1 Overall summary statistics

options(width=190)
compareGroups::descrTable(~. , data = SG_df_new, hide.no = '0')
## 
## --------Summary descriptives table ---------
## 
## __________________________________ 
##                       [ALL]     N  
##                        N=79        
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## Pt_Group:                       79 
##     HC              32 (40.5%)     
##     Patient         47 (59.5%)     
## Exp_Group:                      47 
##     ESC_PBO         21 (44.7%)     
##     ESC_CBX         26 (55.3%)     
## Ethnicity          1.52 (0.86)  46 
## BMI                31.6 (5.78)  45 
## Age                42.0 (12.7)  46 
## Sex:                            46 
##     1               16 (34.8%)     
##     2               30 (65.2%)     
## SII_BL              489 (230)   79 
## SII_WK8             462 (219)   47 
## SIRI_BL            1.03 (0.60)  79 
## SIRI_WK8           1.07 (0.61)  47 
## HAMD17_BL          22.5 (6.34)  46 
## HAMD17_WK8         10.0 (6.32)  43 
## Remission:                      43 
##     Non-Remitter    25 (58.1%)     
##     Remitter        18 (41.9%)     
## SII_BL_log         6.07 (0.53)  79 
## SII_WK8_log        6.03 (0.47)  47 
## SIRI_BL_log        -0.14 (0.61) 79 
## SIRI_WK8_log       -0.10 (0.61) 47 
## HAMD17_BL_log      3.07 (0.30)  46 
## HAMD17_WK8_log        . (.)     43 
## SII_BL_inverse     0.00 (0.00)  79 
## SII_WK8_inverse    0.00 (0.00)  47 
## SIRI_BL_inverse    1.39 (0.96)  79 
## SIRI_WK8_inverse   1.35 (0.97)  47 
## HAMD17_BL_inverse  0.05 (0.02)  46 
## HAMD17_WK8_inverse    . (.)     43 
## SII_BL_sqrt        21.5 (5.29)  79 
## SII_WK8_sqrt       20.9 (4.91)  47 
## SIRI_BL_sqrt       0.97 (0.29)  79 
## SIRI_WK8_sqrt      0.99 (0.29)  47 
## HAMD17_BL_sqrt     4.69 (0.68)  46 
## HAMD17_WK8_sqrt    2.97 (1.12)  43 
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

2 Summary of sample by patient status

createTable(compareGroups(Pt_Group ~ ., data = SG_df_new, method = NA), hide.no = '0', show.p.mul= T)
## 
## --------Summary descriptives table by 'Pt_Group'---------
## 
## _____________________________________________________________ 
##                          HC            Patient      p.overall 
##                         N=32             N=47                 
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## Exp_Group:                                              .     
##     ESC_PBO            0 (.%)         21 (44.7%)              
##     ESC_CBX            0 (.%)         26 (55.3%)              
## Ethnicity:                                              .     
##     1                  0 (.%)         30 (65.2%)              
##     2                  0 (.%)         10 (21.7%)              
##     3                  0 (.%)         5 (10.9%)               
##     5                  0 (.%)         1 (2.17%)               
## BMI                    . (.)         31.6 (5.78)        .     
## Age                    . (.)         42.0 (12.7)        .     
## Sex:                                                    .     
##     1                  0 (.%)         16 (34.8%)              
##     2                  0 (.%)         30 (65.2%)              
## SII_BL             491 [305;611]    477 [320;640]     0.834   
## SII_WK8               . [.;.]       408 [309;579]       .     
## SIRI_BL           0.76 [0.58;1.21] 0.98 [0.64;1.39]   0.201   
## SIRI_WK8              . [.;.]      1.02 [0.62;1.38]     .     
## HAMD17_BL              . (.)         22.5 (6.34)        .     
## HAMD17_WK8            . [.;.]      9.00 [6.00;14.0]     .     
## Remission:                                              .     
##     Non-Remitter       0 (.%)         25 (58.1%)              
##     Remitter           0 (.%)         18 (41.9%)              
## SII_BL_log          6.04 (0.54)      6.09 (0.52)      0.628   
## SII_WK8_log            . (.)         6.03 (0.47)        .     
## SIRI_BL_log         -0.25 (0.60)     -0.07 (0.60)     0.180   
## SIRI_WK8_log           . (.)         -0.10 (0.61)       .     
## HAMD17_BL_log          . (.)         3.07 (0.30)        .     
## SII_BL_inverse    0.00 [0.00;0.00] 0.00 [0.00;0.00]   0.834   
## SII_WK8_inverse       . [.;.]      0.00 [0.00;0.00]     .     
## SIRI_BL_inverse   1.32 [0.83;1.72] 1.02 [0.72;1.55]   0.201   
## SIRI_WK8_inverse      . [.;.]      0.98 [0.72;1.61]     .     
## HAMD17_BL_inverse     . [.;.]      0.05 [0.04;0.05]     .     
## SII_BL_sqrt         21.1 (5.01)      21.7 (5.51)      0.591   
## SII_WK8_sqrt           . (.)         20.9 (4.91)        .     
## SIRI_BL_sqrt        0.92 (0.26)      1.01 (0.30)      0.153   
## SIRI_WK8_sqrt          . (.)         0.99 (0.29)        .     
## HAMD17_BL_sqrt         . (.)         4.69 (0.68)        .     
## HAMD17_WK8_sqrt        . (.)         2.97 (1.12)        .     
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Patient status (HC vs. subjects) were not distinguished by any variables

