Note to self: these models take a long time to run, so, rather than estimating them each time I run the code, I’ve saved the models, commented out teh code for running the models, and included the code for opening the models. Be EXTRA CAREFUL that the saved models are the most up to date.

1 Preliminaries

library(wordbankr) # WB data
library(tidyverse) # tidy
library(mirt) # IRT models
library(ltm) # more IRT functions
library(psych) # some psychometric stuff (tests of dimensionality)
library(Gifi)# some more psychometric stuff (tests of dimensionality)
library(knitr) # some formatting, tables, etc
library(patchwork) # combining plots. 
library(GGally) # More plottinng options. 
library(lordif) # differential item functioning.
Inst <- get_instrument_data(language="English (American)", form="WS")
Admin <- get_administration_data(language="English (American)", form="WS")
N_total = nrow(Admin) # making sure things add up later
N_long = nrow(filter(Admin, longitudinal==TRUE)) # making sure things add up later
Item <- get_item_data(language="English (American)", form = "WS")
Vocab <- Admin %>%
  full_join(.,Inst, by="data_id") %>%
  full_join(., Item, by="num_item_id") %>%
  filter(longitudinal==FALSE) %>% # remove longitudinal data set
  filter(type == "word"
         ) %>%
  mutate(
    out = ifelse(value=="produces", yes=1, no =0)
    )

N_vocab = nrow(filter(Item, type == "word")) 

nrow(Vocab) == (N_total - N_long)*N_vocab
## [1] TRUE
Vocab %>%
  filter(is.na(out)) %>%
  group_by(definition) %>%
  count()

Number of missing items differs by word. How can this be??

Check distribution of missing values by source.

Vocab %>%
  filter(is.na(out)) %>%
  group_by(source_name) %>%
  count()

These all seem to come from a single study (- 1).

Vocab %>%
  group_by(source_name) %>%
  count()
Vocab %>%
 filter(is.na(out)) %>%
 filter(source_name=="Marchman (Outreach1)")

No idea why this word is missing. I’m removing all these participants from the IRT models.

