Feed <- c(rep(1,12), rep(2,12), rep(3,12))
Depth <- rep(seq(1,4),9)
Response <- c(74, 79, 82, 99, 64, 68, 88, 104, 60, 73, 92, 96, 92, 98, 99,
104, 86, 104, 108, 110, 88, 88, 95, 99, 99, 104, 108, 114,
98, 99, 110, 111, 102, 95, 99, 107)
Data <- data.frame(Feed, Depth, Response)
library(GAD)
Feed <- as.fixed(Feed)
Depth <- as.fixed(Depth)
Model <- aov(Response~Depth+Feed+Depth*Feed)
GAD::gad(Model)
## Analysis of Variance Table
##
## Response: Response
## Df Sum Sq Mean Sq F value Pr(>F)
## Depth 3 2125.11 708.37 24.6628 1.652e-07 ***
## Feed 2 3160.50 1580.25 55.0184 1.086e-09 ***
## Depth:Feed 6 557.06 92.84 3.2324 0.01797 *
## Residual 24 689.33 28.72
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(Model)
mean(Data$Response[1:12])
## [1] 81.58333
var(Data$Response[1:12])
## [1] 205.5379
mean(Data$Response[13:24])
## [1] 97.58333
var(Data$Response[13:24])
## [1] 64.08333
mean(Data$Response[25:36])
## [1] 103.8333
var(Data$Response[25:36])
## [1] 36.87879
Feed <- c(rep(1,12), rep(2,12), rep(3,12))
Depth <- rep(seq(1,4),9)
Block <- c(rep(1,4), rep(2,4), rep(3,4), rep(1,4), rep(2,4), rep(3,4), rep(1,4), rep(2,4), rep(3,4))
Response <- c(74, 79, 82, 99, 64, 68, 88, 104, 60, 73, 92, 96, 92, 98, 99,
104, 86, 104, 108, 110, 88, 88, 95, 99, 99, 104, 108, 114,
98, 99, 110, 111, 102, 95, 99, 107)
Data <- data.frame(Depth, Feed, Block, Response)
library(GAD)
Feed <- as.fixed(Feed)
Depth <- as.fixed(Depth)
Block <- as.fixed(Block)
Model <- aov(Response~Depth+Feed+Block+Depth*Feed)
summary(Model)
## Df Sum Sq Mean Sq F value Pr(>F)
## Depth 3 2125.1 708.4 30.637 4.89e-08 ***
## Feed 2 3160.5 1580.2 68.346 3.64e-10 ***
## Block 2 180.7 90.3 3.907 0.03532 *
## Depth:Feed 6 557.1 92.8 4.015 0.00726 **
## Residuals 22 508.7 23.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
VarBlock <- c((90.3 - 23.1)/(3*4))
VarBlock
## [1] 5.6
Position <- c(rep(1,9), rep(2,9))
Temperature <- rep(seq(1,3),6)
Response <- c(570, 1063, 565, 565, 1080, 510, 583, 1043, 590, 528, 988, 526, 547, 1026,
538, 521, 1004, 532)
Data <- data.frame(Position, Temperature, Response)
library(GAD)
Position <- as.random(Position)
Temperature <- as.fixed(Temperature)
Model <- aov(Response~Position+Temperature+Position*Temperature)
GAD::gad(Model)
## Analysis of Variance Table
##
## Response: Response
## Df Sum Sq Mean Sq F value Pr(>F)
## Position 1 7160 7160 15.998 0.0017624 **
## Temperature 2 945342 472671 1155.518 0.0008647 ***
## Position:Temperature 2 818 409 0.914 0.4271101
## Residual 12 5371 448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Part <- c(rep(1,6), rep(2,6), rep(3,6), rep(4,6), rep(5,6), rep(6,6), rep(7,6), rep(8,6), rep(9,6), rep(10,6))
Operator <- c(rep(1,3), rep(2,3), rep(1,3), rep(2,3), rep(1,3), rep(2,3), rep(1,3),
rep(2,3), rep(1,3), rep(2,3), rep(1,3), rep(2,3), rep(1,3), rep(2,3),
rep(1,3), rep(2,3), rep(1,3), rep(2,3), rep(1,3), rep(2,3))
Response <- c(50, 49, 50, 50, 48, 51, 52, 52, 51, 51, 51, 51, 53, 50, 50, 54, 52, 51,
49, 51, 50, 48, 50, 51, 48, 49, 48, 48, 49, 48, 52, 50, 50, 52, 50, 50,
51, 51, 51, 51, 50, 50, 52, 50, 49, 53, 48, 50, 50, 51, 50, 51, 48, 49,
47, 46, 49, 46, 47, 48)
Data <- data.frame(Part, Operator, Response)
library(GAD)
Part <- as.random(Part)
Operator <- as.fixed(Operator)
Model <- aov(Response~Part+Operator+Part*Operator)
GAD::gad(Model)
## Analysis of Variance Table
##
## Response: Response
## Df Sum Sq Mean Sq F value Pr(>F)
## Part 9 99.017 11.0019 7.3346 3.216e-06 ***
## Operator 1 0.417 0.4167 0.6923 0.4269
## Part:Operator 9 5.417 0.6019 0.4012 0.9270
## Residual 40 60.000 1.5000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1