3 Summary of sample by remission

createTable(compareGroups(Remission ~ ., data = SG_df_new, method = NA), hide.no = '0', show.p.mul= T)
## 
## --------Summary descriptives table by 'Remission'---------
## 
## _____________________________________________________________ 
##                     Non-Remitter       Remitter     p.overall 
##                         N=25             N=18                 
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## Pt_Group: Patient    25 (100%)        18 (100%)         .     
## Exp_Group:                                           <0.001   
##     ESC_PBO          17 (68.0%)       1 (5.56%)               
##     ESC_CBX          8 (32.0%)        17 (94.4%)              
## Ethnicity:                                            0.057   
##     1                15 (62.5%)       12 (66.7%)              
##     2                3 (12.5%)        6 (33.3%)               
##     3                5 (20.8%)        0 (0.00%)               
##     5                1 (4.17%)        0 (0.00%)               
## BMI                 32.0 (4.85)      30.7 (7.00)      0.503   
## Age               44.0 [34.8;53.8] 37.5 [31.8;43.2]   0.186   
## Sex:                                                  1.000   
##     1                9 (37.5%)        7 (38.9%)               
##     2                15 (62.5%)       11 (61.1%)              
## SII_BL             494 [336;646]    436 [296;612]     0.649   
## SII_WK8            451 [307;639]    407 [302;539]     0.453   
## SIRI_BL           1.01 [0.78;1.38] 0.90 [0.48;1.17]   0.445   
## SIRI_WK8          1.12 [0.69;1.69] 0.94 [0.52;1.23]   0.143   
## HAMD17_BL           21.8 (5.86)      22.8 (6.00)      0.613   
## HAMD17_WK8        13.0 [10.0;16.0] 5.50 [2.25;7.00]  <0.001   
## SII_BL_log          6.12 (0.50)      6.02 (0.54)      0.548   
## SII_WK8_log         6.09 (0.51)      5.98 (0.45)      0.456   
## SIRI_BL_log         -0.01 (0.49)     -0.15 (0.74)     0.481   
## SIRI_WK8_log        0.05 (0.60)      -0.25 (0.61)     0.121   
## HAMD17_BL_log       3.05 (0.29)      3.09 (0.27)      0.587   
## SII_BL_inverse    0.00 [0.00;0.00] 0.00 [0.00;0.00]   0.649   
## SII_WK8_inverse   0.00 [0.00;0.00] 0.00 [0.00;0.00]   0.453   
## SIRI_BL_inverse   0.99 [0.72;1.28] 1.11 [0.86;2.11]   0.445   
## SIRI_WK8_inverse  0.89 [0.59;1.45] 1.06 [0.81;1.97]   0.143   
## HAMD17_BL_inverse 0.04 [0.04;0.05] 0.05 [0.04;0.05]   0.767   
## SII_BL_sqrt         22.0 (5.39)      21.0 (5.45)      0.564   
## SII_WK8_sqrt        21.7 (5.50)      20.3 (4.44)      0.387   
## SIRI_BL_sqrt        1.02 (0.24)      0.99 (0.37)      0.724   
## SIRI_WK8_sqrt       1.07 (0.31)      0.92 (0.25)      0.086   
## HAMD17_BL_sqrt      4.63 (0.65)      4.73 (0.63)      0.602   
## HAMD17_WK8_sqrt     3.68 (0.66)      1.99 (0.85)     <0.001   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