N_missing <- Vocab %>%
  filter(is.na(out)) %>%
  group_by(data_id) %>%
  slice(1) %>%
  ungroup(data_id) %>%
  count()
Vocab %>% 
  filter(!is.na(out)) %>%
  group_by(definition) %>%
  summarise(
    mean=mean(out), 
    sd=sd(out),
    category = first(lexical_category)
  ) %>%
  arrange(category) %>%
  kable(caption="Means and SDs for Each Item (Arranged by Item)")
Means and SDs for Each Item (Arranged by Item)
definition mean sd category
a 0.2880992 0.4529315 function_words
a lot 0.1881848 0.3909063 function_words
about 0.0732872 0.2606384 function_words
above 0.0909308 0.2875450 function_words
all 0.3041925 0.4601194 function_words
am 0.1834009 0.3870410 function_words
an 0.0663643 0.2489475 function_words
and 0.2560191 0.4364845 function_words
another 0.2240229 0.4169869 function_words
any 0.1541766 0.3611611 function_words
are 0.1529103 0.3599440 function_words
around 0.1664679 0.3725446 function_words
at 0.2131617 0.4095898 function_words
away 0.2717961 0.4449383 function_words
back 0.3266667 0.4690500 function_words
be 0.1469466 0.3540949 function_words
because 0.1382191 0.3451711 function_words
behind 0.1869783 0.3899406 function_words
beside 0.0822996 0.2748534 function_words
but 0.0945333 0.2926042 function_words
by 0.1967096 0.3975583 function_words
can (auxiliary) 0.2479182 0.4318554 function_words
could 0.0761518 0.2652725 function_words
did/did ya 0.2269368 0.4189013 function_words
do 0.4020937 0.4903790 function_words
does 0.1195419 0.3244638 function_words
don’t 0.3340481 0.4717128 function_words
down 0.6519981 0.4763933 function_words
each 0.0591885 0.2360054 function_words
every 0.0983294 0.2977950 function_words
for 0.1870229 0.3899764 function_words
gonna/going to 0.2437574 0.4293991 function_words
gotta/got to 0.1350191 0.3417847 function_words
hafta/have to 0.1704057 0.3760337 function_words
he 0.2185115 0.4132855 function_words
her 0.1667860 0.3728292 function_words
here 0.3775607 0.4848346 function_words
hers 0.1147971 0.3188150 function_words
him 0.1550942 0.3620377 function_words
his 0.1400620 0.3470928 function_words
how 0.1537178 0.3607210 function_words
I 0.4377825 0.4961729 function_words
if 0.0603963 0.2382480 function_words
inside/in 0.4440210 0.4969157 function_words
into 0.1004534 0.3006394 function_words
is 0.2211883 0.4150965 function_words
it 0.3263409 0.4689296 function_words
lemme/let me 0.3024309 0.4593656 function_words
me 0.5405663 0.4984110 function_words
mine 0.6595340 0.4739223 function_words
more 0.6362340 0.4811396 function_words
much 0.1293556 0.3356332 function_words
my 0.3974756 0.4894342 function_words
myself 0.1390744 0.3460655 function_words
need/need to 0.2291369 0.4203276 function_words
next to 0.1212121 0.3264126 function_words
none 0.1499404 0.3570556 function_words
not 0.2356870 0.4244781 function_words
of 0.1002387 0.3003538 function_words
off 0.5752318 0.4943665 function_words
on 0.5615037 0.4962619 function_words
on top of 0.1905669 0.3927950 function_words
other 0.1967096 0.3975583 function_words
our 0.1071088 0.3092884 function_words
out 0.5418848 0.4983019 function_words
over 0.2550704 0.4359528 function_words
same 0.1370026 0.3438911 function_words
she 0.1881708 0.3908951 function_words
so 0.1137882 0.3175917 function_words
some 0.3160906 0.4650042 function_words
that 0.4465094 0.4971898 function_words
the 0.2462419 0.4308725 function_words
their 0.0835322 0.2767180 function_words
them 0.1216893 0.3269657 function_words
then 0.0887828 0.2844640 function_words
there 0.3482611 0.4764760 function_words
these 0.2051037 0.4038256 function_words
they 0.1150358 0.3191032 function_words
this 0.4040476 0.4907652 function_words
those 0.1500119 0.3571257 function_words
to 0.2435592 0.4292809 function_words
too 0.3306356 0.4704980 function_words
try/try to 0.2199190 0.4142409 function_words
under 0.2818680 0.4499630 function_words
up 0.6628653 0.4727875 function_words
us 0.0902363 0.2865543 function_words
wanna/want to 0.3738696 0.4838872 function_words
was 0.1100239 0.3129569 function_words
we 0.1528738 0.3599088 function_words
were 0.0701503 0.2554307 function_words
what 0.4424631 0.4967375 function_words
when 0.1067938 0.3088877 function_words
where 0.3529272 0.4779372 function_words
which 0.0765744 0.2659467 function_words
who 0.2293949 0.4204938 function_words
why 0.2638724 0.4407834 function_words
will 0.1321880 0.3387355 function_words
with 0.2200763 0.4143473 function_words
would 0.0601576 0.2378069 function_words
you 0.4323103 0.4954559 function_words
your 0.1764425 0.3812417 function_words
yourself 0.0611124 0.2395650 function_words
airplane 0.6494772 0.4771904 nouns
alligator 0.3564286 0.4790009 nouns
animal 0.4225553 0.4940247 nouns
ankle 0.1731044 0.3783826 nouns
ant 0.3986663 0.4896821 nouns
apple 0.7561728 0.4294406 nouns
applesauce 0.3798523 0.4854077 nouns
arm 0.5634506 0.4960166 nouns
backyard 0.2776454 0.4478909 nouns
ball 0.9344729 0.2474829 nouns
balloon 0.7591449 0.4276533 nouns
banana 0.8015195 0.3989032 nouns
basement 0.1137068 0.3174927 nouns
basket 0.3689228 0.4825705 nouns
bat 0.3419170 0.4744085 nouns
bathroom 0.4662387 0.4989182 nouns
bathtub 0.5354256 0.4988027 nouns
beads 0.2361641 0.4247748 nouns
beans 0.4151393 0.4928047 nouns
bear 0.6807701 0.4662337 nouns
bed 0.6421953 0.4794112 nouns
bedroom 0.3618844 0.4806028 nouns
bee 0.5981931 0.4903216 nouns
belly button 0.6276748 0.4834819 nouns
belt 0.3370653 0.4727637 nouns
bench 0.1424141 0.3495161 nouns
bib 0.4611905 0.4985509 nouns
bicycle 0.5744529 0.4944845 nouns
bird 0.7736342 0.4185283 nouns
blanket 0.6408551 0.4798068 nouns
block 0.5700690 0.4951249 nouns
boat 0.6286258 0.4832297 nouns
book 0.8252612 0.3797887 nouns
boots 0.5310050 0.4990971 nouns
bottle 0.6626277 0.4728693 nouns
bowl 0.5142653 0.4998559 nouns
box 0.5393392 0.4985093 nouns
bread 0.5680684 0.4954039 nouns
broom 0.4469553 0.4972374 nouns
brush 0.5483718 0.4977138 nouns
bubbles 0.7375297 0.4400291 nouns
bucket 0.3326185 0.4712073 nouns
bug 0.5823417 0.4932319 nouns
bunny 0.6228300 0.4847357 nouns
bus 0.6181430 0.4858995 nouns
butter 0.4138095 0.4925738 nouns
butterfly 0.4919163 0.4999941 nouns
buttocks/bottom* 0.5435093 0.4981626 nouns
button 0.5203329 0.4996458 nouns
cake 0.5509865 0.4974527 nouns
camera 0.3567349 0.4790926 nouns
can (object) 0.2736164 0.4458676 nouns
candy 0.5248632 0.4994409 nouns
car 0.8015195 0.3989032 nouns
carrots 0.4493581 0.4974879 nouns
cat 0.7432914 0.4368691 nouns
cereal 0.5509039 0.4974612 nouns
chair 0.6222381 0.4848853 nouns
chalk 0.2784538 0.4482915 nouns
cheek 0.4803805 0.4996743 nouns
cheerios 0.4682219 0.4990485 nouns
cheese 0.7418665 0.4376598 nouns
chicken (animal) 0.5065367 0.5000167 nouns
chicken (food) 0.5152091 0.4998280 nouns
chin 0.4496788 0.4975205 nouns
chocolate 0.3837016 0.4863444 nouns
clock 0.5005951 0.5000592 nouns
closet 0.3162027 0.4650484 nouns
cloud 0.3620567 0.4806523 nouns
coat 0.5299857 0.4991594 nouns
coffee 0.3933413 0.4885496 nouns
coke 0.2531011 0.4348403 nouns
comb 0.3961905 0.4891631 nouns
cookie 0.7491686 0.4335431 nouns
corn 0.4412955 0.4966010 nouns
couch 0.4124079 0.4923264 nouns
cow 0.6623901 0.4729509 nouns
cracker 0.6775268 0.4674786 nouns
crayon 0.4967880 0.5000492 nouns
crib 0.3540181 0.4782715 nouns
cup 0.6927096 0.4614256 nouns
deer 0.3295969 0.4701229 nouns
diaper 0.6907535 0.4622379 nouns
dish 0.2905840 0.4540860 nouns
dog 0.8717949 0.3343578 nouns
doll 0.5446535 0.4980614 nouns
donkey 0.2458899 0.4306649 nouns
donut 0.3157644 0.4648750 nouns
door 0.6521739 0.4763371 nouns
drawer 0.2594620 0.4383916 nouns
dress (object) 0.3691355 0.4826282 nouns
drink (beverage) 0.5915258 0.4916102 nouns
dryer 0.2338652 0.4233379 nouns
duck 0.7712589 0.4200720 nouns
ear 0.7695415 0.4211764 nouns
egg 0.5504631 0.4975060 nouns
elephant 0.5130703 0.4998885 nouns
eye 0.7957730 0.4031835 nouns
face 0.4549132 0.4980223 nouns
finger 0.5783591 0.4938804 nouns
firetruck 0.4208522 0.4937547 nouns
fish (animal) 0.7146591 0.4516303 nouns
fish (food) 0.5414785 0.4983358 nouns
flag 0.3171197 0.4654100 nouns
flower 0.6351962 0.4814324 nouns
food 0.4759638 0.4994814 nouns
foot 0.6146898 0.4867264 nouns
fork 0.5604944 0.4963859 nouns
french fries 0.4996431 0.5000594 nouns
frog 0.5521429 0.4973329 nouns
game 0.3192857 0.4662554 nouns
garage 0.2960667 0.4565752 nouns
garbage 0.3408605 0.4740549 nouns
garden 0.2079161 0.4058648 nouns
giraffe 0.4244587 0.4943194 nouns
glass 0.3580776 0.4794922 nouns
glasses 0.4750238 0.4994352 nouns
gloves 0.2803805 0.4492385 nouns
glue 0.1801287 0.3843404 nouns
goose 0.2875536 0.4526758 nouns
grapes 0.5568236 0.4968197 nouns
grass 0.4738344 0.4993743 nouns
green beans 0.2828211 0.4504239 nouns
gum 0.3044100 0.4602120 nouns
hair 0.6860603 0.4641473 nouns
hamburger 0.3956149 0.4890406 nouns
hammer 0.3424690 0.4745921 nouns
hand 0.6040380 0.4891144 nouns
hat 0.7295821 0.4442284 nouns
head 0.5828381 0.4931487 nouns
helicopter 0.3828218 0.4861332 nouns
hen 0.1760496 0.3809078 nouns
high chair 0.3623810 0.4807453 nouns
horse 0.6391067 0.4803167 nouns
hose 0.2711016 0.4445814 nouns
ice 0.5113015 0.4999317 nouns
ice cream 0.5624257 0.4961467 nouns
jacket 0.4549774 0.4980280 nouns
jar 0.3068480 0.4612408 nouns
jeans 0.2605382 0.4389806 nouns
jello 0.2449905 0.4301328 nouns
jelly 0.3033413 0.4597562 nouns
juice 0.7488129 0.4337474 nouns
keys 0.5450440 0.4980261 nouns
kitchen 0.4399524 0.4964402 nouns
kitty 0.7184004 0.4498327 nouns
knee 0.5183246 0.4997236 nouns
knife 0.3726190 0.4835595 nouns
ladder 0.2650775 0.4414271 nouns
lamb 0.2948321 0.4560216 nouns
lamp 0.2573267 0.4372130 nouns
lawn mower 0.3077290 0.4616088 nouns
leg 0.5023798 0.5000538 nouns
light 0.6280285 0.4833883 nouns
lion 0.4963139 0.5000459 nouns
lips 0.3697359 0.4827906 nouns
living room 0.2560076 0.4364780 nouns
lollipop 0.2740935 0.4461096 nouns
meat 0.3506308 0.4772243 nouns
medicine 0.4221429 0.4939599 nouns
melon 0.2656027 0.4417062 nouns
milk 0.7565899 0.4291915 nouns
mittens 0.2788484 0.4484862 nouns
money 0.4702664 0.4991745 nouns
monkey 0.5874109 0.4923585 nouns
moon 0.6044244 0.4890321 nouns
moose 0.2189659 0.4135947 nouns
mop 0.1989516 0.3992591 nouns
motorcycle 0.3676436 0.4822211 nouns
mouse 0.4954762 0.5000391 nouns
mouth 0.6562871 0.4750031 nouns
muffin 0.3313497 0.4707545 nouns
nail 0.2336271 0.4231880 nouns
napkin 0.3977137 0.4894840 nouns
necklace 0.3558677 0.4788324 nouns
noodles 0.4462672 0.4971635 nouns
nose 0.8000950 0.3999762 nouns
nuts 0.2777513 0.4479434 nouns
orange (food) 0.5114068 0.4999293 nouns
oven 0.2948596 0.4560339 nouns
owie/boo boo 0.6778332 0.4673620 nouns
owl 0.4559733 0.4981172 nouns
pajamas 0.4845385 0.4998203 nouns
pancake 0.4289116 0.4949796 nouns
pants 0.5471833 0.4978279 nouns
paper 0.5161674 0.4997980 nouns
peanut butter 0.4073810 0.4914053 nouns
peas 0.4185714 0.4933836 nouns
pen 0.4506070 0.4976136 nouns
pencil 0.3704145 0.4829732 nouns
penguin 0.3013568 0.4589020 nouns
penis* 0.3288128 0.4698377 nouns
penny 0.2992370 0.4579784 nouns
pickle 0.3379442 0.4730658 nouns
picture 0.4351654 0.4958376 nouns
pig 0.6202471 0.4853830 nouns
pillow 0.5320817 0.4990290 nouns
pizza 0.5870753 0.4924180 nouns
plant 0.3149119 0.4645361 nouns
plate 0.4399239 0.4964368 nouns
play dough 0.2932349 0.4552994 nouns
play pen 0.1038434 0.3050937 nouns
pony 0.2598951 0.4386291 nouns
pool 0.4626190 0.4986601 nouns
popcorn 0.4464030 0.4971783 nouns
popsicle 0.3614688 0.4804832 nouns
porch 0.1699284 0.3756147 nouns
potato 0.3719933 0.4833942 nouns
potato chip 0.4204004 0.4936821 nouns
potty 0.6090369 0.4880242 nouns
present 0.3602381 0.4801265 nouns
pretzel 0.3295184 0.4700944 nouns
pudding 0.2128370 0.4093622 nouns
pumpkin 0.3634849 0.4810600 nouns
puppy 0.6105163 0.4876912 nouns
purse 0.3965722 0.4892440 nouns
puzzle 0.4194623 0.4935298 nouns
radio 0.2714932 0.4447828 nouns
rain 0.5482414 0.4977265 nouns
raisin 0.4431223 0.4968135 nouns
refrigerator 0.3361085 0.4724327 nouns
rock 0.5506073 0.4974916 nouns
rocking chair 0.3219652 0.4672854 nouns
roof 0.1909871 0.3931258 nouns
room 0.3956698 0.4890523 nouns
rooster 0.2502383 0.4332018 nouns
salt 0.2187277 0.4134327 nouns
sandbox 0.2675888 0.4427548 nouns
sandwich 0.3955259 0.4890216 nouns
sauce 0.2488688 0.4324091 nouns
scarf 0.1403383 0.3473791 nouns
scissors 0.3413473 0.4742181 nouns
sheep 0.4704065 0.4991828 nouns
shirt 0.5708512 0.4950135 nouns
shoe 0.8566002 0.3505217 nouns
shorts 0.3854216 0.4867527 nouns
shoulder 0.2709078 0.4444815 nouns
shovel 0.3355545 0.4722401 nouns
