setwd("C:/Users/RussellChan/OneDrive - University of Twente/2020_MSCA_IF/Conferences/2021_Conferences/Dutch Brain and Cognition/new")

##Packages##

#Import datasets and set factors for long-format of all datasets

#Russell's DFs
feedback_ALL <- read.csv("feedback_ALL.csv", sep = ",")
prep_ALL <- read.csv("prep_ALL.csv", sep = ",")
motor_ALL <- read.csv("motor_ALL.csv", sep = ",")

#Factor for prep
prep_ALL$Participant <- factor(prep_ALL$Participant)
prep_ALL$Time <- factor(prep_ALL$Time)
prep_ALL$Block <- factor(prep_ALL$Block)
prep_ALL$Channel <- factor(prep_ALL$Channel)
prep_ALL$Beta <- factor(prep_ALL$Beta)
#prep_ALL$RT <- factor(prep_ALL$RT)

#Factor for motor
motor_ALL$Participant <- factor(motor_ALL$Participant)
motor_ALL$Time <- factor(motor_ALL$Time)
motor_ALL$Block <- factor(motor_ALL$Block)
motor_ALL$Channel <- factor(motor_ALL$Channel)
motor_ALL$Beta <- factor(motor_ALL$Beta)
#motor_ALL$RT <- factor(motor_ALL$RT)

#Factor for Lpress
feedback_ALL$Participant <- factor(feedback_ALL$Participant)
feedback_ALL$Time <- factor(feedback_ALL$Time)
feedback_ALL$Block <- factor(feedback_ALL$Block)
feedback_ALL$Channel <- factor(feedback_ALL$Channel)
feedback_ALL$Beta <- factor(feedback_ALL$Beta)
#feedback_ALL$RT <- factor(feedback_ALL$RT)

#Filter frequencies

#Fliter Lpress Beta into 3
f_ALL_beta1 <- feedback_ALL %>% filter(Beta %in% c("beta1"))
f_ALL_beta2 <- feedback_ALL %>% filter(Beta %in% c("beta2"))
f_ALL_beta3 <- feedback_ALL %>% filter(Beta %in% c("beta3"))

#Fliter Prep Beta into 3
p_ALL_beta1 <- prep_ALL %>% filter(Beta %in% c("beta1"))
p_ALL_beta2 <- prep_ALL %>% filter(Beta %in% c("beta2"))
p_ALL_beta3 <- prep_ALL %>% filter(Beta %in% c("beta3"))

#Fliter Motor Beta into 3
m_ALL_beta1 <- motor_ALL %>% filter(Beta %in% c("beta1"))
m_ALL_beta2 <- motor_ALL %>% filter(Beta %in% c("beta2"))
m_ALL_beta3 <- motor_ALL %>% filter(Beta %in% c("beta3"))

#Prep models for each Beta frequency

m.p_ALL_beta1 <- lmer(ERDS ~ Time * Channel * Block + (1|Participant), data = p_ALL_beta1)
Anova(m.p_ALL_beta1)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##                       Chisq Df Pr(>Chisq)    
## Time               127.5310 25  1.019e-15 ***
## Channel              8.9164  3    0.03042 *  
## Block               20.6969  1  5.380e-06 ***
## Time:Channel        36.1055 75    0.99996    
## Time:Block          61.2863 25  6.936e-05 ***
## Channel:Block       28.3364  3  3.087e-06 ***
## Time:Channel:Block  18.2424 75    1.00000    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m.f_ALL_beta1)

m.p_ALL_beta2 <- lmer(ERDS ~ Time * Channel * Block + (1|Participant), data = p_ALL_beta2)
Anova(m.p_ALL_beta2)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##                      Chisq Df Pr(>Chisq)    
## Time               109.296 25  1.632e-12 ***
## Channel              3.752  3  0.2895188    
## Block               14.541  1  0.0001371 ***
## Time:Channel        31.128 75  0.9999983    
## Time:Block          97.691 25  1.532e-10 ***
## Channel:Block       15.225  3  0.0016342 ** 
## Time:Channel:Block  21.434 75  1.0000000    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m.f_ALL_beta2)

m.p_ALL_beta3 <- lmer(ERDS ~ Time * Channel * Block + (1|Participant), data = p_ALL_beta3)
Anova(m.p_ALL_beta3)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##                      Chisq Df Pr(>Chisq)    
## Time               84.7964 25  1.984e-08 ***
## Channel             1.7740  3    0.62060    
## Block               5.3598  1    0.02061 *  
## Time:Channel       31.2173 75    1.00000    
## Time:Block         89.9871 25  2.875e-09 ***
## Channel:Block       8.7163  3    0.03331 *  
## Time:Channel:Block 26.2913 75    1.00000    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m2.f_ALL_beta3)

#Prep Model check

AIC(m.p_ALL_beta1,m.p_ALL_beta2,m.p_ALL_beta3)
##                df      AIC
## m.p_ALL_beta1 210 45918.48
## m.p_ALL_beta2 210 47140.77
## m.p_ALL_beta3 210 50242.20