There are no significant differences by remission, except treatment arm and HAMD17 (wk8) which is expected

4 Summary of sample by treatment arm

## 
## --------Summary descriptives table by 'Exp_Group'---------
## 
## _____________________________________________________________ 
##                       ESC_PBO          ESC_CBX      p.overall 
##                         N=21             N=26                 
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## Pt_Group: Patient    21 (100%)        26 (100%)         .     
## Ethnicity:                                            0.658   
##     1                12 (60.0%)       18 (69.2%)              
##     2                4 (20.0%)        6 (23.1%)               
##     3                3 (15.0%)        2 (7.69%)               
##     5                1 (5.00%)        0 (0.00%)               
## BMI                 32.2 (4.89)      31.1 (6.40)      0.515   
## Age                 46.7 (13.0)      38.3 (11.3)      0.028   
## Sex:                                                  0.776   
##     1                6 (30.0%)        10 (38.5%)              
##     2                14 (70.0%)       16 (61.5%)              
## SII_BL             523 [357;759]    379 [296;618]     0.168   
## SII_WK8            399 [320;639]    415 [297;518]     0.386   
## SIRI_BL           1.06 [0.78;1.53] 0.95 [0.59;1.25]   0.294   
## SIRI_WK8          1.04 [0.73;1.69] 0.94 [0.57;1.22]   0.118   
## HAMD17_BL           21.6 (7.31)      23.1 (5.56)      0.472   
## HAMD17_WK8        11.5 [9.00;16.0] 7.00 [5.00;11.0]   0.001   
## Remission:                                           <0.001   
##     Non-Remitter     17 (94.4%)       8 (32.0%)               
##     Remitter         1 (5.56%)        17 (68.0%)              
## SII_BL_log          6.22 (0.50)      5.99 (0.52)      0.129   
## SII_WK8_log         6.11 (0.51)      5.97 (0.43)      0.312   
## SIRI_BL_log         0.04 (0.60)      -0.15 (0.61)     0.274   
## SIRI_WK8_log        0.05 (0.62)      -0.22 (0.59)     0.129   
## HAMD17_BL_log       3.02 (0.37)      3.11 (0.24)      0.324   
## SII_BL_inverse    0.00 [0.00;0.00] 0.00 [0.00;0.00]   0.168   
## SII_WK8_inverse   0.00 [0.00;0.00] 0.00 [0.00;0.00]   0.386   
## SIRI_BL_inverse   0.94 [0.65;1.28] 1.06 [0.80;1.69]   0.294   
## SIRI_WK8_inverse  0.96 [0.59;1.37] 1.06 [0.82;1.77]   0.118   
## HAMD17_BL_inverse 0.05 [0.04;0.06] 0.05 [0.04;0.05]   0.491   
## SII_BL_sqrt         23.1 (5.56)      20.7 (5.32)      0.133   
## SII_WK8_sqrt        21.9 (5.60)      20.2 (4.23)      0.261   
## SIRI_BL_sqrt        1.06 (0.31)      0.97 (0.29)      0.274   
## SIRI_WK8_sqrt       1.07 (0.32)      0.93 (0.25)      0.100   
## HAMD17_BL_sqrt      4.59 (0.80)      4.77 (0.58)      0.394   
## HAMD17_WK8_sqrt     3.60 (0.78)      2.52 (1.11)      0.001   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Compared to the placebo arm, the treatment arm patients were significantly (1) younger (2) lower HAMD17 (wk8) (3) more remitters.