shower 0.4426736 0.4967619 nouns
sidewalk 0.2502980 0.4332362 nouns
sink 0.3630952 0.4809492 nouns
sky 0.4303376 0.4951822 nouns
sled 0.2291369 0.4203276 nouns
slide (object) 0.4940561 0.5000241 nouns
slipper 0.3030736 0.4596415 nouns
sneaker 0.1923169 0.3941677 nouns
snow 0.4007606 0.4901109 nouns
snowman 0.2750832 0.4466093 nouns
snowsuit 0.0924690 0.2897214 nouns
soap 0.5214082 0.4996009 nouns
sock 0.5849370 0.4927914 nouns
soda/pop 0.3278454 0.4694842 nouns
sofa 0.1728248 0.3781408 nouns
soup 0.3962444 0.4891745 nouns
spaghetti 0.4167659 0.4930821 nouns
spoon 0.6611256 0.4733833 nouns
sprinkler 0.2004773 0.4004053 nouns
squirrel 0.3954318 0.4890014 nouns
stairs 0.3771116 0.4847209 nouns
star 0.5228245 0.4995382 nouns
stick 0.4180562 0.4932983 nouns
stone 0.1685742 0.3744200 nouns
story 0.3909631 0.4880242 nouns
stove 0.3399952 0.4737635 nouns
strawberry 0.4414843 0.4966232 nouns
street 0.3465841 0.4759385 nouns
stroller 0.3573638 0.4792803 nouns
sun 0.5001190 0.5000595 nouns
sweater 0.4615751 0.4985807 nouns
swing (object) 0.5610278 0.4963207 nouns
table 0.4639715 0.4987596 nouns
tape 0.3211818 0.4669861 nouns
teddybear 0.4754879 0.4994582 nouns
telephone 0.5985263 0.4902547 nouns
tiger 0.4462161 0.4971580 nouns
tights 0.1463996 0.3535485 nouns
tissue/kleenex 0.3886245 0.4874957 nouns
toast 0.4727576 0.4993167 nouns
toe 0.6043251 0.4890533 nouns
tongue 0.4879848 0.4999151 nouns
tooth 0.5522814 0.4973182 nouns
toothbrush 0.5775719 0.4940046 nouns
towel 0.4853885 0.4998458 nouns
toy (object) 0.5885714 0.4921512 nouns
tractor 0.3786870 0.4851176 nouns
train 0.6135932 0.4869835 nouns
trash 0.4232514 0.4941335 nouns
tray 0.1245526 0.3302503 nouns
tree 0.6509030 0.4767413 nouns
tricycle 0.2079657 0.4059005 nouns
truck 0.7133349 0.4522575 nouns
tummy 0.5853137 0.4927264 nouns
tuna 0.1726687 0.3780057 nouns
turkey 0.3153003 0.4646907 nouns
turtle 0.5105877 0.4999474 nouns
TV 0.5713946 0.4949354 nouns
underpants 0.2497617 0.4329266 nouns
vacuum 0.4149012 0.4927636 nouns
vagina* 0.1793893 0.3837237 nouns
vanilla 0.1302481 0.3366163 nouns
vitamins 0.2785595 0.4483437 nouns
walker 0.0866348 0.2813328 nouns
washing machine 0.2921830 0.4548202 nouns
watch (object) 0.4146225 0.4927154 nouns
water (beverage) 0.7003087 0.4581771 nouns
water (not beverage) 0.6805984 0.4663002 nouns
wind 0.3337298 0.4716006 nouns
window 0.3780314 0.4849532 nouns
wolf 0.2246066 0.4173727 nouns
yogurt 0.4806275 0.4996840 nouns
zebra 0.3829686 0.4861686 nouns
zipper 0.4020937 0.4903790 nouns
after 0.1699595 0.3756420 other
aunt 0.3533191 0.4780576 other
baa baa 0.7287411 0.4446622 other
baby 0.8380817 0.3684196 other
babysitter 0.1183488 0.3230593 other
babysitter’s name 0.4131936 0.4924656 other
bath 0.7432304 0.4369031 other
beach 0.2987601 0.4577690 other
before 0.0990453 0.2987585 other
boy 0.4841704 0.4998089 other
breakfast 0.4298976 0.4951202 other
brother 0.3183333 0.4658851 other
bye 0.9054856 0.2925777 other
call (on phone) 0.4613739 0.4985650 other
camping 0.1088305 0.3114637 other
child 0.1243746 0.3300477 other
child’s own name 0.6618380 0.4731402 other
choo choo 0.6794202 0.4667549 other
church* 0.3188648 0.4660921 other
circus 0.1276850 0.3337785 other
clown 0.2729008 0.4455034 other
cockadoodledoo 0.3926190 0.4883914 other
country 0.0515144 0.2210709 other
cowboy 0.1372315 0.3441327 other
daddy* 0.9648623 0.1841497 other
day 0.2262443 0.4184490 other
dinner 0.4125208 0.4923465 other
doctor 0.4054247 0.4910325 other
downtown 0.0930565 0.2905463 other
farm 0.2417896 0.4282184 other
fireman 0.2301644 0.4209881 other
friend 0.2901690 0.4538943 other
gas station 0.1976633 0.3982843 other
girl 0.4431223 0.4968135 other
give me five! 0.3927212 0.4884138 other
go potty 0.5183159 0.4997239 other
gonna get you! 0.4020029 0.4903610 other
grandma* 0.7577773 0.4284793 other
grandpa* 0.7015918 0.4576139 other
grrr 0.7302569 0.4438791 other
hello 0.6792587 0.4668170 other
hi 0.8012821 0.3990826 other
home 0.5773343 0.4940419 other
house 0.5154468 0.4998207 other
lady 0.2540515 0.4353786 other
later 0.2443385 0.4297455 other
lunch 0.4192244 0.4934909 other
mailman 0.2196518 0.4140601 other
man 0.3696118 0.4827571 other
meow 0.7923990 0.4056376 other
mommy* 0.9705603 0.1690556 other
moo 0.8180523 0.3858473 other
morning 0.2954059 0.4562793 other
movie 0.2785442 0.4483360 other
nap 0.5176023 0.4997495 other
night 0.4167460 0.4930787 other
night night 0.7487521 0.4337824 other
no 0.8765139 0.3290334 other
now 0.3493689 0.4768275 other
nurse 0.1098114 0.3126919 other
ouch 0.7516029 0.4321346 other
outside 0.6558117 0.4751593 other
park 0.4903732 0.4999667 other
party 0.3216667 0.4671715 other
pattycake 0.3786038 0.4850969 other
peekaboo 0.6747388 0.4685280 other
people 0.2880952 0.4529296 other
person 0.1027659 0.3036890 other
pet’s name 0.5483103 0.4977199 other
picnic 0.2074392 0.4055211 other
playground 0.2530408 0.4348060 other
please 0.7264957 0.4458104 other
police 0.1993807 0.3995823 other
quack quack 0.7276616 0.4452160 other
school 0.4652712 0.4988518 other
shh/shush/hush 0.6975529 0.4593724 other
shopping 0.3358742 0.4723514 other
sister 0.3280171 0.4695470 other
snack 0.4508450 0.4976372 other
so big! 0.3299214 0.4702403 other
store 0.4527943 0.4978258 other
teacher 0.2279657 0.4195703 other
thank you 0.7466762 0.4349664 other
this little piggy 0.3048548 0.4604007 other
time 0.1298020 0.3361255 other
today 0.1891827 0.3917004 other
tomorrow 0.1934176 0.3950246 other
tonight 0.1309325 0.3373668 other
turn around 0.3199334 0.4665059 other
uh oh 0.8981481 0.3024893 other
uncle 0.3387250 0.4733325 other
vroom 0.6611905 0.4733614 other
woods 0.1059160 0.3077668 other
woof woof 0.8007126 0.3995120 other
work (place) 0.4351345 0.4958336 other
yard 0.2588263 0.4380423 other
yes 0.7515439 0.4321690 other
yesterday 0.0894775 0.2854657 other
yum yum 0.6779258 0.4673268 other
zoo 0.3522267 0.4777211 other
all gone 0.6881388 0.4633085 predicates
asleep 0.4006189 0.4900822 predicates
awake 0.3227803 0.4675951 predicates
bad 0.3896289 0.4877241 predicates
better 0.2772749 0.4477067 predicates
big 0.5260404 0.4993808 predicates
bite 0.5424495 0.4982540 predicates
black 0.3264335 0.4689637 predicates
blow 0.4316290 0.4953623 predicates
blue 0.4983365 0.5000567 predicates
break 0.3884789 0.4874624 predicates
bring 0.2901308 0.4538765 predicates
broken 0.4642093 0.4987767 predicates
brown 0.2874822 0.4526422 predicates
build 0.2670793 0.4424868 predicates
bump 0.3404762 0.4739258 predicates
buy 0.2512503 0.4337838 predicates
careful 0.3187991 0.4660665 predicates
carry 0.3573130 0.4792652 predicates
catch 0.3560894 0.4788991 predicates
chase 0.2345091 0.4237421 predicates
clap 0.4636061 0.4987330 predicates
clean (action) 0.4282319 0.4948813 predicates
clean (description) 0.4492754 0.4974795 predicates
climb 0.3463554 0.4758648 predicates
close 0.4105063 0.4919842 predicates
cold 0.6041815 0.4890839 predicates
cook 0.3773810 0.4847892 predicates
cover 0.2289731 0.4202219 predicates
cry 0.4798004 0.4996512 predicates
cut 0.2956708 0.4563980 predicates
cute 0.2876549 0.4527233 predicates
dance 0.4749108 0.4994295 predicates
dark 0.3337301 0.4716007 predicates
dirty 0.5362491 0.4987435 predicates
draw 0.3559362 0.4788530 predicates
drink (action) 0.5935791 0.4912233 predicates
drive 0.3802616 0.4855088 predicates
drop 0.3289693 0.4698947 predicates
dry (action) 0.2999762 0.4583018 predicates
dry (description) 0.3220501 0.4673177 predicates
dump 0.1879323 0.3907047 predicates
eat 0.6677757 0.4710669 predicates
empty 0.3127533 0.4636700 predicates
fall 0.4714829 0.4992454 predicates
fast 0.3359505 0.4723779 predicates
feed 0.2880629 0.4529145 predicates
find 0.3425309 0.4746125 predicates
fine 0.1484747 0.3556123 predicates
finish 0.2315189 0.4218533 predicates
first 0.2107773 0.4079092 predicates
fit 0.1986171 0.3990066 predicates
fix 0.3751189 0.4842112 predicates
full 0.2733556 0.4457350 predicates
gentle 0.2666032 0.4422358 predicates
get 0.4378867 0.4961860 predicates
give 0.3334127 0.4714887 predicates
go 0.6885246 0.4631516 predicates
good 0.4463734 0.4971750 predicates
green 0.4156956 0.4929001 predicates
happy 0.4344106 0.4957383 predicates
hard 0.2401716 0.4272384 predicates
hate 0.0756202 0.2644210 predicates
have 0.3242857 0.4681631 predicates
hear 0.2852724 0.4515978 predicates
heavy 0.3832421 0.4862344 predicates
help 0.5134300 0.4998790 predicates
hide 0.3578396 0.4794216 predicates
high 0.3018823 0.4591292 predicates
hit 0.4074250 0.4914136 predicates
hold 0.3707758 0.4830700 predicates
hot 0.7430473 0.4370050 predicates
hug 0.5676576 0.4954602 predicates
hungry 0.4234706 0.4941674 predicates
hurry 0.2589328 0.4381008 predicates
hurt 0.4079010 0.4915031 predicates
jump 0.4939387 0.5000227 predicates
kick 0.4166072 0.4930552 predicates
kiss 0.6005706 0.4898394 predicates
knock 0.3545390 0.4784304 predicates
last 0.1111906 0.3144056 predicates
lick 0.2514884 0.4339203 predicates
like 0.3291290 0.4699528 predicates
listen 0.2366667 0.4250866 predicates
little (description) 0.3582658 0.4795479 predicates
long 0.1536260 0.3606328 predicates
look 0.4405611 0.4965135 predicates
loud 0.3029293 0.4595796 predicates
love 0.4964354 0.5000467 predicates
mad 0.2211905 0.4150979 predicates
make 0.2789148 0.4485189 predicates
naughty 0.1334129 0.3400610 predicates
new 0.2278571 0.4194999 predicates
nice 0.3726190 0.4835595 predicates
noisy 0.2248450 0.4175300 predicates
old 0.1711969 0.3767259 predicates
open 0.5611784 0.4963020 predicates
orange (description) 0.4218156 0.4939081 predicates
paint 0.3121277 0.4634168 predicates
pick 0.2222222 0.4157893 predicates
play 0.5127229 0.4998975 predicates
poor 0.0809262 0.2727544 predicates
pour 0.2326579 0.4225764 predicates
pretend 0.1358760 0.3426977 predicates
pretty 0.4186324 0.4933937 predicates
pull 0.3208671 0.4668654 predicates
push 0.4059005 0.4911239 predicates
put 0.2888095 0.4532632 predicates
quiet 0.2880952 0.4529296 predicates
read 0.5184392 0.4997193 predicates
red 0.4394011 0.4963732 predicates
ride 0.4271429 0.4947223 predicates
rip 0.1364178 0.3432727 predicates
run 0.4604950 0.4984962 predicates
sad 0.3032105 0.4597000 predicates
say 0.2728139 0.4454590 predicates
scared 0.2863604 0.4521137 predicates
see 0.5043995 0.5000401 predicates
shake 0.2776588 0.4478975 predicates
share 0.3030014 0.4596106 predicates
show 0.2612011 0.4393417 predicates
sick 0.2899000 0.4537698 predicates
sing 0.4096099 0.4918203 predicates
sit 0.5562158 0.4968888 predicates
skate 0.1334923 0.3401465 predicates
sleep 0.5014265 0.5000574 predicates
sleepy 0.3601049 0.4800878 predicates
slide (action) 0.4233698 0.4941517 predicates
slow 0.1975220 0.3981769 predicates
smile 0.2900691 0.4538481 predicates
soft 0.3267445 0.4690788 predicates
spill 0.2945385 0.4558894 predicates
splash 0.3590660 0.4797838 predicates
stand 0.3130062 0.4637721 predicates
stay 0.3027130 0.4594868 predicates
sticky 0.3206470 0.4667808 predicates
stop 0.5101022 0.4999574 predicates
stuck 0.3497020 0.4769326 predicates
sweep 0.3095068 0.4623454 predicates
swim 0.4080952 0.4915395 predicates
swing (action) 0.4974994 0.5000533 predicates
take 0.2797903 0.4489496 predicates
talk 0.3221429 0.4673530 predicates
taste 0.2305311 0.4212229 predicates
tear 0.1624523 0.3689092 predicates
think 0.1340010 0.3406940 predicates
thirsty 0.3374613 0.4729000 predicates
throw 0.4114707 0.4921587 predicates
tickle 0.4728701 0.4993228 predicates
tiny 0.1459575 0.3531058 predicates
tired 0.3302381 0.4703547 predicates
touch 0.3318247 0.4709245 predicates
wait 0.3117409 0.4632598 predicates
wake 0.2804384 0.4492670 predicates
walk 0.5175856 0.4997500 predicates
wash 0.4499167 0.4975445 predicates
watch (action) 0.3356360 0.4722686 predicates
wet 0.5241379 0.4994764 predicates
white 0.2816667 0.4498652 predicates
windy 0.2769048 0.4475223 predicates
wipe 0.3461172 0.4757878 predicates
wish 0.0858984 0.2802473 predicates
work (action) 0.3802951 0.4855171 predicates
write 0.2884707 0.4531051 predicates
yellow 0.4290805 0.4950037 predicates
yucky 0.5406949 0.4984005 predicates
Vocab %>% 
  filter(!is.na(out)) %>%
  group_by(definition) %>%
  summarise(
    mean=mean(out), 
    sd=sd(out),
    category = first(lexical_category)
  ) %>%
  ggplot(aes(x=mean, fill=category)) + geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Stick to just nouns and predicates as these are relatively clearly not grammatical items.