#Motor models for each Beta frequency

m.m_ALL_beta1 <- lmer(ERDS ~ Time * Channel * Block + (1|Participant), data = m_ALL_beta1)
Anova(m.m_ALL_beta1)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##                       Chisq Df Pr(>Chisq)    
## Time               144.9790 30  < 2.2e-16 ***
## Channel              4.4947  3     0.2128    
## Block               71.9097  1  < 2.2e-16 ***
## Time:Channel        19.5761 90     1.0000    
## Time:Block         119.2036 30  1.387e-12 ***
## Channel:Block        5.4756  3     0.1401    
## Time:Channel:Block  15.6662 90     1.0000    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m.f_ALL_beta1)

m.m_ALL_beta2 <- lmer(ERDS ~ Time * Channel * Block + (1|Participant), data = m_ALL_beta2)
Anova(m.m_ALL_beta2)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##                       Chisq Df Pr(>Chisq)    
## Time               115.2816 30  6.231e-12 ***
## Channel              1.5738  3     0.6654    
## Block               52.3544  1  4.634e-13 ***
## Time:Channel        12.5035 90     1.0000    
## Time:Block         107.4090 30  1.213e-10 ***
## Channel:Block        1.6005  3     0.6593    
## Time:Channel:Block  10.4964 90     1.0000    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m.f_ALL_beta2)

m.m_ALL_beta3 <- lmer(ERDS ~ Time * Channel * Block + (1|Participant), data = m_ALL_beta3)
Anova(m.m_ALL_beta3)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##                      Chisq Df Pr(>Chisq)    
## Time               76.8803 30  5.494e-06 ***
## Channel             4.2239  3     0.2383    
## Block              67.5398  1  < 2.2e-16 ***
## Time:Channel       18.9725 90     1.0000    
## Time:Block         72.3251 30  2.354e-05 ***
## Channel:Block       3.9613  3     0.2657    
## Time:Channel:Block 18.3983 90     1.0000    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m.f_ALL_beta3)

#Motor Model check

AIC(m.m_ALL_beta1, m.m_ALL_beta2, m.m_ALL_beta3)
##                df      AIC
## m.m_ALL_beta1 250 69544.37
## m.m_ALL_beta2 250 76272.33
## m.m_ALL_beta3 250 75372.07

#Lpress for each Beta frequency

m.f_ALL_beta1 <- lmer(ERDS ~ Time * Channel * Block + (1|Participant), data = f_ALL_beta1)
Anova(m.f_ALL_beta1)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##                       Chisq Df Pr(>Chisq)    
## Time               423.7751 30  < 2.2e-16 ***
## Channel              4.8075  3  0.1864450    
## Block               36.5778  1  1.467e-09 ***
## Time:Channel        11.8638 90  1.0000000    
## Time:Block          61.3760 30  0.0006253 ***
## Channel:Block        3.4187  3  0.3314552    
## Time:Channel:Block  11.3242 90  1.0000000    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m.f_ALL_beta1)

m.f_ALL_beta2 <- lmer(ERDS ~ Time * Channel * Block + (1|Participant), data = f_ALL_beta2)
Anova(m.f_ALL_beta2)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##                       Chisq Df Pr(>Chisq)    
## Time               332.4229 30  < 2.2e-16 ***
## Channel              6.7017  3    0.08204 .  
## Block               34.2174  1  4.929e-09 ***
## Time:Channel        13.1626 90    1.00000    
## Time:Block          75.7815 30  7.838e-06 ***
## Channel:Block        3.1737  3    0.36562    
## Time:Channel:Block  10.0737 90    1.00000    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m.f_ALL_beta2)

m.f_ALL_beta3 <- lmer(ERDS ~ Time * Channel * Block + (1|Participant), data = f_ALL_beta3)
Anova(m.f_ALL_beta3)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##                       Chisq Df Pr(>Chisq)    
## Time               328.1116 30  < 2.2e-16 ***
## Channel              5.2988  3     0.1512    
## Block               40.8472  1  1.646e-10 ***
## Time:Channel        16.7959 90     1.0000    
## Time:Block          71.5348 30  3.016e-05 ***
## Channel:Block        3.1486  3     0.3693    
## Time:Channel:Block   9.9736 90     1.0000    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m.f_ALL_beta3)

#Lpress Model check

AIC(m.f_ALL_beta1, m.f_ALL_beta2, m.f_ALL_beta3)
##                df      AIC
## m.f_ALL_beta1 250 76705.56
## m.f_ALL_beta2 250 79912.85
## m.f_ALL_beta3 250 78618.39

