library(wordbankr)
## Warning: replacing previous import 'vctrs::data_frame' by 'tibble::data_frame'
## when loading 'dplyr'
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2 ✓ purrr 0.3.3
## ✓ tibble 3.1.4 ✓ dplyr 1.0.1
## ✓ tidyr 1.0.0 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.4.0
## Warning: package 'ggplot2' was built under R version 3.6.2
## Warning: package 'tibble' was built under R version 3.6.2
## Warning: package 'dplyr' was built under R version 3.6.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(lme4)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
library(lmerTest)
## Warning: package 'lmerTest' was built under R version 3.6.2
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
Whether exists a relationship between the children socio-demographic characteristics and the likehood that produce gestures between 8 and 18 months.
Completely null mode, no effect of random effects (This model assumes independence of variables, that is not true! )
##
## Call:
## glm(formula = outcome ~ 1, family = binomial(link = "logit"),
## data = data_hlm, na.action = na.omit)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.114 -1.114 -1.114 1.242 1.242
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.151109 0.007842 -19.27 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 90312 on 65414 degrees of freedom
## Residual deviance: 90312 on 65414 degrees of freedom
## AIC: 90314
##
## Number of Fisher Scoring iterations: 3
Negative coefficient means that is more likely not produce gestures in this particular sample.
##
## 0 1
## 35174 30241
Considering that data have certain kind of hierarchical structure, thus gestures production is nested in groups (children) or gestures are repeated by children
In sum, random intercept model considers that we expected that the probability to produce gestures change by children
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: outcome ~ 1 + (1 | data_id)
## Data: data_hlm
##
## AIC BIC logLik deviance df.resid
## 79769.9 79788.0 -39882.9 79765.9 65413
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.0860 -0.7656 -0.3683 0.8246 3.7946
##
## Random effects:
## Groups Name Variance Std.Dev.
## data_id (Intercept) 1.179 1.086
## Number of obs: 65415, groups: data_id, 1044
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.20237 0.03488 -5.802 6.54e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 1.0344021 1.1405077
## (Intercept) -0.2708193 -0.1340593
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: outcome ~ 1 + (1 | data_id) + (1 | type)
## Data: data_hlm
##
## AIC BIC logLik deviance df.resid
## 72304.2 72331.4 -36149.1 72298.2 65412
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -8.9373 -0.6668 -0.2588 0.7154 5.3823
##
## Random effects:
## Groups Name Variance Std.Dev.
## data_id (Intercept) 1.5393 1.2407
## type (Intercept) 0.7822 0.8844
## Number of obs: 65415, groups: data_id, 1044; type, 5
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.1027 0.3943 -0.261 0.794
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 1.1826765 1.3027949
## .sig02 0.5284464 1.9276817
## (Intercept) -1.0560033 0.8507078
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: outcome ~ 1 + age + mom_ed_num + minority + (1 | data_id) + (1 |
## type)
## Data: data_hlm
##
## AIC BIC logLik deviance df.resid
## 71420.5 71475.0 -35704.2 71408.5 65409
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -8.1358 -0.6643 -0.2561 0.7089 5.4561
##
## Random effects:
## Groups Name Variance Std.Dev.
## data_id (Intercept) 0.5591 0.7477
## type (Intercept) 0.7808 0.8836
## Number of obs: 65415, groups: data_id, 1044; type, 5
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.362895 0.423075 -10.312 <2e-16 ***
## age 0.339032 0.009181 36.926 <2e-16 ***
## mom_ed_num -0.038202 0.017890 -2.135 0.0327 *
## minority 0.043974 0.057189 0.769 0.4419
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) age mm_d_n
## age -0.266
## mom_ed_num -0.206 -0.036
## minority -0.040 -0.109 -0.116
0.4.0.0.0.0.0.0.0.0.1