What do you give to a sick lemon?
Lemon aid!
What do you call a man with a rubber toe?
Roberto!
The reaction causing the heat production may be one where some organic material intersects with the atmosphere or oxygen, such as woollen fibers in bales.
The main components of this process are shown below.
From the compartment diagram and assumptions, we can state our word equation for the balance law as follows:
\[ \small{ \begin{aligned} \begin{Bmatrix} \mathrm{rate~of~change~of} \\ \mathrm{heat~content} \end{Bmatrix} &= \begin{Bmatrix} \mathrm{rate~heat~generated} \\ \mathrm{by~reaction} \end{Bmatrix} -\begin{Bmatrix} \mathrm{rate~heat~lost} \\ \mathrm{to~surroundings} \end{Bmatrix} \end{aligned} } \]
\[ \small{ \begin{Bmatrix} \mathrm{rate \, heat \, generated \, by} \\ \mathrm{reaction \, per \, unit \, volume} \end{Bmatrix} = k = \rho Q A e^{-E/(RT)} } \]
Rate of reaction (associated with rate of heat gain):
\[ \small{ \begin{Bmatrix} \mathrm{rate \, heat \, generated \, by} \\ \mathrm{reaction \, per \, unit \, volume} \end{Bmatrix} = k = \rho Q A e^{-E/(RT)} } \]
Rate of heat generated:
\[ \small{ k = \rho Q A e^{-E/(RT)} } \]
Rate of heat generated:
\[ \small{ \begin{Bmatrix} \mathrm{rate \, heat \, generated \, by} \\ \mathrm{reaction \, per \, unit \, volume} \end{Bmatrix} = \rho Q A e^{-E/(RT)} } \]
\( \left[\rho Q A \right] = \left(\frac{moles}{V}\right)\left(\frac{J}{moles}\right)\left(\frac{1}{sec}\right) = \frac{J}{sec\cdot V} \)
\( \left[\frac{E}{RT} \right] = \frac{\frac{J}{mole}}{\left(\frac{J}{K \cdot mole}\right)K} = \frac{\frac{J}{mole}}{\frac{J}{mole}} =1 \)
Recall from Ch9.2:
\[ \begin{Bmatrix} \mathrm{rate~of} \\ \mathrm{heat~loss} \end{Bmatrix} = hS(T - T_a) \]
Parameters:
From Ch9.2, the fundamental equation relating rate of change of heat to rate of change of temperature is
\[ Q = cm \frac{dT}{dt}= \rho Vc \frac{dT}{dt} \]
Parameters:
\[ \small{ \begin{aligned} \begin{Bmatrix} \mathrm{rate~of~change~of} \\ \mathrm{heat~content} \end{Bmatrix} &= \begin{Bmatrix} \mathrm{rate~heat~generated} \\ \mathrm{by~reaction} \end{Bmatrix} -\begin{Bmatrix} \mathrm{rate~heat~lost} \\ \mathrm{to~surroundings} \end{Bmatrix} \\ \\ \rho Vc \frac{dT}{dt} &= \rho V Q A e^{-E/(RT)} - hS(T - T_a) \end{aligned} } \]
\[ \rho V c\frac{dT}{dt} = \rho V Q A e^{-E/(RT)} - hS(T - T_a) \]
\[ \sigma \frac{d \theta}{dt} = \lambda e^{-1/\theta} - (\theta - \theta_a) \]
\[ \small{ \theta = \frac{RT}{E}, ~ \theta_a = \frac{RT_a}{E}, ~ \lambda = \frac{\rho A V Q R}{h S E}, ~\sigma = \frac{\rho V c}{h S}} \]
We have \[ \small{ \begin{aligned} \theta = \frac{RT}{E} &\Rightarrow T = \frac{E}{R}\theta \\ & \Rightarrow \frac{dT}{dt} = \frac{E}{R}\frac{d\theta}{dt} \\ &\Rightarrow \rho V Q A e^{-E/(RT)} = \rho V Q A e^{-1/\theta} \\ &\Rightarrow hS(T - T_a) = hS(E/R)(\theta - \theta_a) \end{aligned} } \]
Then \[ \small{ \begin{aligned} \rho V c\frac{dT}{dt} &= \rho V Q A e^{-E/(RT)} - hS(T - T_a) \\ \sigma \frac{d \theta}{dt} &= \lambda e^{-1/\theta} - (\theta - \theta_a) \end{aligned} } \]
\[ \small{ \begin{aligned} \rho V c\frac{dT}{dt} &= \rho V Q A e^{-E/(RT)} - hS(T - T_a) \\ \\ \sigma \frac{d\theta}{dt} &= \lambda e^{-1/\theta} - (\theta - \theta_a) \\ \\ \theta &= \frac{RT}{E}, \, \sigma = \frac{\rho V c}{h S}, \, \lambda = \frac{\rho A V Q R}{h S E} \end{aligned} } \]
Ch104Ex1 <- function(T) {
#T = time length in seconds for [0, T]
N <- 10000 #N is the number of time nodes
h <- T/N #Time step size in seconds
#System Parameters
sigma <- 1.0 #reaction speed
theta_a <- 0.2 #dimensionless ambient temp
L1<-2.84 #reaction efficiency
L2<-2.85 #reaction efficiency
L3<-2.86 #reaction efficiency
#Slope functions for ODEs
f1<-function(x) {L1*exp(-1/x)-(x-theta_a)}
f2<-function(x) {L2*exp(-1/x)-(x-theta_a)}
f3<-function(x) {L3*exp(-1/x)-(x-theta_a)}
Ch104Ex1(300)