#Post hocs for prep models

#Feedback Posthocs
lsmeans(m.p_ALL_beta1, pairwise ~ Block | Time) #Here we can directly isolate the timepoints that are interacting
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 5408' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 5408)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 5408' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 5408)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $lsmeans
## Time = -1:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.08 2.58 Inf     -19.1     -9.02
##  B5    -19.77 2.58 Inf     -24.8    -14.71
## 
## Time = -0.9:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -13.94 2.58 Inf     -19.0     -8.88
##  B5    -18.71 2.58 Inf     -23.8    -13.65
## 
## Time = -0.8:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.33 2.58 Inf     -19.4     -9.27
##  B5    -19.66 2.58 Inf     -24.7    -14.60
## 
## Time = -0.7:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -12.91 2.58 Inf     -18.0     -7.84
##  B5    -17.62 2.58 Inf     -22.7    -12.55
## 
## Time = -0.6:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.65 2.58 Inf     -19.7     -9.58
##  B5    -16.52 2.58 Inf     -21.6    -11.46
## 
## Time = -0.5:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.09 2.58 Inf     -19.1     -9.02
##  B5    -17.09 2.58 Inf     -22.2    -12.03
## 
## Time = -0.4:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -17.71 2.58 Inf     -22.8    -12.65
##  B5    -15.90 2.58 Inf     -21.0    -10.83
## 
## Time = -0.3:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.31 2.58 Inf     -20.4    -10.25
##  B5    -14.51 2.58 Inf     -19.6     -9.45
## 
## Time = -0.2:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.57 2.58 Inf     -20.6    -10.51
##  B5    -18.68 2.58 Inf     -23.7    -13.62
## 
## Time = -0.1:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -19.67 2.58 Inf     -24.7    -14.61
##  B5    -16.70 2.58 Inf     -21.8    -11.64
## 
## Time = 0:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -19.97 2.58 Inf     -25.0    -14.91
##  B5    -18.81 2.58 Inf     -23.9    -13.75
## 
## Time = 0.1:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.58 2.58 Inf     -21.6    -11.52
##  B5    -17.90 2.58 Inf     -23.0    -12.84
## 
## Time = 0.2:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -17.05 2.58 Inf     -22.1    -11.99
##  B5    -15.99 2.58 Inf     -21.0    -10.92
## 
## Time = 0.3:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -21.57 2.58 Inf     -26.6    -16.51
##  B5    -18.87 2.58 Inf     -23.9    -13.81
## 
## Time = 0.4:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -19.54 2.58 Inf     -24.6    -14.48
##  B5    -16.04 2.58 Inf     -21.1    -10.98
## 
## Time = 0.5:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -18.39 2.58 Inf     -23.5    -13.33
##  B5    -17.15 2.58 Inf     -22.2    -12.09
## 
## Time = 0.6:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -18.86 2.58 Inf     -23.9    -13.80
##  B5    -17.98 2.58 Inf     -23.0    -12.92
## 
## Time = 0.7:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -17.24 2.58 Inf     -22.3    -12.18
##  B5    -17.95 2.58 Inf     -23.0    -12.89
## 
## Time = 0.8:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -12.33 2.58 Inf     -17.4     -7.26
##  B5    -12.64 2.58 Inf     -17.7     -7.58
## 
## Time = 0.9:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -9.67 2.58 Inf     -14.7     -4.61
##  B5    -13.85 2.58 Inf     -18.9     -8.79
## 
## Time = 1:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -12.18 2.58 Inf     -17.2     -7.11
##  B5    -14.00 2.58 Inf     -19.1     -8.94
## 
## Time = 1.1:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -9.54 2.58 Inf     -14.6     -4.47
##  B5    -18.80 2.58 Inf     -23.9    -13.74
## 
## Time = 1.2:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -9.06 2.58 Inf     -14.1     -4.00
##  B5    -18.30 2.58 Inf     -23.4    -13.23
## 
## Time = 1.3:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -10.18 2.58 Inf     -15.2     -5.11
##  B5    -18.47 2.58 Inf     -23.5    -13.41
## 
## Time = 1.4:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -7.45 2.58 Inf     -12.5     -2.38
##  B5    -15.88 2.58 Inf     -20.9    -10.81
## 
## Time = 1.5:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -6.81 2.58 Inf     -11.9     -1.74
##  B5     -8.23 2.58 Inf     -13.3     -3.16
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## 
## $contrasts
## Time = -1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     5.688 2.47 Inf   2.301  0.0214
## 
## Time = -0.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     4.770 2.47 Inf   1.929  0.0537
## 
## Time = -0.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     5.327 2.47 Inf   2.155  0.0312
## 
## Time = -0.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     4.712 2.47 Inf   1.906  0.0567
## 
## Time = -0.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     1.874 2.47 Inf   0.758  0.4485
## 
## Time = -0.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     3.005 2.47 Inf   1.215  0.2242
## 
## Time = -0.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -1.817 2.47 Inf  -0.735  0.4625
## 
## Time = -0.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -0.800 2.47 Inf  -0.324  0.7462
## 
## Time = -0.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     3.113 2.47 Inf   1.259  0.2080
## 
## Time = -0.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -2.973 2.47 Inf  -1.202  0.2292
## 
## Time = 0:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -1.158 2.47 Inf  -0.468  0.6395
## 
## Time = 0.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     1.321 2.47 Inf   0.534  0.5930
## 
## Time = 0.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -1.064 2.47 Inf  -0.431  0.6668
## 
## Time = 0.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -2.697 2.47 Inf  -1.091  0.2754
## 
## Time = 0.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -3.502 2.47 Inf  -1.417  0.1566
## 
## Time = 0.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -1.236 2.47 Inf  -0.500  0.6171
## 
## Time = 0.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -0.883 2.47 Inf  -0.357  0.7210
## 
## Time = 0.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     0.714 2.47 Inf   0.289  0.7727
## 
## Time = 0.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     0.317 2.47 Inf   0.128  0.8981
## 
## Time = 0.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     4.177 2.47 Inf   1.690  0.0911
## 
## Time = 1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     1.821 2.47 Inf   0.736  0.4615
## 
## Time = 1.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     9.266 2.47 Inf   3.748  0.0002
## 
## Time = 1.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     9.232 2.47 Inf   3.734  0.0002
## 
## Time = 1.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     8.299 2.47 Inf   3.357  0.0008
## 
## Time = 1.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     8.428 2.47 Inf   3.409  0.0007
## 
## Time = 1.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     1.420 2.47 Inf   0.574  0.5657
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic
#lsmeans(m.f_ALL_beta1, pairwise ~ Block | Channel) #this is expected but not the focus of the study