Vocab_short_with_ids <- Vocab %>% 
  filter(lexical_category == "nouns" | lexical_category == "predicates") %>%
  dplyr::select(data_id, value, out, definition) %>%
  pivot_wider(id_cols=data_id, names_from = "definition", values_from="out") %>%
  drop_na() # drop participants with missing data


Vocab_short <- Vocab_short_with_ids %>%
  dplyr::select(-"data_id") # dataset for IRT can't have IDs

nrow(Vocab_short_with_ids) == N_total - N_long - N_missing # Looks good
##         n
## [1,] TRUE

2 Dimensionality assessment

I’m not going to bother with the correlation plot because I think it will be too difficult to visualize.

Complex_poly <- tetrachoric(Vocab_short)
## For i = 131 j = 58  A cell entry of 0 was replaced with correct =  0.5.  Check your data!
## For i = 160 j = 58  A cell entry of 0 was replaced with correct =  0.5.  Check your data!
## For i = 225 j = 58  A cell entry of 0 was replaced with correct =  0.5.  Check your data!
## For i = 387 j = 58  A cell entry of 0 was replaced with correct =  0.5.  Check your data!
## For i = 448 j = 445  A cell entry of 0 was replaced with correct =  0.5.  Check your data!
## Warning in cor.smooth(mat): Matrix was not positive definite, smoothing was done
rho <- Complex_poly$rho

These will not run.