5 Visual inspection of outcome variables: histograms

p<-ggplot(SG_df_new, aes(x=HAMD17_BL)) + 
 geom_histogram(aes(y=..density..), colour="black", fill="white")+
 geom_density(alpha=.2, fill="#FF6666")
p+geom_vline(aes(xintercept=mean(HAMD17_BL)), color="blue", linetype="dashed", size=1)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

p<-ggplot(SG_df_new, aes(x=HAMD17_WK8)) + 
 geom_histogram(aes(y=..density..), colour="black", fill="white")+
 geom_density(alpha=.2, fill="#FF6666")
p+geom_vline(aes(xintercept=mean(HAMD17_WK8)), color="blue", linetype="dashed", size=1)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

p<-ggplot(SG_df_new, aes(x=HAMD17_WK8_log)) + 
 geom_histogram(aes(y=..density..), colour="black", fill="white")+
 geom_density(alpha=.2, fill="#FF6666")
p+geom_vline(aes(xintercept=mean(HAMD17_WK8_log)), color="blue", linetype="dashed", size=1)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

p<-ggplot(SG_df_new, aes(x=HAMD17_WK8_sqrt)) + 
 geom_histogram(aes(y=..density..), colour="black", fill="white")+
 geom_density(alpha=.2, fill="#FF6666")
p+geom_vline(aes(xintercept=mean(HAMD17_WK8_sqrt)), color="blue", linetype="dashed", size=1)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Raw HAMD17_BL has a normal distribution. It appears no transformation is needed.

6 Visual inspection of biomarker distributions: histograms

# Histogram with density plotz

p<-ggplot(SG_df_new, aes(x=SII_BL)) + 
 geom_histogram(aes(y=..density..), colour="black", fill="white")+
 geom_density(alpha=.2, fill="#FF6666")
p+geom_vline(aes(xintercept=mean(SII_BL)), color="blue", linetype="dashed", size=1)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

p<-ggplot(SG_df_new, aes(x=SII_WK8)) + 
 geom_histogram(aes(y=..density..), colour="black", fill="white")+
 geom_density(alpha=.2, fill="#FF6666")
p+geom_vline(aes(xintercept=mean(SII_WK8)), color="blue", linetype="dashed", size=1)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

p<-ggplot(SG_df_new, aes(x=SIRI_BL)) + 
 geom_histogram(aes(y=..density..), colour="black", fill="white")+
 geom_density(alpha=.2, fill="#FF6666")
p+geom_vline(aes(xintercept=mean(SIRI_BL)), color="blue", linetype="dashed", size=1)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

p<-ggplot(SG_df_new, aes(x=SIRI_BL_log)) + 
 geom_histogram(aes(y=..density..), colour="black", fill="white")+
 geom_density(alpha=.2, fill="#FF6666")
p+geom_vline(aes(xintercept=mean(SIRI_BL_log)), color="blue", linetype="dashed", size=1)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

p<-ggplot(SG_df_new, aes(x=SIRI_BL_sqrt)) + 
 geom_histogram(aes(y=..density..), colour="black", fill="white")+
 geom_density(alpha=.2, fill="#FF6666")
p+geom_vline(aes(xintercept=mean(SIRI_BL_sqrt)), color="blue", linetype="dashed", size=1)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

p<-ggplot(SG_df_new, aes(x=SIRI_WK8)) + 
 geom_histogram(aes(y=..density..), colour="black", fill="white")+
 geom_density(alpha=.2, fill="#FF6666")
p+geom_vline(aes(xintercept=mean(SIRI_WK8)), color="blue", linetype="dashed", size=1)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

data_long <- tidyr::gather(SG_df_new, Timepoint, SII, SII_BL:SII_WK8, factor_key=TRUE)
data_long <- tidyr::gather(data_long, Timepoint, SIRI, SIRI_BL:SIRI_WK8, factor_key=TRUE)
data_long <- tidyr::gather(data_long, Timepoint, HAMD17, HAMD17_BL:HAMD17_WK8, factor_key=TRUE)
data_long$Timepoint<-ifelse(grepl("BL", data_long$Timepoint), "Baseline", "Week 8") %>% as.factor()
data_longer <- data_long %>% select(Subject_ID, Pt_Group, Exp_Group, Sex, Age, BMI, Ethnicity, Remission, Timepoint, SII, SIRI, HAMD17) %>% subset(Pt_Group=="Patient")