lsmeans(m.p_ALL_beta2, pairwise ~ Block | Time) 
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 5408' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 5408)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 5408' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 5408)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $lsmeans
## Time = -1:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.99 2.95 Inf     -21.8  -10.1981
##  B5    -18.93 2.95 Inf     -24.7  -13.1378
## 
## Time = -0.9:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -12.57 2.95 Inf     -18.4   -6.7812
##  B5    -16.51 2.95 Inf     -22.3  -10.7213
## 
## Time = -0.8:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.36 2.95 Inf     -20.1   -8.5693
##  B5    -22.51 2.95 Inf     -28.3  -16.7244
## 
## Time = -0.7:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.74 2.95 Inf     -21.5   -9.9563
##  B5    -20.95 2.95 Inf     -26.7  -15.1614
## 
## Time = -0.6:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -19.00 2.95 Inf     -24.8  -13.2071
##  B5    -17.86 2.95 Inf     -23.6  -12.0704
## 
## Time = -0.5:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -13.62 2.95 Inf     -19.4   -7.8332
##  B5    -17.24 2.95 Inf     -23.0  -11.4517
## 
## Time = -0.4:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -21.12 2.95 Inf     -26.9  -15.3318
##  B5    -15.75 2.95 Inf     -21.5   -9.9633
## 
## Time = -0.3:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.47 2.95 Inf     -21.3   -9.6773
##  B5    -13.43 2.95 Inf     -19.2   -7.6403
## 
## Time = -0.2:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.30 2.95 Inf     -22.1  -10.5147
##  B5    -17.50 2.95 Inf     -23.3  -11.7084
## 
## Time = -0.1:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -18.56 2.95 Inf     -24.3  -12.7693
##  B5    -14.66 2.95 Inf     -20.5   -8.8755
## 
## Time = 0:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.46 2.95 Inf     -22.2  -10.6698
##  B5    -16.81 2.95 Inf     -22.6  -11.0261
## 
## Time = 0.1:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -13.62 2.95 Inf     -19.4   -7.8323
##  B5    -16.97 2.95 Inf     -22.8  -11.1822
## 
## Time = 0.2:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -20.49 2.95 Inf     -26.3  -14.7018
##  B5    -14.70 2.95 Inf     -20.5   -8.9125
## 
## Time = 0.3:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -21.16 2.95 Inf     -27.0  -15.3764
##  B5    -16.92 2.95 Inf     -22.7  -11.1324
## 
## Time = 0.4:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.68 2.95 Inf     -22.5  -10.8899
##  B5    -15.17 2.95 Inf     -21.0   -9.3844
## 
## Time = 0.5:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -18.55 2.95 Inf     -24.3  -12.7602
##  B5    -13.30 2.95 Inf     -19.1   -7.5148
## 
## Time = 0.6:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -18.67 2.95 Inf     -24.5  -12.8864
##  B5    -14.15 2.95 Inf     -19.9   -8.3642
## 
## Time = 0.7:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.20 2.95 Inf     -22.0  -10.4162
##  B5    -18.89 2.95 Inf     -24.7  -13.1013
## 
## Time = 0.8:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -10.62 2.95 Inf     -16.4   -4.8333
##  B5    -12.61 2.95 Inf     -18.4   -6.8261
## 
## Time = 0.9:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -5.76 2.95 Inf     -11.5    0.0298
##  B5    -17.19 2.95 Inf     -23.0  -11.4025
## 
## Time = 1:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -9.65 2.95 Inf     -15.4   -3.8573
##  B5    -17.25 2.95 Inf     -23.0  -11.4651
## 
## Time = 1.1:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -8.98 2.95 Inf     -14.8   -3.1939
##  B5    -20.49 2.95 Inf     -26.3  -14.7031
## 
## Time = 1.2:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -4.82 2.95 Inf     -10.6    0.9658
##  B5    -16.86 2.95 Inf     -22.6  -11.0727
## 
## Time = 1.3:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -11.34 2.95 Inf     -17.1   -5.5524
##  B5    -18.09 2.95 Inf     -23.9  -12.2999
## 
## Time = 1.4:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -11.12 2.95 Inf     -16.9   -5.3364
##  B5    -17.97 2.95 Inf     -23.8  -12.1798
## 
## Time = 1.5:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -7.16 2.95 Inf     -12.9   -1.3726
##  B5     -5.35 2.95 Inf     -11.1    0.4379
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## 
## $contrasts
## Time = -1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     2.940 2.78 Inf   1.057  0.2904
## 
## Time = -0.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     3.940 2.78 Inf   1.417  0.1565
## 
## Time = -0.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     8.155 2.78 Inf   2.933  0.0034
## 
## Time = -0.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     5.205 2.78 Inf   1.872  0.0612
## 
## Time = -0.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -1.137 2.78 Inf  -0.409  0.6827
## 
## Time = -0.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     3.618 2.78 Inf   1.301  0.1931
## 
## Time = -0.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -5.369 2.78 Inf  -1.931  0.0535
## 
## Time = -0.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -2.037 2.78 Inf  -0.733  0.4638
## 
## Time = -0.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     1.194 2.78 Inf   0.429  0.6677
## 
## Time = -0.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -3.894 2.78 Inf  -1.400  0.1614
## 
## Time = 0:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     0.356 2.78 Inf   0.128  0.8980
## 
## Time = 0.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     3.350 2.78 Inf   1.205  0.2283
## 
## Time = 0.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -5.789 2.78 Inf  -2.082  0.0373
## 
## Time = 0.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -4.244 2.78 Inf  -1.526  0.1269
## 
## Time = 0.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -1.506 2.78 Inf  -0.541  0.5882
## 
## Time = 0.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -5.245 2.78 Inf  -1.887  0.0592
## 
## Time = 0.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -4.522 2.78 Inf  -1.626  0.1038
## 
## Time = 0.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     2.685 2.78 Inf   0.966  0.3342
## 
## Time = 0.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     1.993 2.78 Inf   0.717  0.4735
## 
## Time = 0.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    11.432 2.78 Inf   4.112  <.0001
## 
## Time = 1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     7.608 2.78 Inf   2.736  0.0062
## 
## Time = 1.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    11.509 2.78 Inf   4.139  <.0001
## 
## Time = 1.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    12.038 2.78 Inf   4.330  <.0001
## 
## Time = 1.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     6.747 2.78 Inf   2.427  0.0152
## 
## Time = 1.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     6.843 2.78 Inf   2.461  0.0138
## 
## Time = 1.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -1.810 2.78 Inf  -0.651  0.5149
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic
#lsmeans(m.f_ALL_beta2, pairwise ~ Block | Channel)