#pc <- princals(rho)

#plot(pc)
fa.parallel(rho, fa="fa", fm="minres", cor="poly", n.obs = 4186)
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined.
## Chi square is based upon observed residuals.
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined for the null model either.
## The Chi square is thus based upon observed correlations.
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Parallel analysis suggests that the number of factors =  22  and the number of components =  NA

3 One dimension

3.1 2PL Model

#m1 <- mirt(Vocab_short, 1, itemtype="2PL") 
#saveRDS(m1, "vocab_output/m1.rds")
m1 <-  readRDS("vocab_output/m1.rds")

Looking at item misfit statistics

#itf <- itemfit(m1)
#saveRDS(itf, "vocab_output/itf.rds")
itf <- readRDS("vocab_output/itf.rds")
misfit <- itf  %>% # Get labels of mis-fitting items. 
  filter(p.S_X2 <= .01) %>%
  dplyr::select(item) %>%
  as.vector()

items_good <- dplyr::select(Vocab_short, -all_of(misfit$item)) # Well fitting items
items_bad <- dplyr::select(Vocab_short, all_of(misfit$item)) # Poorly fitting items

mod_fit <- mirt(items_good, 1, "2PL", verbose=FALSE) # Calculate factor scores using only the well fitting items. 
Theta <- fscores(mod_fit)
plot(itemGAM(items_bad$dog, Theta)) %>% update(main = "dog")
plot(itemGAM(items_bad$donkey,Theta)) %>% update(main = "donkey")
plot(itemGAM(items_bad$teddybear,Theta)) %>% update(main = "teddybear")
plot(itemGAM(items_bad$block,Theta)) %>% update(main = "block")
plot(itemGAM(items_bad$doll,Theta)) %>% update(main = "doll")
plot(itemGAM(items_bad$`toy (object)`,Theta)) %>% update(main = "toy (object)")
plot(itemGAM(items_bad$beans,Theta)) %>% update(main = "beans") 
plot(itemGAM(items_bad$raisin,Theta)) %>% update(main = "raisin") 
plot(itemGAM(items_bad$underpants,Theta)) %>% update(main = "underpants") 
plot(itemGAM(items_bad$`penis*`,Theta)) %>% update(main = "penis") 
plot(itemGAM(items_bad$`vagina*`,Theta)) %>% update(main = "vagina")
plot(itemGAM(items_bad$clock,Theta)) %>% update(main = "clock") 
plot(itemGAM(items_bad$dish,Theta)) %>% update(main = "dish")
plot(itemGAM(items_bad$keys,Theta)) %>% update(main = "keys")
plot(itemGAM(items_bad$plate,Theta)) %>% update(main = "plate")
plot(itemGAM(items_bad$trash,Theta)) %>% update(main = "trash")
plot(itemGAM(items_bad$bathtub,Theta)) %>% update(main = "bathtub")
plot(itemGAM(items_bad$TV,Theta)) %>% update(main = "TV")

plot(itemGAM(items_bad$catch, Theta)) %>% update(main = "catch")
plot(itemGAM(items_bad$fit,Theta))  %>% update(main = "fit")
plot(itemGAM(items_bad$get,Theta)) %>% update(main = "get")
plot(itemGAM(items_bad$go,Theta)) %>% update(main = "go")
plot(itemGAM(items_bad$read,Theta)) %>% update(main = "read")

true_raw <- Vocab_short %>%
  mutate(
    Raw = rowSums(.[,1:478]), 
    Theta = fscores(m1)
  ) %>%
  ggplot(aes(x=Theta, y=Raw)) + geom_point() + stat_smooth(method="loess") + theme_minimal()

raw_score <- Vocab_short %>%
  mutate(
    Raw = rowSums(.[,1:478])
    ) %>% 
   ggplot(aes(x=Raw)) + geom_histogram() + theme_minimal()

true_score <- Vocab_short %>%
  mutate(
    Theta = fscores(m1)
    ) %>% 
   ggplot(aes(x=Theta)) + geom_histogram() + theme_minimal()

library(patchwork)

true_raw/(true_score + raw_score) 
## `geom_smooth()` using formula 'y ~ x'
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

coefs_2pl <- coef(m1, as.data.frame = TRUE) %>% 
 t() %>%
  as_tibble() %>%
  dplyr::select(-c(1913:1914)) %>%
  pivot_longer(everything()) %>%
  tidyr::separate(, col=name, into=c("item", "parameter"), sep="([.])") %>%
  filter(parameter == "a1" | parameter == "d" ) %>%
  pivot_wider(id_cols=item, names_from=parameter, values_from=value) 
## Warning: Expected 2 pieces. Additional pieces discarded in 180 rows [41, 42,
## 43, 44, 69, 70, 71, 72, 281, 282, 283, 284, 297, 298, 299, 300, 349, 350, 351,
## 352, ...].
ggplot(coefs_2pl,  
       aes(x = a1, y = -d)) + # Note in the book they use -d here, I think MIRT outputs a1 and an easiness rather than a difficulty. 
  geom_point(alpha = .3) + 
  ggrepel::geom_text_repel(data = coefs_2pl, 
                  aes(label = item), size = 3) + 
  xlab("Discrimination") + 
  ylab("Difficulty") + theme_minimal()
## Warning: ggrepel: 312 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

#ggplot(coefs_2pl, aes(x=a1, fill=lexical_category)) + geom_histogram() + theme_minimal()
#ggplot(coefs_2pl, aes(x=d, fill=lexical_category)) + geom_histogram() + theme_minimal()

3.3 Try other latent variable

#m3 <- mirt(Vocab_short, 1, dentype="EH",  technical=list(NCYCLES = 2000)) 
#saveRDS(m3, "vocab_output/m3.rds")
m3 <- readRDS("vocab_output/m3.rds")
Vocab_short %>%
  mutate(
    Raw = rowSums(.[,1:478]), 
    Theta_2pl = fscores(m1)[,1], 
    Theta_spline = fscores(m2)[,1], 
    Theta_EH =  fscores(m3)[,1]
  ) %>%
  dplyr::select("Raw", "Theta_2pl", "Theta_spline", "Theta_EH") %>%
  ggpairs()

Compare the shape of distribution of latent variables.

(dens_plot <- Vocab_short %>%
  mutate(
    Theta_logit = fscores(m1)[,1], # Used MAP here, but EAP gives same results. 
    Theta_spline = fscores(m2)[,1],
    Theta_EH = fscores(m3)[,1]
  ) %>%
  dplyr::select("Theta_logit", "Theta_spline", "Theta_EH") %>%
  pivot_longer(everything(), names_to="model", values_to="theta") %>%
  ggplot(aes(x=theta, fill=model)) + geom_density(alpha = .2) +
  ggtitle("Distribution of Theta"))

Theta <- matrix(seq(-4,4,.01))
m1_inf <- testinfo(m1, Theta)
#mspline_inf <- testinfo(m2, Theta)
mEH_inf <- testinfo(m3, Theta)


(info_plot <- tibble(Theta, m1_inf, mEH_inf) %>%
   pivot_longer(c("m1_inf", "mEH_inf"), names_to = "LV", values_to = "Info") %>%
  mutate(
    model = ifelse(LV == "m1_inf", yes="2PL", no ="EH")
  ) %>%
  ggplot(aes(x=Theta, y=Info, group=model, color=model)) + geom_line() +
  ggtitle("Test Information"))

coefs_2pl <- coef(m3, as.data.frame = TRUE) %>% 
 t() %>%
  as_tibble() %>%
  dplyr::select(-c(1913:1914)) %>%
  pivot_longer(everything()) %>%
  tidyr::separate(, col=name, into=c("item", "parameter"), sep="([.])") %>%
  filter(parameter == "a1" | parameter == "d" ) %>%
  pivot_wider(id_cols=item, names_from=parameter, values_from=value) 
## Warning: Expected 2 pieces. Additional pieces discarded in 180 rows [41, 42,
## 43, 44, 69, 70, 71, 72, 281, 282, 283, 284, 297, 298, 299, 300, 349, 350, 351,
## 352, ...].
ggplot(coefs_2pl,  
       aes(x = a1, y = -d)) + # Note in the book they use -d here, I think MIRT outputs a1 and -d
  geom_point(alpha = .3) + 
  ggrepel::geom_text_repel(data = coefs_2pl, 
                  aes(label = item), size = 3) + 
  xlab("Discrimination") + 
  ylab("Difficulty") + theme_minimal()
## Warning: ggrepel: 306 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

4 Add a dimension

Compare this to a model with 2 dimensions.

