess29  0.026443359
## ManufacturingProcess30 -0.037387557
## ManufacturingProcess31  0.028080162
## ManufacturingProcess32  0.071759717
## ManufacturingProcess33 -0.050656775
## ManufacturingProcess34 -0.019993254
## ManufacturingProcess35 -0.007634367
## ManufacturingProcess36  0.019469284
## ManufacturingProcess37 -0.004386731
## ManufacturingProcess38 -0.009147765
## ManufacturingProcess39  0.011758448
## ManufacturingProcess40  0.008899787
## ManufacturingProcess41 -0.010075252
## ManufacturingProcess42  0.030448115
## ManufacturingProcess43  0.001629217
## ManufacturingProcess44 -0.040515550
## ManufacturingProcess45  0.023261400

Answer:

Looking at the above comps, the ManufacturingProcess predictors appear to be most important.

 

(f) Explore the relationships between each of the top predictors and the response. How could this information be helpful in improving yield in future runs of the manufacturing process?

The highest scoring BiologicalMaterial predictor is BiologicalMaterial08, which has an outcome score of 9.064827e-03. Being able to identify which materials are more important will improve yield in future runs as more emphasis can be placed on these materials. Additionally, being able to indentify the most important ManufacturingProcesses allows for further refinement of the process.