R Markdown
Database<-read.csv("lbw.csv", sep = ",", dec = "." )
str(Database)
## 'data.frame': 189 obs. of 11 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ low : int 0 0 0 0 0 0 0 0 0 0 ...
## $ smoke: int 0 0 1 1 1 0 0 0 1 1 ...
## $ race : int 2 3 1 1 1 3 1 3 1 1 ...
## $ age : int 19 33 20 21 18 21 22 17 29 26 ...
## $ lwt : int 182 155 105 108 107 124 118 103 123 113 ...
## $ ptl : int 0 0 0 0 0 0 0 0 0 0 ...
## $ ht : int 0 0 0 0 0 0 0 0 0 0 ...
## $ ui : int 1 0 0 1 1 0 0 0 0 0 ...
## $ ftv : int 0 3 1 2 0 0 1 1 1 0 ...
## $ bwt : int 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 ...
Database$low<-as.factor(Database$low)
Database$smoke<-as.factor(Database$smoke)
Database$race<-as.factor(Database$race)
Database$ht<-as.factor(Database$ht)
Database$ui<-as.factor(Database$ui)
##Datos que quieres convertir a Factor
str(Database)
## 'data.frame': 189 obs. of 11 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ low : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ smoke: Factor w/ 2 levels "0","1": 1 1 2 2 2 1 1 1 2 2 ...
## $ race : Factor w/ 3 levels "1","2","3": 2 3 1 1 1 3 1 3 1 1 ...
## $ age : int 19 33 20 21 18 21 22 17 29 26 ...
## $ lwt : int 182 155 105 108 107 124 118 103 123 113 ...
## $ ptl : int 0 0 0 0 0 0 0 0 0 0 ...
## $ ht : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ ui : Factor w/ 2 levels "0","1": 2 1 1 2 2 1 1 1 1 1 ...
## $ ftv : int 0 3 1 2 0 0 1 1 1 0 ...
## $ bwt : int 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 ...
##estimar un intervalo de confianza del 95% para la media poblacion de la variable bwt
t.test(Database$bwt,conf.level = 0.95)
##
## One Sample t-test
##
## data: Database$bwt
## t = 55.523, df = 188, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 2839.679 3048.892
## sample estimates:
## mean of x
## 2944.286