gg.base <- ggplot(data_longer, aes(x = Timepoint, y = HAMD17))
gg.idline <- gg.base + geom_line(aes(color = Remission , group = Subject_ID))
gg.idline + geom_point()+stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(data_longer, aes(x = Timepoint, y = SII))
gg.idline <- gg.base + geom_line(aes(color = Remission , group = Subject_ID))
gg.idline + geom_point()

gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()+stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

gg.base <- ggplot(data_longer, aes(x = Timepoint, y = SIRI))
gg.idline <- gg.base + geom_line(aes(color = Remission , group = Subject_ID))
gg.idline + geom_point()

gg.idline + facet_wrap( ~ Remission, labeller = label_both) + geom_point()+stat_summary(aes(group = Remission, color = Remission), geom = "line", fun.y = mean, size = 3)

The treatment response (HAMD17) is visually apparent by week 8. The effects of SII and SIRI are not so apparent.

7 Visual inspection of biomarker residuals (modelled by hypothesis)

Rcoef_list <- list()
beta_list<-list()
se_list<-list()
t_list<-list()
p_list<-list()
var_list<-list()

sg_bx_trans_vars<-SG_df_new %>% dplyr::select(contains("SII"), contains("SIRI")) %>% names() %>% sort()

 for (x in sg_bx_trans_vars) {
  LM1 <-  lm(substitute(HAMD17_WK8 ~ Sex+Age+BMI+Ethnicity+Exp_Group+HAMD17_BL+i, list(i = as.name(x))), data = SG_df_new) 
  Rcoef_list[[x]]<- summary(LM1)$r.squared[1]
  beta_list[[x]]<-summary(LM1)$coefficients[8,1] 
  se_list[[x]]<-summary(LM1)$coefficients[8,2] 
  t_list[[x]]<-summary(LM1)$coefficients[8,3] 
  p_list[[x]]<-summary(LM1)$coefficients[8,4] 
  var_list[[x]]<-x
  plot(LM1, which=2, main=x)
 }

SG_bx_vars_selected<-c("SII_BL", "SII_WK8", "SIRI_BL", "SIRI_WK8_inverse") 

Note: Generally raw variables are preferable here, except for SIRI_WK8 possibly

8 Tabulating biomarker coefficients (full models above)

do.call(rbind, Map(data.frame,
                   Beta=beta_list,
                   t_test=t_list,
                   SE=se_list,
                   p_value=p_list,
                   R_coeff=Rcoef_list)) %>% 
  knitr::kable(digits=2) 
Beta t_test SE p_value R_coeff
SII_BL 0.00 0.09 0.00 0.93 0.35
SII_BL_inverse -353.93 -0.48 735.46 0.63 0.35
SII_BL_log 0.51 0.25 2.01 0.80 0.35
SII_BL_sqrt 0.03 0.16 0.19 0.87 0.35
SII_WK8 0.01 1.54 0.00 0.13 0.39
SII_WK8_inverse -503.11 -0.70 714.63 0.49 0.35
SII_WK8_log 2.06 1.07 1.92 0.29 0.37
SII_WK8_sqrt 0.24 1.30 0.18 0.20 0.38
SIRI_BL 0.00 0.00 1.56 1.00 0.35
SIRI_BL_inverse -1.78 -1.53 1.16 0.13 0.39
SIRI_BL_log 1.48 0.87 1.69 0.39 0.36
SIRI_BL_sqrt 1.50 0.44 3.45 0.67 0.35
SIRI_WK8 2.10 1.38 1.52 0.18 0.38
SIRI_WK8_inverse -1.43 -1.44 0.99 0.16 0.38
SIRI_WK8_log 2.18 1.42 1.53 0.16 0.38
SIRI_WK8_sqrt 4.54 1.41 3.21 0.17 0.38

SII and SIRI (at both timepoints, regardless of transformation) are NOT significantly associated with HAMD17(WK8) adjusted for demographics and HAMD17(BL)