#m4<- mirt(Vocab_short, 2, itemtype="2PL", technical=list(NCYCLES = 4000)) 
#saveRDS(m4, "vocab_output/m4.rds")
m4 <-  readRDS("vocab_output/m4.rds")
summary(m4, "oblimin", suppress=.20)
## 
## Rotation:  oblimin 
## 
## Rotated factor loadings: 
## 
##                          F1     F2    h2
## alligator            -0.858     NA 0.784
## animal               -0.847     NA 0.737
## ant                  -0.787     NA 0.633
## bear                 -0.781 -0.213 0.666
## bee                  -0.754 -0.204 0.620
## bird                 -0.794     NA 0.676
## bug                  -0.806     NA 0.658
## bunny                -0.812     NA 0.692
## butterfly            -0.845     NA 0.764
## cat                  -0.748     NA 0.578
## chicken (animal)     -0.852     NA 0.757
## cow                  -0.810 -0.208 0.711
## deer                 -0.736 -0.236 0.608
## dog                  -0.710     NA 0.516
## donkey               -0.735 -0.261 0.621
## duck                 -0.770 -0.252 0.669
## elephant             -0.874     NA 0.813
## fish (animal)        -0.832     NA 0.727
## frog                 -0.858 -0.219 0.796
## giraffe              -0.807 -0.266 0.735
## goose                -0.752 -0.237 0.633
## hen                  -0.762 -0.212 0.636
## horse                -0.871     NA 0.792
## kitty                -0.709     NA 0.508
## lamb                 -0.810 -0.201 0.707
## lion                 -0.863 -0.216 0.803
## monkey               -0.865     NA 0.798
## moose                -0.718 -0.285 0.610
## mouse                -0.852     NA 0.770
## owl                  -0.733 -0.297 0.640
## penguin              -0.799 -0.206 0.690
## pig                  -0.868     NA 0.793
## pony                 -0.778     NA 0.637
## puppy                -0.757     NA 0.578
## rooster              -0.826 -0.232 0.749
## sheep                -0.811 -0.266 0.742
## squirrel             -0.808 -0.202 0.704
## teddybear            -0.801     NA 0.645
## tiger                -0.846     NA 0.760
## turkey               -0.807     NA 0.689
## turtle               -0.836 -0.231 0.765
## wolf                 -0.776 -0.212 0.657
## zebra                -0.829 -0.274 0.776
## airplane             -0.854     NA 0.761
## bicycle              -0.825     NA 0.704
## boat                 -0.810 -0.258 0.736
## bus                  -0.786     NA 0.666
## car                  -0.811     NA 0.700
## firetruck            -0.829     NA 0.710
## helicopter           -0.827     NA 0.724
## motorcycle           -0.827     NA 0.701
## sled                 -0.702     NA 0.530
## stroller             -0.785     NA 0.619
## tractor              -0.708 -0.240 0.570
## train                -0.862     NA 0.783
## tricycle             -0.781     NA 0.642
## truck                -0.807     NA 0.699
## ball                 -0.786 -0.304 0.725
## balloon              -0.821     NA 0.716
## bat                  -0.742     NA 0.566
## block                -0.800     NA 0.675
## book                 -0.825 -0.217 0.739
## bubbles              -0.794 -0.223 0.692
## chalk                -0.786     NA 0.641
## crayon               -0.877     NA 0.781
## doll                 -0.754     NA 0.568
## game                 -0.873     NA 0.766
## glue                 -0.835     NA 0.710
## pen                  -0.815     NA 0.666
## pencil               -0.864     NA 0.748
## play dough           -0.780     NA 0.624
## present              -0.908     NA 0.833
## puzzle               -0.879     NA 0.797
## story                -0.876     NA 0.774
## toy (object)         -0.869     NA 0.754
## apple                -0.851     NA 0.767
## applesauce           -0.820     NA 0.702
## banana               -0.758     NA 0.611
## beans                -0.790     NA 0.656
## bread                -0.879     NA 0.788
## butter               -0.853     NA 0.745
## cake                 -0.867     NA 0.761
## candy                -0.793     NA 0.631
## carrots              -0.902     NA 0.835
## cereal               -0.847     NA 0.720
## cheerios             -0.734     NA 0.563
## cheese               -0.821     NA 0.718
## chicken (food)       -0.877     NA 0.780
## chocolate            -0.850     NA 0.728
## coffee               -0.813     NA 0.678
## coke                 -0.625     NA 0.390
## cookie               -0.826     NA 0.691
## corn                 -0.878     NA 0.791
## cracker              -0.815     NA 0.699
## donut                -0.753     NA 0.568
## drink (beverage)     -0.813     NA 0.660
## egg                  -0.842     NA 0.731
## fish (food)          -0.757     NA 0.599
## food                 -0.828     NA 0.684
## french fries         -0.814     NA 0.661
## grapes               -0.860     NA 0.763
## green beans          -0.797     NA 0.664
## gum                  -0.702     NA 0.496
## hamburger            -0.862     NA 0.744
## ice                  -0.790     NA 0.632
## ice cream            -0.884     NA 0.787
## jello                -0.778     NA 0.609
## jelly                -0.867     NA 0.758
## juice                -0.772     NA 0.602
## lollipop             -0.715     NA 0.513
## meat                 -0.791     NA 0.633
## melon                -0.787     NA 0.646
## milk                 -0.796     NA 0.659
## muffin               -0.847     NA 0.749
## noodles              -0.833     NA 0.712
## nuts                 -0.843     NA 0.725
## orange (food)        -0.875     NA 0.783
## pancake              -0.850     NA 0.738
## peas                 -0.792     NA 0.666
## peanut butter        -0.843     NA 0.722
## pickle               -0.794     NA 0.636
## pizza                -0.862     NA 0.750
## popcorn              -0.795     NA 0.634
## popsicle             -0.773     NA 0.597
## potato chip          -0.813     NA 0.661
## potato               -0.837     NA 0.712
## pretzel              -0.778     NA 0.629
## pudding              -0.811     NA 0.665
## pumpkin              -0.839     NA 0.732
## raisin               -0.834     NA 0.719
## salt                 -0.843     NA 0.713
## sandwich             -0.917     NA 0.841
## sauce                -0.826     NA 0.694
## soda/pop             -0.629     NA 0.396
## soup                 -0.846     NA 0.723
## spaghetti            -0.868     NA 0.755
## strawberry           -0.853     NA 0.762
## toast                -0.813     NA 0.688
## tuna                 -0.772     NA 0.604
## vanilla              -0.864     NA 0.758
## vitamins             -0.745     NA 0.560
## water (beverage)     -0.827     NA 0.703
## yogurt               -0.771 -0.218 0.653
## beads                -0.719     NA 0.543
## belt                 -0.822     NA 0.680
## bib                  -0.761     NA 0.604
## boots                -0.784     NA 0.642
## button               -0.841     NA 0.732
## coat                 -0.812     NA 0.671
## diaper               -0.843     NA 0.716
## dress (object)       -0.852     NA 0.726
## gloves               -0.840     NA 0.717
## hat                  -0.849     NA 0.747
## jacket               -0.823     NA 0.683
## jeans                -0.834     NA 0.706
## mittens              -0.806     NA 0.684
## necklace             -0.853     NA 0.733
## pajamas              -0.897     NA 0.810
## pants                -0.903     NA 0.821
## scarf                -0.840     NA 0.730
## shirt                -0.901     NA 0.824
## shoe                 -0.852     NA 0.742
## shorts               -0.874     NA 0.770
## slipper              -0.808     NA 0.660
## sneaker              -0.754     NA 0.570
## snowsuit             -0.791     NA 0.631
## sock                 -0.704     NA 0.496
## sweater              -0.691     NA 0.516
## tights               -0.783     NA 0.618
## underpants           -0.819     NA 0.670
## zipper               -0.864     NA 0.766
## ankle                -0.832     NA 0.711
## arm                  -0.910     NA 0.830
## belly button         -0.801     NA 0.666
## buttocks/bottom*     -0.836     NA 0.701
## cheek                -0.844     NA 0.727
## chin                 -0.857     NA 0.746
## ear                  -0.844     NA 0.747
## eye                  -0.859     NA 0.744
## face                 -0.898     NA 0.806
## finger               -0.901     NA 0.821
## foot                 -0.904     NA 0.816
## hair                 -0.898     NA 0.814
## hand                 -0.916     NA 0.841
## head                 -0.907     NA 0.824
## knee                 -0.835     NA 0.723
## leg                  -0.935     NA 0.876
## lips                 -0.877     NA 0.769
## mouth                -0.873     NA 0.768
## nose                 -0.849     NA 0.749
## owie/boo boo         -0.673     NA 0.454
## penis*               -0.550     NA 0.317
## shoulder             -0.874     NA 0.776
## toe                  -0.825     NA 0.698
## tongue               -0.837     NA 0.712
## tooth                -0.843     NA 0.714
## tummy                -0.880     NA 0.774
## vagina*              -0.605     NA 0.366
## basket               -0.893     NA 0.804
## blanket              -0.869     NA 0.755
## bottle               -0.730     NA 0.532
## bowl                 -0.870     NA 0.764
## box                  -0.864     NA 0.757
## broom                -0.833     NA 0.694
## brush                -0.873     NA 0.765
## bucket               -0.880     NA 0.784
## camera               -0.906     NA 0.824
## can (object)         -0.858     NA 0.736
## clock                -0.795     NA 0.663
## comb                 -0.846     NA 0.718
## cup                  -0.868     NA 0.754
## dish                 -0.853     NA 0.729
## fork                 -0.905     NA 0.828
## garbage              -0.802     NA 0.644
## glass                -0.863     NA 0.745
## glasses              -0.864     NA 0.753
## hammer               -0.847     NA 0.733
## jar                  -0.615     NA 0.401
## keys                 -0.659     NA 0.436
## knife                -0.909     NA 0.831
## lamp                 -0.859     NA 0.745
## light                -0.849     NA 0.728
## medicine             -0.887     NA 0.787
## money                -0.841     NA 0.708
## mop                  -0.803     NA 0.644
## nail                 -0.865     NA 0.753
## napkin               -0.886     NA 0.785
## paper                -0.924     NA 0.854
## penny                -0.805     NA 0.647
## picture              -0.928     NA 0.860
## pillow               -0.918     NA 0.842
## plant                -0.879     NA 0.779
## plate                -0.906     NA 0.824
## purse                -0.821     NA 0.675
## radio                -0.836     NA 0.700
## scissors             -0.897     NA 0.805
## soap                 -0.899     NA 0.809
## spoon                -0.861     NA 0.759
## tape                 -0.893     NA 0.798
## telephone            -0.891     NA 0.795
## tissue/kleenex       -0.863     NA 0.743
## toothbrush           -0.889     NA 0.793
## towel                -0.911     NA 0.830
## trash                -0.723     NA 0.522
## tray                 -0.862     NA 0.746
## vacuum               -0.838     NA 0.706
## walker               -0.788     NA 0.620
## watch (object)       -0.843     NA 0.714
## basement             -0.674     NA 0.468
## bathroom             -0.927     NA 0.860
## bathtub              -0.847     NA 0.718
## bed                  -0.911     NA 0.829
## bedroom              -0.910     NA 0.828
## bench                -0.893     NA 0.805
## chair                -0.915     NA 0.839
## closet               -0.932     NA 0.869
## couch                -0.893     NA 0.797
## crib                 -0.856     NA 0.734
## door                 -0.880     NA 0.775
## drawer               -0.903     NA 0.814
## dryer                -0.910     NA 0.829
## garage               -0.875     NA 0.773
## high chair           -0.825     NA 0.682
## kitchen              -0.937     NA 0.877
## living room          -0.898     NA 0.805
## oven                 -0.898     NA 0.807
## play pen             -0.782     NA 0.610
## porch                -0.842     NA 0.708
## potty                -0.824     NA 0.680
## rocking chair        -0.861     NA 0.746
## refrigerator         -0.896     NA 0.802
## room                 -0.911     NA 0.830
## shower               -0.890     NA 0.794
## sink                 -0.919     NA 0.844
## sofa                 -0.757     NA 0.573
## stairs               -0.868     NA 0.753
## stove                -0.834     NA 0.700
## table                -0.937     NA 0.878
## TV                   -0.851     NA 0.723
## window               -0.880     NA 0.775
## washing machine      -0.848     NA 0.724
## backyard             -0.837     NA 0.700
## cloud                -0.856     NA 0.748
## flag                 -0.817     NA 0.687
## flower               -0.878     NA 0.788
## garden               -0.865     NA 0.752
## grass                -0.898     NA 0.807
## hose                 -0.852     NA 0.731
## ladder               -0.887     NA 0.804
## lawn mower           -0.784     NA 0.632
## moon                 -0.767 -0.208 0.641
## pool                 -0.779     NA 0.609
## rain                 -0.906     NA 0.825
## rock                 -0.852     NA 0.737
## roof                 -0.901     NA 0.815
## sandbox              -0.833     NA 0.702
## shovel               -0.869     NA 0.768
## sidewalk             -0.914     NA 0.836
## sky                  -0.826     NA 0.688
## slide (object)       -0.869     NA 0.762
## snow                 -0.758     NA 0.603
## snowman              -0.846     NA 0.735
## sprinkler            -0.859     NA 0.744
## star                 -0.809     NA 0.686
## stick                -0.869     NA 0.760
## stone                -0.795     NA 0.635
## street               -0.920     NA 0.846
## sun                  -0.884     NA 0.796
## swing (object)       -0.853     NA 0.737
## tree                 -0.849     NA 0.751
## water (not beverage) -0.860     NA 0.749
## wind                 -0.883     NA 0.787
## bite                 -0.831     NA 0.713
## blow                 -0.868     NA 0.760
## break                -0.902     NA 0.827
## bring                -0.889     NA 0.816
## build                -0.916     NA 0.842
## bump                 -0.826     NA 0.688
## buy                  -0.857     NA 0.752
## carry                -0.912     NA 0.844
## catch                -0.892     NA 0.813
## chase                -0.855     NA 0.739
## clap                 -0.863     NA 0.756
## clean (action)       -0.913     NA 0.844
## climb                -0.926     NA 0.863
## close                -0.878     NA 0.781
## cook                 -0.885     NA 0.786
## cover                -0.909     NA 0.849
## cry                  -0.909     NA 0.844
## cut                  -0.900     NA 0.818
## dance                -0.881     NA 0.783
## draw                 -0.873     NA 0.767
## drink (action)       -0.856     NA 0.747
## drive                -0.916     NA 0.846
## drop                 -0.922     NA 0.865
## dry (action)         -0.914     NA 0.840
## dump                 -0.828     NA 0.687
## eat                  -0.876     NA 0.790
## fall                 -0.919     NA 0.855
## feed                 -0.920     NA 0.857
## find                 -0.939     NA 0.898
## finish               -0.855     NA 0.750
## fit                  -0.910     NA 0.843
## fix                  -0.910     NA 0.834
## get                  -0.873     NA 0.787
## give                 -0.901  0.205 0.842
## go                   -0.755     NA 0.587
## hate                 -0.769  0.213 0.626
## have                 -0.924     NA 0.865
## hear                 -0.921     NA 0.859
## help                 -0.849     NA 0.728
## hide                 -0.897     NA 0.814
## hit                  -0.894     NA 0.824
## hold                 -0.915     NA 0.860
## hug                  -0.884     NA 0.796
## hurry                -0.877  0.210 0.801
## jump                 -0.905     NA 0.825
## kick                 -0.882     NA 0.794
## kiss                 -0.883     NA 0.806
## knock                -0.843     NA 0.718
## lick                 -0.911     NA 0.838
## like                 -0.924     NA 0.866
## listen               -0.893     NA 0.821
## look                 -0.855  0.227 0.770
## love                 -0.824     NA 0.696
## make                 -0.932     NA 0.883
## open                 -0.882     NA 0.790
## paint                -0.878     NA 0.771
## pick                 -0.914     NA 0.857
## play                 -0.911     NA 0.844
## pour                 -0.909     NA 0.834
## pretend              -0.876     NA 0.775
## pull                 -0.886     NA 0.799
## push                 -0.874     NA 0.775
## put                  -0.902     NA 0.838
## read                 -0.893     NA 0.798
## ride                 -0.917     NA 0.853
## rip                  -0.855     NA 0.742
## run                  -0.934     NA 0.878
## say                  -0.883  0.203 0.810
## see                  -0.825  0.208 0.713
## shake                -0.877     NA 0.776
## share                -0.902     NA 0.832
## show                 -0.927     NA 0.878
## sing                 -0.924     NA 0.865
## sit                  -0.847     NA 0.733
## skate                -0.853     NA 0.728
## sleep                -0.925     NA 0.869
## slide (action)       -0.883     NA 0.781
## smile                -0.891  0.204 0.823
## spill                -0.923     NA 0.866
## splash               -0.888     NA 0.793
## stand                -0.929     NA 0.885
## stay                 -0.880  0.208 0.806
## stop                 -0.837  0.215 0.735
## sweep                -0.885     NA 0.788
## swim                 -0.887     NA 0.786
## swing (action)       -0.873     NA 0.762
## take                 -0.918     NA 0.867
## talk                 -0.912  0.215 0.866
## taste                -0.897     NA 0.826
## tear                 -0.906     NA 0.843
## think                -0.891     NA 0.818
## throw                -0.925     NA 0.865
## tickle               -0.823     NA 0.686
## touch                -0.904     NA 0.835
## wait                 -0.849  0.227 0.759
## wake                 -0.907     NA 0.839
## walk                 -0.877     NA 0.774
## wash                 -0.912     NA 0.841
## watch (action)       -0.892     NA 0.812
## wipe                 -0.881     NA 0.789
## wish                 -0.869  0.227 0.795
## work (action)        -0.877     NA 0.772
## write                -0.861     NA 0.764
## all gone             -0.732     NA 0.536
## asleep               -0.864     NA 0.754
## awake                -0.896     NA 0.811
## bad                  -0.762  0.216 0.616
## better               -0.877     NA 0.776
## big                  -0.897     NA 0.803
## black                -0.838     NA 0.712
## blue                 -0.776     NA 0.632
## broken               -0.885     NA 0.787
## brown                -0.840     NA 0.722
## careful              -0.894     NA 0.801
## clean (description)  -0.919     NA 0.846
## cold                 -0.870     NA 0.757
## cute                 -0.796     NA 0.641
## dark                 -0.871     NA 0.759
## dirty                -0.889     NA 0.791
## dry (description)    -0.900     NA 0.810
## empty                -0.842     NA 0.709
## fast                 -0.907     NA 0.823
## fine                 -0.850     NA 0.731
## first                -0.892     NA 0.813
## full                 -0.896     NA 0.810
## gentle               -0.781     NA 0.610
## good                 -0.828     NA 0.706
## green                -0.819     NA 0.701
## happy                -0.838     NA 0.702
## hard                 -0.919     NA 0.849
## heavy                -0.914     NA 0.837
## high                 -0.890     NA 0.792
## hot                  -0.759     NA 0.576
## hungry               -0.879     NA 0.784
## hurt                 -0.878     NA 0.783
## last                 -0.898     NA 0.827
## little (description) -0.923     NA 0.853
## long                 -0.920     NA 0.856
## loud                 -0.900     NA 0.812
## mad                  -0.854     NA 0.750
## naughty              -0.689     NA 0.479
## new                  -0.898     NA 0.810
## nice                 -0.795     NA 0.640
## noisy                -0.858     NA 0.738
## old                  -0.873     NA 0.766
## orange (description) -0.816     NA 0.679
## poor                 -0.812     NA 0.675
## pretty               -0.799     NA 0.642
## quiet                -0.901     NA 0.820
## red                  -0.822     NA 0.703
## sad                  -0.890     NA 0.792
## scared               -0.890     NA 0.798
## sick                 -0.898     NA 0.815
## sleepy               -0.844     NA 0.716
## slow                 -0.895     NA 0.811
## soft                 -0.872     NA 0.761
## sticky               -0.860     NA 0.740
## stuck                -0.797     NA 0.634
## thirsty              -0.874     NA 0.771
## tiny                 -0.860     NA 0.741
## tired                -0.914     NA 0.848
## wet                  -0.884     NA 0.783
## white                -0.842     NA 0.715
## windy                -0.875     NA 0.766
## yellow               -0.776     NA 0.635
## yucky                -0.582 -0.208 0.389
## 
## Rotated SS loadings:  343.784 7.129 
## 
## Factor correlations: 
## 
##       F1    F2
## F1 1.000 0.032
## F2 0.032 1.000
anova(m4, m1)
## 
## Model 1: mirt(data = Vocab_short, model = 1, itemtype = "2PL")
## Model 2: mirt(data = Vocab_short, model = 2, itemtype = "2PL", technical = list(NCYCLES = 4000))
Vocab_short %>%
  mutate(
    Raw = rowSums(.[,1:478]), 
    Theta1 = fscores(m4)[,1], 
    Theta2 = fscores(m4)[,2]
  ) %>%
  dplyr::select(Raw, Theta1, Theta2) %>%
  ggpairs()