lsmeans(m.p_ALL_beta3, pairwise ~ Block | Time) 
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 5408' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 5408)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 5408' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 5408)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $lsmeans
## Time = -1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.844 3.53 Inf    -23.76    -9.930
##  B5    -18.928 3.53 Inf    -25.84   -12.014
## 
## Time = -0.9:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.180 3.53 Inf    -22.09    -8.267
##  B5    -13.684 3.53 Inf    -20.60    -6.770
## 
## Time = -0.8:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.201 3.53 Inf    -22.11    -8.288
##  B5    -19.016 3.53 Inf    -25.93   -12.102
## 
## Time = -0.7:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.463 3.53 Inf    -23.38    -9.549
##  B5    -18.666 3.53 Inf    -25.58   -11.753
## 
## Time = -0.6:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -18.313 3.53 Inf    -25.23   -11.400
##  B5    -15.282 3.53 Inf    -22.20    -8.369
## 
## Time = -0.5:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -13.757 3.53 Inf    -20.67    -6.843
##  B5    -14.543 3.53 Inf    -21.46    -7.630
## 
## Time = -0.4:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -20.240 3.53 Inf    -27.15   -13.327
##  B5    -13.985 3.53 Inf    -20.90    -7.071
## 
## Time = -0.3:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -13.358 3.53 Inf    -20.27    -6.444
##  B5    -11.628 3.53 Inf    -18.54    -4.715
## 
## Time = -0.2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.876 3.53 Inf    -22.79    -8.962
##  B5    -14.018 3.53 Inf    -20.93    -7.104
## 
## Time = -0.1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.390 3.53 Inf    -21.30    -7.476
##  B5    -14.106 3.53 Inf    -21.02    -7.192
## 
## Time = 0:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.686 3.53 Inf    -21.60    -7.773
##  B5    -13.769 3.53 Inf    -20.68    -6.855
## 
## Time = 0.1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -12.426 3.53 Inf    -19.34    -5.513
##  B5    -15.909 3.53 Inf    -22.82    -8.995
## 
## Time = 0.2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -19.441 3.53 Inf    -26.35   -12.527
##  B5    -10.026 3.53 Inf    -16.94    -3.112
## 
## Time = 0.3:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -18.721 3.53 Inf    -25.63   -11.807
##  B5    -11.618 3.53 Inf    -18.53    -4.704
## 
## Time = 0.4:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -12.773 3.53 Inf    -19.69    -5.860
##  B5    -10.590 3.53 Inf    -17.50    -3.677
## 
## Time = 0.5:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.109 3.53 Inf    -22.02    -8.195
##  B5     -6.269 3.53 Inf    -13.18     0.645
## 
## Time = 0.6:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.344 3.53 Inf    -21.26    -7.430
##  B5     -8.519 3.53 Inf    -15.43    -1.605
## 
## Time = 0.7:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -12.175 3.53 Inf    -19.09    -5.261
##  B5    -16.877 3.53 Inf    -23.79    -9.963
## 
## Time = 0.8:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1      1.641 3.53 Inf     -5.27     8.554
##  B5    -13.213 3.53 Inf    -20.13    -6.300
## 
## Time = 0.9:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -2.603 3.53 Inf     -9.52     4.310
##  B5    -15.240 3.53 Inf    -22.15    -8.327
## 
## Time = 1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -3.075 3.53 Inf     -9.99     3.839
##  B5    -15.611 3.53 Inf    -22.52    -8.697
## 
## Time = 1.1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -9.105 3.53 Inf    -16.02    -2.192
##  B5    -17.121 3.53 Inf    -24.03   -10.208
## 
## Time = 1.2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1      0.489 3.53 Inf     -6.42     7.403
##  B5    -13.652 3.53 Inf    -20.57    -6.739
## 
## Time = 1.3:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -5.823 3.53 Inf    -12.74     1.091
##  B5    -15.690 3.53 Inf    -22.60    -8.776
## 
## Time = 1.4:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -9.898 3.53 Inf    -16.81    -2.985
##  B5    -17.484 3.53 Inf    -24.40   -10.570
## 
## Time = 1.5:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -8.031 3.53 Inf    -14.94    -1.118
##  B5     -4.535 3.53 Inf    -11.45     2.378
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## 
## $contrasts
## Time = -1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     2.084 3.75 Inf   0.556  0.5784
## 
## Time = -0.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -1.497 3.75 Inf  -0.399  0.6899
## 
## Time = -0.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     3.815 3.75 Inf   1.017  0.3091
## 
## Time = -0.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     2.204 3.75 Inf   0.588  0.5569
## 
## Time = -0.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -3.031 3.75 Inf  -0.808  0.4190
## 
## Time = -0.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     0.787 3.75 Inf   0.210  0.8339
## 
## Time = -0.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -6.255 3.75 Inf  -1.668  0.0954
## 
## Time = -0.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -1.730 3.75 Inf  -0.461  0.6447
## 
## Time = -0.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -1.858 3.75 Inf  -0.495  0.6204
## 
## Time = -0.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -0.284 3.75 Inf  -0.076  0.9397
## 
## Time = 0:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -0.918 3.75 Inf  -0.245  0.8067
## 
## Time = 0.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     3.482 3.75 Inf   0.928  0.3532
## 
## Time = 0.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -9.415 3.75 Inf  -2.510  0.0121
## 
## Time = 0.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -7.103 3.75 Inf  -1.894  0.0583
## 
## Time = 0.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -2.183 3.75 Inf  -0.582  0.5606
## 
## Time = 0.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -8.840 3.75 Inf  -2.357  0.0184
## 
## Time = 0.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -5.825 3.75 Inf  -1.553  0.1204
## 
## Time = 0.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     4.702 3.75 Inf   1.254  0.2100
## 
## Time = 0.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    14.854 3.75 Inf   3.960  0.0001
## 
## Time = 0.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    12.637 3.75 Inf   3.369  0.0008
## 
## Time = 1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    12.536 3.75 Inf   3.342  0.0008
## 
## Time = 1.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     8.016 3.75 Inf   2.137  0.0326
## 
## Time = 1.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    14.141 3.75 Inf   3.770  0.0002
## 
## Time = 1.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     9.867 3.75 Inf   2.631  0.0085
## 
## Time = 1.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     7.586 3.75 Inf   2.022  0.0431
## 
## Time = 1.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -3.496 3.75 Inf  -0.932  0.3513
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic
#lsmeans(m.f_ALL_beta3, pairwise ~ Block | Channel)