9 Multivariate linear model of HAMD17_WK8 by SIRI_BL

SG_model<-lm(HAMD17_WK8~Sex+Age+BMI+Ethnicity+Exp_Group+HAMD17_BL+SIRI_BL, data=SG_df_new)

car::Anova(SG_model, type = "II")
## Anova Table (Type II tests)
## 
## Response: HAMD17_WK8
##            Sum Sq Df F value Pr(>F)  
## Sex         47.00  1  1.4531 0.2363  
## Age         72.57  1  2.2436 0.1434  
## BMI          5.02  1  0.1552 0.6961  
## Ethnicity   40.13  1  1.2408 0.2731  
## Exp_Group  205.39  1  6.3500 0.0166 *
## HAMD17_BL    5.43  1  0.1680 0.6845  
## SIRI_BL      0.00  1  0.0000 0.9989  
## Residuals 1099.71 34                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(SG_model)
## 
## Call:
## lm(formula = HAMD17_WK8 ~ Sex + Age + BMI + Ethnicity + Exp_Group + 
##     HAMD17_BL + SIRI_BL, data = SG_df_new)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.0195 -3.9494 -0.8909  2.9092 11.5150 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)       8.19247    8.15691   1.004   0.3223  
## Sex2             -2.42556    2.01214  -1.205   0.2363  
## Age               0.11565    0.07721   1.498   0.1434  
## BMI              -0.06772    0.17189  -0.394   0.6961  
## Ethnicity         1.27559    1.14515   1.114   0.2731  
## Exp_GroupESC_CBX -5.08426    2.01763  -2.520   0.0166 *
## HAMD17_BL         0.07209    0.17589   0.410   0.6845  
## SIRI_BL           0.00223    1.56425   0.001   0.9989  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.687 on 34 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.345,  Adjusted R-squared:  0.2102 
## F-statistic: 2.558 on 7 and 34 DF,  p-value: 0.03136
plot(SG_model, which=c(2,6))

SG_model<-lm(HAMD17_WK8~Sex+Age+BMI+Ethnicity+Exp_Group+HAMD17_BL+log(SIRI_BL), data=SG_df_new)

car::Anova(SG_model, type = "II")
## Anova Table (Type II tests)
## 
## Response: HAMD17_WK8
##               Sum Sq Df F value  Pr(>F)  
## Sex            60.21  1  1.9033 0.17671  
## Age            78.70  1  2.4875 0.12401  
## BMI             0.15  1  0.0048 0.94509  
## Ethnicity      54.34  1  1.7175 0.19880  
## Exp_Group     159.30  1  5.0353 0.03146 *
## HAMD17_BL      10.94  1  0.3457 0.56042  
## log(SIRI_BL)   24.06  1  0.7607 0.38924  
## Residuals    1075.65 34                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(SG_model)
## 
## Call:
## lm(formula = HAMD17_WK8 ~ Sex + Age + BMI + Ethnicity + Exp_Group + 
##     HAMD17_BL + log(SIRI_BL), data = SG_df_new)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.003  -4.066  -1.110   3.475  10.376 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)       5.28816    7.12068   0.743   0.4628  
## Sex2             -2.76366    2.00322  -1.380   0.1767  
## Age               0.12067    0.07651   1.577   0.1240  
## BMI              -0.01213    0.17489  -0.069   0.9451  
## Ethnicity         1.49445    1.14034   1.311   0.1988  
## Exp_GroupESC_CBX -4.53280    2.02002  -2.244   0.0315 *
## HAMD17_BL         0.09891    0.16821   0.588   0.5604  
## log(SIRI_BL)      1.47556    1.69186   0.872   0.3892  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.625 on 34 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.3593, Adjusted R-squared:  0.2274 
## F-statistic: 2.724 on 7 and 34 DF,  p-value: 0.02345
plot(SG_model, which=c(2,6))