Second factor doesn’t look like it’s doing much work.

model.1 <- mirt.model('
                      F1 = 1 - 312
                      F2 = 313 - 478
                      COV=F1*F2')

#m5 <- mirt(Vocab_short, model.1, "2PL")


#summary(m5)

#saveRDS(m5, "vocab_output/m5.rds")
m5 <-  readRDS("vocab_output/m5.rds")
anova(m5, m1)
## 
## Model 1: mirt(data = Vocab_short, model = 1, itemtype = "2PL")
## Model 2: mirt(data = Vocab_short, model = model.1, itemtype = "2PL")
Vocab_short %>%
  mutate(
    Raw = rowSums(.[,1:478]), 
    Theta1 = fscores(m5)[,1], 
    Theta2 = fscores(m5)[,2]
  ) %>%
  dplyr::select(Raw, Theta1, Theta2) %>%
  ggpairs()

Vocab_with_predictors <- Admin %>%
  dplyr::select(data_id, age, ethnicity, sex, mom_ed) %>%
  mutate(
    female = ifelse(sex=="Female", yes=1, no=0),
   age_y = ifelse(age < 25, yes=1, no=0),
   college_grad = ifelse(mom_ed %in% c("College", "Some Graduate",  "Some Graduate"), yes=1, no=0)
   ) %>%
  right_join(., Vocab_short_with_ids, by="data_id")
Vocab_with_predictors %>%
  summarise(
    age_missing = sum(is.na(age)), 
    ethnicity_missing = sum(is.na(ethnicity)), # Some ethnicity variables missing. 
    sex_missing = sum(is.na(sex)), 
    college_grad = sum(is.na(college_grad))
  )
table(Vocab_with_predictors$age)
## 
##  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
## 305 271 442 327 273 203 200 261 569 324 180 194 145 197 295
table(Vocab_with_predictors$ethnicity)
## 
##    Asian    Black    Other    White Hispanic 
##       67      222       93     2202      131
table(Vocab_with_predictors$sex)
## 
## Female   Male  Other 
##   1374   1413      0
table(Vocab_with_predictors$college_grad)
## 
##    0    1 
## 3154 1032
#Vocab_short2 <- data.frame(Vocab_short) 

#dif <- lordif(Vocab_short2, 
#              Vocab_with_predictors$female,
#              criterion="Chisqr", 
#              alpha = .01)