#Post hocs for motor models

#Feedback Posthocs
lsmeans(m.m_ALL_beta1, pairwise ~ Block | Time) #Here we can directly isolate the timepoints that are interacting
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 6448' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 6448)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 6448' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 6448)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $lsmeans
## Time = 0:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -11.05 6.37 Inf   -23.536     1.433
##  B5     -7.76 6.37 Inf   -20.243     4.726
## 
## Time = 0.1:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -9.09 6.37 Inf   -21.578     3.391
##  B5     -5.26 6.37 Inf   -17.747     7.222
## 
## Time = 0.2:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -6.57 6.37 Inf   -19.055     5.914
##  B5     -7.57 6.37 Inf   -20.057     4.912
## 
## Time = 0.3:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -6.12 6.37 Inf   -18.604     6.365
##  B5      3.49 6.37 Inf    -8.990    15.979
## 
## Time = 0.4:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -10.90 6.37 Inf   -23.387     1.582
##  B5      3.86 6.37 Inf    -8.621    16.348
## 
## Time = 0.5:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -12.09 6.37 Inf   -24.571     0.398
##  B5     -7.02 6.37 Inf   -19.506     5.463
## 
## Time = 0.6:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.36 6.37 Inf   -27.844    -2.875
##  B5     -7.25 6.37 Inf   -19.739     5.230
## 
## Time = 0.7:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.13 6.37 Inf   -27.619    -2.650
##  B5     -8.24 6.37 Inf   -20.722     4.247
## 
## Time = 0.8:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -8.35 6.37 Inf   -20.834     4.135
##  B5     -9.38 6.37 Inf   -21.865     3.104
## 
## Time = 0.9:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1      1.81 6.37 Inf   -10.671    14.298
##  B5     -9.58 6.37 Inf   -22.060     2.909
## 
## Time = 1:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -10.46 6.37 Inf   -22.946     2.023
##  B5    -10.59 6.37 Inf   -23.073     1.896
## 
## Time = 1.1:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.34 6.37 Inf   -27.824    -2.855
##  B5     -6.47 6.37 Inf   -18.951     6.017
## 
## Time = 1.2:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.79 6.37 Inf   -29.279    -4.310
##  B5    -10.13 6.37 Inf   -22.619     2.350
## 
## Time = 1.3:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -13.78 6.37 Inf   -26.268    -1.299
##  B5    -12.84 6.37 Inf   -25.325    -0.357
## 
## Time = 1.4:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -13.99 6.37 Inf   -26.473    -1.504
##  B5    -10.33 6.37 Inf   -22.818     2.151
## 
## Time = 1.5:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -17.54 6.37 Inf   -30.023    -5.054
##  B5     -9.69 6.37 Inf   -22.171     2.798
## 
## Time = 1.6:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.10 6.37 Inf   -28.583    -3.614
##  B5    -11.14 6.37 Inf   -23.625     1.344
## 
## Time = 1.7:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.49 6.37 Inf   -26.973    -2.004
##  B5     -4.73 6.37 Inf   -17.213     7.756
## 
## Time = 1.8:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.02 6.37 Inf   -26.509    -1.540
##  B5     -5.67 6.37 Inf   -18.151     6.818
## 
## Time = 1.9:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -17.82 6.37 Inf   -30.309    -5.340
##  B5     -5.33 6.37 Inf   -17.817     7.152
## 
## Time = 2:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -18.72 6.37 Inf   -31.203    -6.234
##  B5     -3.13 6.37 Inf   -15.617     9.352
## 
## Time = 2.1:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.26 6.37 Inf   -27.749    -2.780
##  B5     -3.60 6.37 Inf   -16.080     8.888
## 
## Time = 2.2:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.92 6.37 Inf   -27.407    -2.438
##  B5     -1.43 6.37 Inf   -13.910    11.059
## 
## Time = 2.3:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.00 6.37 Inf   -28.485    -3.516
##  B5      9.99 6.37 Inf    -2.498    22.471
## 
## Time = 2.4:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.99 6.37 Inf   -29.477    -4.508
##  B5      1.60 6.37 Inf   -10.888    14.080
## 
## Time = 