SG_df_noout<-SG_df_new[-c(38),]
SG_model<-lm(HAMD17_WK8~Sex+Age+BMI+Ethnicity+Exp_Group+HAMD17_BL+log(SIRI_BL), data=SG_df_noout)

car::Anova(SG_model, type = "II")
## Anova Table (Type II tests)
## 
## Response: HAMD17_WK8
##              Sum Sq Df F value  Pr(>F)  
## Sex           35.27  1  1.2386 0.27378  
## Age           44.45  1  1.5611 0.22030  
## BMI            2.02  1  0.0709 0.79169  
## Ethnicity      1.01  1  0.0356 0.85143  
## Exp_Group    169.36  1  5.9480 0.02028 *
## HAMD17_BL      3.19  1  0.1121 0.73991  
## log(SIRI_BL)   4.11  1  0.1442 0.70654  
## Residuals    939.62 33                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(SG_model)
## 
## Call:
## lm(formula = HAMD17_WK8 ~ Sex + Age + BMI + Ethnicity + Exp_Group + 
##     HAMD17_BL + log(SIRI_BL), data = SG_df_noout)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.2960 -2.9496 -0.8753  4.0139 11.4830 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      10.48348    7.16129   1.464   0.1527  
## Sex2             -2.13886    1.92181  -1.113   0.2738  
## Age               0.09214    0.07375   1.249   0.2203  
## BMI              -0.04435    0.16657  -0.266   0.7917  
## Ethnicity        -0.25398    1.34545  -0.189   0.8514  
## Exp_GroupESC_CBX -4.67650    1.91749  -2.439   0.0203 *
## HAMD17_BL         0.05387    0.16090   0.335   0.7399  
## log(SIRI_BL)      0.62715    1.65131   0.380   0.7065  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.336 on 33 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.2828, Adjusted R-squared:  0.1307 
## F-statistic: 1.859 on 7 and 33 DF,  p-value: 0.1088
plot(SG_model, which=c(2,6))

Note: Here we are asking the question whether HAMD17_WK8 is predicted by baseline factors, independently of treatment arm. Notice that we are controlling for baseline HAMD17_BL, in addition to demographics. As expected, ESC+CBX arm significantly associates with lower HAMD17_WK8. There are no other significant factors, however. There are some high leverage points that need to be dealt with.

10 Multivariate linear model (same as above) including interactions

SG_model<-lm(HAMD17_WK8~
              Sex
             +Age
             +BMI
             +Ethnicity
             +Exp_Group
             +HAMD17_BL*SIRI_BL
             , data=SG_df_noout)

car::Anova(SG_model, type = "II")
## Anova Table (Type II tests)
## 
## Response: HAMD17_WK8
##                   Sum Sq Df F value    Pr(>F)    
## Sex                87.40  1  4.3415 0.0452640 *  
## Age                 7.98  1  0.3962 0.5335161    
## BMI                 3.67  1  0.1823 0.6722815    
## Ethnicity           2.09  1  0.1041 0.7491076    
## Exp_Group         144.32  1  7.1688 0.0116064 *  
## HAMD17_BL           0.34  1  0.0167 0.8980428    
## SIRI_BL             5.14  1  0.2552 0.6168903    
## HAMD17_BL:SIRI_BL 294.38  1 14.6226 0.0005728 ***
## Residuals         644.21 32                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(SG_model)
## 
## Call:
## lm(formula = HAMD17_WK8 ~ Sex + Age + BMI + Ethnicity + Exp_Group + 
##     HAMD17_BL * SIRI_BL, data = SG_df_noout)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.1261  -2.4852  -0.3192   3.0754   7.8418 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        34.52173    8.62282   4.004 0.000347 ***
## Sex2               -3.45042    1.65596  -2.084 0.045264 *  
## Age                 0.03964    0.06298   0.629 0.533516    
## BMI                -0.05808    0.13603  -0.427 0.672281    
## Ethnicity           0.36695    1.13752   0.323 0.749108    
## Exp_GroupESC_CBX   -4.30080    1.60630  -2.677 0.011606 *  
## HAMD17_BL          -1.05198    0.31293  -3.362 0.002019 ** 
## SIRI_BL           -21.02450    5.47795  -3.838 0.000551 ***
## HAMD17_BL:SIRI_BL   1.12452    0.29407   3.824 0.000573 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.487 on 32 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.5083, Adjusted R-squared:  0.3853 
## F-statistic: 4.135 on 8 and 32 DF,  p-value: 0.001769
reg_cohend(SG_model)
##       (Intercept)              Sex2               Age               BMI         Ethnicity  Exp_GroupESC_CBX         HAMD17_BL           SIRI_BL HAMD17_BL:SIRI_BL 
##             0.625            -0.325             0.098            -0.067             0.050            -0.418            -0.525            -0.599             0.597
interact_plot(SG_model, pred = SIRI_BL, modx = HAMD17_BL, jitter=0.1, plot.points = TRUE,  main.title = "The effect of SIRI_BL on HAMD17_WK8 depends on HAMD17_BL")