#saveRDS(dif, "vocab_output/dif.rds")
dif  <- readRDS("vocab_output/dif.rds")
dif
## Call:
## lordif(resp.data = Vocab_short2, group = Vocab_with_predictors$female, 
##     criterion = "Chisqr", alpha = 0.01)
## 
##   Number of DIF groups: 2 
## 
##   Number of items flagged for DIF: 111 of 478 
## 
##   Items flagged: 8, 24, 25, 26, 28, 33, 34, 38, 39, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 60, 65, 66, 72, 125, 135, 144, 146, 148, 151, 155, 157, 163, 164, 168, 169, 170, 174, 175, 176, 183, 186, 192, 194, 195, 198, 200, 201, 204, 205, 210, 212, 214, 216, 217, 222, 225, 226, 230, 234, 241, 246, 250, 259, 262, 263, 269, 270, 282, 284, 285, 288, 289, 290, 295, 296, 297, 303, 305, 309, 317, 321, 324, 329, 331, 334, 337, 344, 353, 358, 360, 362, 368, 385, 387, 404, 409, 415, 418, 421, 423, 424, 429, 432, 434, 440, 441, 442, 460 
## 
##   Number of iterations for purification: 3 of 10 
## 
##   Detection criterion: Chisqr 
## 
##   Threshold: alpha = 0.01 
## 
##     item ncat  chi12  chi13  chi23
## 1      1    2 0.0266 0.0673 0.4878
## 2      2    2 0.1171 0.1625 0.2776
## 3      3    2 0.7516 0.8709 0.6747
## 4      4    2 0.8788 0.2822 0.1133
## 5      5    2 0.5130 0.1179 0.0498
## 6      6    2 0.6330 0.5192 0.2980
## 7      7    2 0.4475 0.7000 0.7118
## 8      8    2 0.0000 0.0002 0.7343
## 9      9    2 0.3965 0.5430 0.4785
## 10    10    2 0.1645 0.1413 0.1592
## 11    11    2 0.0550 0.1040 0.3578
## 12    12    2 0.5432 0.7461 0.6420
## 13    13    2 0.0964 0.2507 0.9663
## 14    14    2 0.1302 0.2948 0.6961
## 15    15    2 0.0525 0.1448 0.7442
## 16    16    2 0.4042 0.5678 0.5090
## 17    17    2 0.3617 0.3204 0.2294
## 18    18    2 0.6109 0.7630 0.5953
## 19    19    2 0.0190 0.0634 0.8920
## 20    20    2 0.0178 0.0367 0.3190
## 21    21    2 0.4410 0.7275 0.8367
## 22    22    2 0.2214 0.3948 0.5464
## 23    23    2 0.7781 0.8890 0.6929
## 24    24    2 0.0001 0.0003 0.2604
## 25    25    2 0.0000 0.0001 0.5059
## 26    26    2 0.0066 0.0144 0.2949
## 27    27    2 0.0705 0.1486 0.4619
## 28    28    2 0.0001 0.0006 0.5662
## 29    29    2 0.3039 0.5675 0.7827
## 30    30    2 0.5847 0.1767 0.0751
## 31    31    2 0.6821 0.3770 0.1818
## 32    32    2 0.0252 0.0614 0.4494
## 33    33    2 0.0025 0.0100 0.7622
## 34    34    2 0.0053 0.0199 0.7995
## 35    35    2 0.1252 0.3084 0.9674
## 36    36    2 0.5152 0.7326 0.6557
## 37    37    2 0.7115 0.0750 0.0247
## 38    38    2 0.0005 0.0023 0.8544
## 39    39    2 0.0088 0.0313 0.7903
## 40    40    2 0.1459 0.3305 0.7525
## 41    41    2 0.3774 0.6350 0.7195
## 42    42    2 0.0124 0.0200 0.2117
## 43    43    2 0.2964 0.5679 0.8392
## 44    44    2 0.0023 0.0082 0.6064
## 45    45    2 0.0007 0.0029 0.6916
## 46    46    2 0.0000 0.0000 0.2070
## 47    47    2 0.0000 0.0000 0.2261
## 48    48    2 0.0003 0.0009 0.3419
## 49    49    2 0.0000 0.0000 0.3984
## 50    50    2 0.0000 0.0000 0.1480
## 51    51    2 0.0000 0.0000 0.2213
## 52    52    2 0.7488 0.8881 0.7136
## 53    53    2 0.0000 0.0000 0.1354
## 54    54    2 0.0000 0.0000 0.0705
## 55    55    2 0.0000 0.0000 0.0869
## 56    56    2 0.0002 0.0005 0.2666
## 57    57    2 0.0000 0.0000 0.6035
## 58    58    2 0.6402 0.7805 0.5986
## 59    59    2 0.4557 0.0392 0.0149
## 60    60    2 0.0000 0.0000 0.4693
## 61    61    2 0.3072 0.5920 0.9398
## 62    62    2 0.2248 0.2228 0.2162
## 63    63    2 0.2580 0.2861 0.2687
## 64    64    2 0.8294 0.8824 0.6517
## 65    65    2 0.0005 0.0005 0.0873
## 66    66    2 0.0000 0.0000 0.0649
## 67    67    2 0.1777 0.0949 0.0889
## 68    68    2 0.4196 0.5973 0.5380
## 69    69    2 0.7198 0.9373 0.9765
## 70    70    2 0.1695 0.3889 0.9675
## 71    71    2 0.8038 0.8027 0.5388
## 72    72    2 0.0015 0.0042 0.3612
## 73    73    2 0.5787 0.8435 0.8578
## 74    74    2 0.7142 0.7153 0.4641
## 75    75    2 0.1701 0.3868 0.8952
## 76    76    2 0.5404 0.7423 0.6381
## 77    77    2 0.8005 0.4493 0.2152
## 78    78    2 0.1159 0.2717 0.7131
## 79    79    2 0.3021 0.5809 0.8840
## 80    80    2 0.1755 0.1830 0.2115
## 81    81    2 0.3079 0.0445 0.0228
## 82    82    2 0.8004 0.3604 0.1597
## 83    83    2 0.4070 0.0530 0.0227
## 84    84    2 0.9430 0.8513 0.5735
## 85    85    2 0.6526 0.5937 0.3593
## 86    86    2 0.4105 0.0700 0.0312
## 87    87    2 0.0474 0.0201 0.0488
## 88    88    2 0.0922 0.2418 0.9512
## 89    89    2 0.1912 0.3387 0.4992
## 90    90    2 0.4486 0.5036 0.3718
## 91    91    2 0.0801 0.1548 0.4135
## 92    92    2 0.7874 0.2961 0.1244
## 93    93    2 0.6095 0.5136 0.3005
## 94    94    2 0.0622 0.1579 0.6442
## 95    95    2 0.0739 0.1126 0.2786
## 96    96    2 0.3679 0.2381 0.1513
## 97    97    2 0.0430 0.1188 0.6837
## 98    98    2 0.4933 0.7284 0.6852
## 99    99    2 0.1391 0.1002 0.1202
## 100  100    2 0.7857 0.9031 0.7186
## 101  101    2 0.1369 0.3249 0.8489
## 102  102    2 0.3342 0.6271 0.9823
## 103  103    2 0.1543 0.2616 0.4191
## 104  104    2 0.3485 0.6429 0.9449
## 105  105    2 0.4592 0.3271 0.1940
## 106  106    2 0.5400 0.3838 0.2147
## 107  107    2 0.3592 0.6146 0.7154
## 108  108    2 0.7845 0.8099 0.5559
## 109  109    2 0.8039 0.1311 0.0454
## 110  110    2 0.5984 0.8074 0.6980
## 111  111    2 0.9152 0.4213 0.1900
## 112  112    2 0.3711 0.6602 0.8619
## 113  113    2 0.7638 0.8752 0.6746
## 114  114    2 0.3199 0.5853 0.7750
## 115  115    2 0.4108 0.6925 0.8090
## 116  116    2 0.2022 0.4222 0.7540
## 117  117    2 0.2383 0.3984 0.5024
## 118  118    2 0.4433 0.6456 0.5918
## 119  119    2 0.9989 0.2738 0.1075
## 120  120    2 0.7058 0.3492 0.1613
## 121  121    2 0.0629 0.1766 0.9271
## 122  122    2 0.4238 0.6291 0.5921
## 123  123    2 0.3954 0.0943 0.0455
## 124  124    2 0.0618 0.1269 0.4237
## 125  125    2 0.0012 0.0042 0.4759
## 126  126    2 0.0647 0.1747 0.7827
## 127  127    2 0.1378 0.2740 0.5340
## 128  128    2 0.8804 0.7553 0.4630
## 129  129    2 0.5702 0.3737 0.1995
## 130  130    2 0.0854 0.2111 0.6963
## 131  131    2 0.0914 0.0410 0.0599
## 132  132    2 0.3352 0.5716 0.6631
## 133  133    2 0.1768 0.3334 0.5417
## 134  134    2 0.1205 0.2946 0.8549
## 135  135    2 0.0068 0.0257 0.9455
## 136  136    2 0.7898 0.4479 0.2153
## 137  137    2 0.1673 0.2007 0.2533
## 138  138    2 0.1894 0.3976 0.7264
## 139  139    2 0.7862 0.9573 0.9069
## 140  140    2 0.3328 0.1147 0.0655
## 141  141    2 0.2959 0.4794 0.5388
## 142  142    2 0.2528 0.4631 0.6304
## 143  143    2 0.7010 0.6893 0.4398
## 144  144    2 0.0000 0.0000 0.2465
## 145  145    2 0.6366 0.8407 0.7250
## 146  146    2 0.0000 0.0000 0.8395
## 147  147    2 0.2825 0.2892 0.2495
## 148  148    2 0.0003 0.0014 0.8901
## 149  149    2 0.1493 0.0647 0.0653
## 150  150    2 0.0376 0.1076 0.7098
## 151  151    2 0.0000 0.0000 0.0057
## 152  152    2 0.2857 0.2120 0.1613
## 153  153    2 0.7495 0.5190 0.2714
## 154  154    2 0.4199 0.1515 0.0772
## 155  155    2 0.0000 0.0001 0.5549
## 156  156    2 0.6282 0.8876 0.9500
## 157  157    2 0.0000 0.0000 0.2909
## 158  158    2 0.1518 0.3258 0.6637
## 159  159    2 0.8050 0.8600 0.6237
## 160  160    2 0.0568 0.0993 0.3198
## 161  161    2 0.0798 0.1137 0.2583
## 162  162    2 0.0671 0.1861 0.9226
## 163  163    2 0.0000 0.0000 0.2339
## 164  164    2 0.0001 0.0002 0.3577
## 165  165    2 0.2794 0.5288 0.7471
## 166  166    2 0.1742 0.3970 0.9758
## 167  167    2 0.0213 0.0234 0.1374
## 168  168    2 0.0000 0.0000 0.1126
## 169  169    2 0.0000 0.0000 0.6868
## 170  170    2 0.0000 0.0000 0.2321
## 171  171    2 0.2186 0.0192 0.0114
## 172  172    2 0.1721 0.3726 0.7406
## 173  173    2 0.4417 0.7374 0.8947
## 174  174    2 0.0000 0.0000 0.2456
## 175  175    2 0.0000 0.0000 0.2660
## 176  176    2 0.0006 0.0008 0.1229
## 177  177    2 0.0165 0.0159 0.1115
## 178  178    2 0.0592 0.0126 0.0228
## 179  179    2 0.1187 0.2765 0.7124
## 180  180    2 0.1554 0.1233 0.1410
## 181  181    2 0.0187 0.0469 0.4410
## 182  182    2 0.0741 0.2024 0.9433
## 183  183    2 0.0000 0.0000 0.1613
## 184  184    2 0.2201 0.3562 0.4538
## 185  185    2 0.7847 0.6828 0.4067
## 186  186    2 0.0004 0.0020 0.8502
## 187  187    2 0.0634 0.1003 0.2827
## 188  188    2 0.0156 0.0439 0.5231
## 189  189    2 0.0181 0.0612 0.9684
## 190  190    2 0.8511 0.8384 0.5733
## 191  191    2 0.0156 0.0473 0.6166
## 192  192    2 0.0000 0.0000 0.0445
## 193  193    2 0.0130 0.0456 0.9859
## 194  194    2 0.0040 0.0109 0.3846
## 195  195    2 0.0004 0.0015 0.4653
## 196  196    2 0.0498 0.1459 0.9922
## 197  197    2 0.0129 0.0451 0.8919
## 198  198    2 0.0000 0.0000 0.0429
## 199  199    2 0.0354 0.0279 0.0983
## 200  200    2 0.0026 0.0098 0.6454
## 201  201    2 0.0304 0.0031 0.0087
## 202  202    2 0.9316 0.9624 0.7925
## 203  203    2 0.0381 0.0962 0.5362
## 204  204    2 0.0000 0.0000 0.0472
## 205  205    2 0.3348 0.0138 0.0057
## 206  206    2 0.0160 0.0280 0.2446
## 207  207    2 0.0397 0.1203 0.9616
## 208  208    2 0.0134 0.0279 0.3065
## 209  209    2 0.0423 0.1123 0.6181
## 210  210    2 0.0009 0.0036 0.7090
## 211  211    2 0.8193 0.5863 0.3135
## 212  212    2 0.0013 0.0031 0.2749
## 213  213    2 0.5733 0.8039 0.7296
## 214  214    2 0.0134 0.0014 0.0082
## 215  215    2 0.7811 0.9559 0.9093
## 216  216    2 0.0016 0.0057 0.5180
## 217  217    2 0.0000 0.0000 0.1154
## 218  218    2 0.1357 0.1263 0.1668
## 219  219    2 0.6807 0.9094 0.8858
## 220  220    2 0.0441 0.1111 0.5583
## 221  221    2 0.7777 0.8553 0.6293
## 222  222    2 0.0004 0.0001 0.0081
## 223  223    2 0.6191 0.8643 0.8330
## 224  224    2 0.4885 0.7280 0.6937
## 225  225    2 0.0000 0.0000 0.4532
## 226  226    2 0.0000 0.0000 0.5346
## 227  227    2 0.3403 0.6183 0.8194
## 228  228    2 0.2969 0.4700 0.5160
## 229  229    2 0.3603 0.6578 0.9761
## 230  230    2 0.0056 0.0215 0.9153
## 231  231    2 0.7601 0.9215 0.7910
## 232  232    2 0.7053 0.1869 0.0731
## 233  233    2 0.4324 0.6624 0.6489
## 234  234    2 0.0000 0.0000 0.3371
## 235  235    2 0.0171 0.0357 0.3229
## 236  236    2 0.2871 0.4164 0.4314
## 237  237    2 0.0443 0.1317 0.9221
## 238  238    2 0.6077 0.8387 0.7663
## 239  239    2 0.6842 0.4082 0.2022
## 240  240    2 0.0788 0.2122 0.9142
## 241  241    2 0.0001 0.0004 0.8649
## 242  242    2 0.5664 0.6408 0.4538
## 243  243    2 0.0470 0.0998 0.4151
## 244  244    2 0.3247 0.5930 0.7838
## 245  245    2 0.3494 0.6454 0.9951
## 246  246    2 0.0000 0.0000 0.6509
## 247  247    2 0.9307 0.9436 0.7418
## 248  248    2 0.0418 0.1023 0.5189
## 249  249    2 0.0907 0.2282 0.7607
## 250  250    2 0.1836 0.0128 0.0084
## 251  251    2 0.2985 0.3166 0.2695
## 252  252    2 0.4481 0.4534 0.3157
## 253  253    2 0.2749 0.5501 0.9554
## 254  254    2 0.4554 0.5218 0.3884
## 255  255    2 0.9812 0.7075 0.4056
## 256  256    2 0.5209 0.4820 0.3061
## 257  257    2 0.7480 0.2012 0.0781
## 258  258    2 0.0984 0.0811 0.1300
## 259  259    2 0.0015 0.0039 0.3013
## 260  260    2 0.2585 0.3156 0.3101
## 261  261    2 0.0340 0.0861 0.5221
## 262  262    2 0.0000 0.0000 0.2421
## 263  263    2 0.0001 0.0005 0.6299
## 264  264    2 0.3344 0.3154 0.2408
## 265  265    2 0.4366 0.6972 0.7334
## 266  266    2 0.0449 0.1000 0.4451
## 267  267    2 0.6849 0.1839 0.0726
## 268  268    2 0.6215 0.6153 0.3937
## 269  269    2 0.0000 0.0000 0.6001
## 270  270    2 0.0028 0.0090 0.4962
## 271  271    2 0.0659 0.0754 0.1811
## 272  272    2 0.3203 0.4273 0.3985
## 273  273    2 0.3278 0.5699 0.6830
## 274  274    2 0.0415 0.1248 0.9328
## 275  275    2 0.0142 0.0306 0.3251
## 276  276    2 0.9249 0.9924 0.9363
## 277  277    2 0.8070 0.8497 0.6059
## 278  278    2 0.8227 0.9254 0.7461
## 279  279    2 0.1739 0.2112 0.2615
## 280  280    2 0.2475 0.5030 0.8474
## 281  281    2 0.0768 0.2051 0.8480
## 282  282    2 0.0008 0.0011 0.1349
## 283  283    2 0.2858 0.3654 0.3498
## 284  284    2 0.0027 0.0099 0.6256
## 285  285    2 0.0002 0.0008 0.8235
## 286  286    2 0.3892 0.6631 0.7771
## 287  287    2 0.7100 0.7836 0.5545
## 288  288    2 0.0000 0.0000 0.2633
## 289  289    2 0.0000 0.0000 0.7190
## 290  290    2 0.0000 0.0000 0.7221
## 291  291    2 0.0457 0.1207 0.6258
## 292  292    2 0.7380 0.8708 0.6847
## 293  293    2 0.8223 0.6474 0.3654
## 294  294    2 0.3296 0.6100 0.8451
## 295  295    2 0.0000 0.0000 0.4965
## 296  296    2 0.0054 0.0022 0.0349
## 297  297    2 0.0000 0.0000 0.7308
## 298  298    2 0.7214 0.0345 0.0102
## 299  299    2 0.0687 0.1763 0.6915
## 300  300    2 0.2689 0.4653 0.5788
## 301  301    2 0.0432 0.0880 0.3789
## 302  302    2 0.0222 0.0659 0.6474
## 303  303    2 0.0000 0.0000 0.2905
## 304  304    2 0.9967 0.4211 0.1884
## 305  305    2 0.0000 0.0000 0.2777
## 306  306    2 0.0903 0.2025 0.5685
## 307  307    2 0.0730 0.0339 0.0594
## 308  308    2 0.9839 0.7072 0.4053
## 309  309    2 0.0017 0.0063 0.5848
## 310  310    2 0.1816 0.2489 0.3181
## 311  311    2 0.6609 0.8180 0.6473
## 312  312    2 0.1195 0.2444 0.5304
## 313  313    2 0.2444 0.4203 0.5382
## 314  314    2 0.8237 0.9676 0.8988
## 315  315    2 0.0281 0.0756 0.5577
## 316  316    2 0.7130 0.9280 0.9052
## 317  317    2 0.0000 0.0000 0.3851
## 318  318    2 0.8766 0.7978 0.5132
## 319  319    2 0.6395 0.0812 0.0284
## 320  320    2 0.1090 0.0830 0.1206
## 321  321    2 0.0001 0.0001 0.0452
## 322  322    2 0.0600 0.1421 0.5447
## 323  323    2 0.0355 0.0730 0.3668
## 324  324    2 0.0010 0.0020 0.2037
## 325  325    2 0.1296 0.2216 0.3973
## 326  326    2 0.3085 0.1477 0.0949
## 327  327    2 0.6275 0.3266 0.1570
## 328  328    2 0.4085 0.5311 0.4453
## 329  329    2 0.0025 0.0095 0.7003
## 330  330    2 0.3655 0.6533 0.8569
## 331  331    2 0.0034 0.0119 0.6128
## 332  332    2 0.0459 0.0341 0.0960
## 333  333    2 0.3809 0.1567 0.0865
## 334  334    2 0.0000 0.0000 0.2349
## 335  335    2 0.6037 0.5307 0.3179
## 336  336    2 0.0147 0.0479 0.7307
## 337  337    2 0.0000 0.0000 0.2206
## 338  338    2 0.4424 0.5647 0.4572
## 339  339    2 0.1203 0.0694 0.0874
## 340  340    2 0.0420 0.1251 0.8771
## 341  341    2 0.1285 0.2950 0.7166
## 342  342    2 0.5346 0.5154 0.3323
## 343  343    2 0.1454 0.3210 0.6960
## 344  344    2 0.0000 0.0000 0.0325
## 345  345    2 0.2251 0.4505 0.7252
## 346  346    2 0.8677 0.7598 0.4701
## 347  347    2 0.8733 0.6829 0.3905
## 348  348    2 0.0462 0.0515 0.1619
## 349  349    2 0.2156 0.3572 0.4685
## 350  350    2 0.2339 0.0924 0.0674
## 351  351    2 0.7691 0.1210 0.0419
## 352  352    2 0.0294 0.0880 0.7332
## 353  353    2 0.0000 0.0000 0.1584
## 354  354    2 0.3548 0.1446 0.0827
## 355  355    2 0.6172 0.2579 0.1167
## 356  356    2 0.2951 0.2988 0.2507
## 357  357    2 0.8159 0.8779 0.6497
## 358  358    2 0.0029 0.0119 0.8985
## 359  359    2 0.6260 0.7082 0.5012
## 360  360    2 0.0007 0.0032 0.7519
## 361  361    2 0.9845 0.9411 0.7280
## 362  362    2 0.0023 0.0079 0.5451
## 363  363    2 0.8298 0.6846 0.3989
## 364  364    2 0.8945 0.8055 0.5194
## 365  365    2 0.2580 0.1502 0.1130
## 366  366    2 0.8960 0.9061 0.6712
## 367  367    2 0.6710 0.5080 0.2786
## 368  368    2 0.0037 0.0131 0.6240
## 369  369    2 0.5703 0.2811 0.1366
## 370  370    2 0.8847 0.3299 0.1383
## 371  371    2 0.2191 0.0462 0.0312
## 372  372    2 0.9515 0.6109 0.3217
## 373  373    2 0.0478 0.0823 0.2994
## 374  374    2 0.1485 0.2528 0.4155
## 375  375    2 0.0857 0.2284 0.9823
## 376  376    2 0.1042 0.2666 0.9516
## 377  377    2 0.0923 0.1731 0.4120
## 378  378    2 0.0851 0.1406 0.3276
## 379  379    2 0.4679 0.4877 0.3404
## 380  380    2 0.9600 0.9939 0.9216
## 381  381    2 0.3335 0.2766 0.2009
## 382  382    2 0.9565 0.9222 0.6901
## 383  383    2 0.5965 0.8641 0.9132
## 384  384    2 0.6203 0.1137 0.0428
## 385  385    2 0.0004 0.0021 0.9885
## 386  386    2 0.1962 0.4254 0.8432
## 387  387    2 0.0051 0.0176 0.6253
## 388  388    2 0.5390 0.6034 0.4263
## 389  389    2 0.8955 0.4012 0.1786
## 390  390    2 0.0509 0.0147 0.0313
## 391  391    2 0.3744 0.4332 0.3471
## 392  392    2 0.1750 0.3661 0.6797
## 393  393    2 0.0318 0.0921 0.6897
## 394  394    2 0.2238 0.4675 0.8405
## 395  395    2 0.5672 0.5034 0.3065
## 396  396    2 0.0921 0.1011 0.1863
## 397  397    2 0.8707 0.6509 0.3616
## 398  398    2 0.0291 0.0920 0.9202
## 399  399    2 0.5372 0.3644 0.2006
## 400  400    2 0.4096 0.0953 0.0449
## 401  401    2 0.8364 0.6353 0.3525
## 402  402    2 0.2206 0.1261 0.1041
## 403  403    2 0.8174 0.6114 0.3347
## 404  404    2 0.0000 0.0000 0.0435
## 405  405    2 0.1942 0.3795 0.6153
## 406  406    2 0.8774 0.9874 0.9686
## 407  407    2 0.8814 0.9430 0.7577
## 408  408    2 0.7405 0.6891 0.4255
## 409  409    2 0.0097 0.0091 0.0991
## 410  410    2 0.1736 0.3435 0.5927
## 411  411    2 0.6732 0.7008 0.4653
## 412  412    2 0.3861 0.6708 0.8278
## 413  413    2 0.1281 0.1790 0.2888
## 414  414    2 0.5513 0.1420 0.0596
## 415  415    2 0.0014 0.0036 0.3065
## 416  416    2 0.4418 0.7393 0.9104
## 417  417    2 0.8449 0.6712 0.3836
## 418  418    2 0.0024 0.0065 0.3620
## 419  419    2 0.1674 0.1874 0.2297
## 420  420    2 0.5368 0.8252 0.9568
## 421  421    2 0.0041 0.0096 0.3045
## 422  422    2 0.0464 0.0723 0.2568
## 423  423    2 0.0009 0.0012 0.1275
## 424  424    2 0.0034 0.0095 0.3953
## 425  425    2 0.1539 0.3418 0.7351
## 426  426    2 0.0635 0.0739 0.1836
## 427  427    2 0.1225 0.1802 0.3073
## 428  428    2 0.5161 0.7914 0.8299
## 429  429    2 0.0030 0.0082 0.3776
## 430  430    2 0.0914 0.1897 0.4905
## 431  431    2 0.4310 0.7324 0.9584
## 432  432    2 0.0001 0.0002 0.1516
## 433  433    2 0.3358 0.1626 0.0999
## 434  434    2 0.0000 0.0002 0.7290
## 435  435    2 0.9966 0.2417 0.0919
## 436  436    2 0.0187 0.0307 0.2299
## 437  437    2 0.5523 0.5222 0.3307
## 438  438    2 0.5612 0.7273 0.5843
## 439  439    2 0.0739 0.1493 0.4352
## 440  440    2 0.0005 0.0021 0.6279
## 441  441    2 0.0004 0.0006 0.1498
## 442  442    2 0.0013 0.0028 0.2264
## 443  443    2 0.0528 0.0347 0.0848
## 444  444    2 0.9557 0.3457 0.1453
## 445  445    2 0.4518 0.1748 0.0874
## 446  446    2 0.1811 0.1593 0.1697
## 447  447    2 0.0591 0.1556 0.6910
## 448  448    2 0.8871 0.9691 0.8363
## 449  449    2 0.7455 0.8322 0.6088
## 450  450    2 0.3165 0.5978 0.8734
## 451  451    2 0.0123 0.0183 0.1875
## 452  452    2 0.9642 0.9433 0.7348
## 453  453    2 0.4879 0.6769 0.5843
## 454  454    2 0.5848 0.1398 0.0565
## 455  455    2 0.2701 0.4563 0.5526
## 456  456    2 0.0952 0.2457 0.8789
## 457  457    2 0.9442 0.0574 0.0169
## 458  458    2 0.7454 0.5484 0.2951
## 459  459    2 0.4778 0.6696 0.5849
## 460  460    2 0.0000 0.0000 0.0341
## 461  461    2 0.0608 0.0407 0.0893
## 462  462    2 0.1022 0.2031 0.4721
## 463  463    2 0.4678 0.7394 0.7818
## 464  464    2 0.8959 0.5430 0.2725
## 465  465    2 0.2782 0.3377 0.3184
## 466  466    2 0.0151 0.0428 0.5271
## 467  467    2 0.2540 0.4811 0.6867
## 468  468    2 0.2151 0.0244 0.0152
## 469  469    2 0.8160 0.6523 0.3710
## 470  470    2 0.1365 0.3097 0.7210
## 471  471    2 0.9864 0.1457 0.0497
## 472  472    2 0.4063 0.0280 0.0110
## 473  473    2 0.0681 0.0625 0.1364
## 474  474    2 0.0397 0.0298 0.0946
## 475  475    2 0.9568 0.9799 0.8462
## 476  476    2 0.2046 0.2540 0.2874
## 477  477    2 0.3030 0.5583 0.7460
## 478  478    2 0.7591 0.0893 0.0295
plot(dif)

A lot o items were flagged, but given the relatively small values of the difference between initial and pure variables I’m not overly concerned.

#dif2 <- lordif(Vocab_short2, 
#              Vocab_with_predictors$college_grad,
#              criterion="Chisqr", 
#              alpha = .01)
#saveRDS(dif2, "vocab_output/dif2.rds")
dif2  <- readRDS("vocab_output/dif2.rds")
plot(dif2)