2.5:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.04 6.37 Inf   -26.528    -1.560
##  B5      2.54 6.37 Inf    -9.944    15.025
## 
## Time = 2.6:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.81 6.37 Inf   -27.294    -2.325
##  B5     11.88 6.37 Inf    -0.602    24.367
## 
## Time = 2.7:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -13.21 6.37 Inf   -25.690    -0.721
##  B5     12.06 6.37 Inf    -0.424    24.545
## 
## Time = 2.8:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -12.09 6.37 Inf   -24.578     0.391
##  B5     11.89 6.37 Inf    -0.596    24.372
## 
## Time = 2.9:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -3.70 6.37 Inf   -16.180     8.789
##  B5     17.33 6.37 Inf     4.846    29.815
## 
## Time = 3:
##  Block lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -8.65 6.37 Inf   -21.130     3.838
##  B5     77.64 6.37 Inf    65.160    90.129
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## 
## $contrasts
## Time = 0:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -3.292 8.19 Inf  -0.402  0.6877
## 
## Time = 0.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -3.830 8.19 Inf  -0.468  0.6400
## 
## Time = 0.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     1.001 8.19 Inf   0.122  0.9027
## 
## Time = 0.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -9.614 8.19 Inf  -1.174  0.2405
## 
## Time = 0.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -14.766 8.19 Inf  -1.803  0.0714
## 
## Time = 0.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -5.065 8.19 Inf  -0.618  0.5364
## 
## Time = 0.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -8.105 8.19 Inf  -0.990  0.3224
## 
## Time = 0.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -6.897 8.19 Inf  -0.842  0.3998
## 
## Time = 0.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     1.031 8.19 Inf   0.126  0.8999
## 
## Time = 0.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    11.389 8.19 Inf   1.390  0.1644
## 
## Time = 1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     0.127 8.19 Inf   0.016  0.9876
## 
## Time = 1.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -8.873 8.19 Inf  -1.083  0.2787
## 
## Time = 1.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -6.660 8.19 Inf  -0.813  0.4162
## 
## Time = 1.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -0.942 8.19 Inf  -0.115  0.9084
## 
## Time = 1.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -3.655 8.19 Inf  -0.446  0.6554
## 
## Time = 1.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -7.852 8.19 Inf  -0.959  0.3378
## 
## Time = 1.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -4.958 8.19 Inf  -0.605  0.5450
## 
## Time = 1.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -9.760 8.19 Inf  -1.192  0.2335
## 
## Time = 1.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -8.358 8.19 Inf  -1.020  0.3076
## 
## Time = 1.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -12.492 8.19 Inf  -1.525  0.1272
## 
## Time = 2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -15.586 8.19 Inf  -1.903  0.0571
## 
## Time = 2.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -11.668 8.19 Inf  -1.425  0.1543
## 
## Time = 2.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -13.497 8.19 Inf  -1.648  0.0994
## 
## Time = 2.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -25.987 8.19 Inf  -3.173  0.0015
## 
## Time = 2.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -18.589 8.19 Inf  -2.269  0.0232
## 
## Time = 2.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -16.585 8.19 Inf  -2.025  0.0429
## 
## Time = 2.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -26.692 8.19 Inf  -3.259  0.0011
## 
## Time = 2.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -25.267 8.19 Inf  -3.085  0.0020
## 
## Time = 2.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -23.982 8.19 Inf  -2.928  0.0034
## 
## Time = 2.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -21.026 8.19 Inf  -2.567  0.0103
## 
## Time = 3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -86.291 8.19 Inf -10.535  <.0001
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic
#lsmeans(m.f_ALL_beta1, pairwise ~ Block | Channel) #this is expected but not the focus of the study