Note: In this model, we are screening for “interaction effects” amongst the independent variables. When evaluating for interactions between SIRI_BL and HAMD17_BL, something interesting happens: (1) elevated baseline SIRI is significantly associated with lower HAMD17_WK8 (main effect) and (2) elevated SIRI_BL is associated with elevated HAMD17_WK8 in patients with elevated HAMD17_BL (interaction effect). As expected, treatment arm (CBX) is an independent predictor of lower HAMD17_WK8, but its effect does not depend on SIRI_BL. Sex1 is independently associated with higher HAMD17_WK8 as well.

11 Multivariate logistic model of remission by SIRI_BL

SG_model_logit<-glm(Remission~
              Sex
             +Age
             +BMI
             +Ethnicity
             +Exp_Group
             +HAMD17_BL*SIRI_BL
             +SIRI_BL
             , family="binomial", na.action=na.exclude, data=SG_df_new)

car::Anova(SG_model_logit, type = "II")
## Analysis of Deviance Table (Type II tests)
## 
## Response: Remission
##                   LR Chisq Df Pr(>Chisq)    
## Sex                 3.8000  1  0.0512526 .  
## Age                 0.0449  1  0.8321389    
## BMI                 0.0013  1  0.9715982    
## Ethnicity           4.0392  1  0.0444545 *  
## Exp_Group          20.0354  1  7.602e-06 ***
## HAMD17_BL           0.3465  1  0.5561241    
## SIRI_BL             1.1485  1  0.2838712    
## HAMD17_BL:SIRI_BL  12.0966  1  0.0005051 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(SG_model_logit)
## 
## Call:
## glm(formula = Remission ~ Sex + Age + BMI + Ethnicity + Exp_Group + 
##     HAMD17_BL * SIRI_BL + SIRI_BL, family = "binomial", data = SG_df_new, 
##     na.action = na.exclude)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.40675  -0.23258  -0.01554   0.43021   1.40361  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)  
## (Intercept)       -25.711800  10.383014  -2.476   0.0133 *
## Sex2                3.165269   1.888376   1.676   0.0937 .
## Age                 0.012026   0.057343   0.210   0.8339  
## BMI                 0.003513   0.098741   0.036   0.9716  
## Ethnicity          -2.114256   1.193857  -1.771   0.0766 .
## Exp_GroupESC_CBX    6.706381   2.905740   2.308   0.0210 *
## HAMD17_BL           1.049533   0.414098   2.535   0.0113 *
## SIRI_BL            21.400254   8.391651   2.550   0.0108 *
## HAMD17_BL:SIRI_BL  -1.131213   0.454905  -2.487   0.0129 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 57.364  on 41  degrees of freedom
## Residual deviance: 24.757  on 33  degrees of freedom
##   (37 observations deleted due to missingness)
## AIC: 42.757
## 
## Number of Fisher Scoring iterations: 7
reg_cohend(SG_model_logit)
##       (Intercept)              Sex2               Age               BMI         Ethnicity  Exp_GroupESC_CBX         HAMD17_BL           SIRI_BL HAMD17_BL:SIRI_BL 
##            -0.382             0.259             0.032             0.005            -0.273             0.356             0.391             0.394            -0.384

Note: Here we are reproducing the results from the above interaction model, except this time we are using a dichotomous outcome (remission vs non-remission). The estimate signs are reversed because we’re talking about remission, not HAMD17 score.This confirms the prior model. Seeing that there is something special about SIRI_BL, We can now start to ask the question whether changes in SIRI are related to treatment response. That would involve another analysis (“mediation analysis”, more involved) looking at whether CBX “causes” changes in SIRI that are linked to treatment response. Out of scope here, but for that we would need to establish (1) treatment arm is associated with SIRI at point X, where X temporally precedes outcome, and that (2) SIRI at point X is associated with treatment response.