lsmeans(m.m_ALL_beta2, pairwise ~ Block | Time) 
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 6448' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 6448)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 6448' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 6448)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $lsmeans
## Time = 0:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -11.2396 10.7 Inf    -32.16     9.682
##  B5     -9.5934 10.7 Inf    -30.51    11.328
## 
## Time = 0.1:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -10.1447 10.7 Inf    -31.07    10.777
##  B5     -5.9846 10.7 Inf    -26.91    14.937
## 
## Time = 0.2:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -12.3109 10.7 Inf    -33.23     8.610
##  B5     -2.3557 10.7 Inf    -23.28    18.566
## 
## Time = 0.3:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -12.7917 10.7 Inf    -33.71     8.130
##  B5      1.8488 10.7 Inf    -19.07    22.770
## 
## Time = 0.4:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.6940 10.7 Inf    -37.62     4.227
##  B5     28.0407 10.7 Inf      7.12    48.962
## 
## Time = 0.5:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.5523 10.7 Inf    -37.47     4.369
##  B5      2.8955 10.7 Inf    -18.03    23.817
## 
## Time = 0.6:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -21.5502 10.7 Inf    -42.47    -0.629
##  B5     -7.5987 10.7 Inf    -28.52    13.323
## 
## Time = 0.7:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -19.2451 10.7 Inf    -40.17     1.676
##  B5     -7.2676 10.7 Inf    -28.19    13.654
## 
## Time = 0.8:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -13.1635 10.7 Inf    -34.08     7.758
##  B5    -11.2917 10.7 Inf    -32.21     9.630
## 
## Time = 0.9:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -0.1849 10.7 Inf    -21.11    20.736
##  B5    -13.2839 10.7 Inf    -34.21     7.638
## 
## Time = 1:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -13.4845 10.7 Inf    -34.41     7.437
##  B5    -11.9712 10.7 Inf    -32.89     8.950
## 
## Time = 1.1:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -18.7397 10.7 Inf    -39.66     2.182
##  B5     -9.4383 10.7 Inf    -30.36    11.483
## 
## Time = 1.2:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -19.2293 10.7 Inf    -40.15     1.692
##  B5    -13.9906 10.7 Inf    -34.91     6.931
## 
## Time = 1.3:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.9465 10.7 Inf    -35.87     5.975
##  B5    -16.9219 10.7 Inf    -37.84     3.999
## 
## Time = 1.4:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -13.4999 10.7 Inf    -34.42     7.421
##  B5    -13.8596 10.7 Inf    -34.78     7.062
## 
## Time = 1.5:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -17.8975 10.7 Inf    -38.82     3.024
##  B5    -10.2685 10.7 Inf    -31.19    10.653
## 
## Time = 1.6:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -17.7820 10.7 Inf    -38.70     3.139
##  B5    -10.7109 10.7 Inf    -31.63    10.211
## 
## Time = 1.7:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.2073 10.7 Inf    -36.13     5.714
##  B5     -1.8739 10.7 Inf    -22.80    19.048
## 
## Time = 1.8:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.3551 10.7 Inf    -35.28     6.566
##  B5     -5.8072 10.7 Inf    -26.73    15.114
## 
## Time = 1.9:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -19.6640 10.7 Inf    -40.59     1.257
##  B5     -2.5829 10.7 Inf    -23.50    18.339
## 
## Time = 2:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -20.3055 10.7 Inf    -41.23     0.616
##  B5      0.5913 10.7 Inf    -20.33    21.513
## 
## Time = 2.1:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.8437 10.7 Inf    -37.77     4.078
##  B5     -0.3736 10.7 Inf    -21.30    20.548
## 
## Time = 2.2:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.1028 10.7 Inf    -37.02     4.819
##  B5     -2.2915 10.7 Inf    -23.21    18.630
## 
## Time = 2.3:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -17.6077 10.7 Inf    -38.53     3.314
##  B5     24.6680 10.7 Inf      3.75    45.589
## 
## Time = 2.4:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -17.2848 10.7 Inf    -38.21     3.637
##  B5      7.2272 10.7 Inf    -13.69    28.149
## 
## Time = 2.5:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.7046 10.7 Inf    -37.63     4.217
##  B5     -0.0380 10.7 Inf    -20.96    20.883
## 
## Time = 2.6:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.1436 10.7 Inf    -36.07     5.778
##  B5     32.5127 10.7 Inf     11.59    53.434
## 
## Time = 2.7:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.2187 10.7 Inf    -36.14     5.703
##  B5     15.8817 10.7 Inf     -5.04    36.803
## 
## Time = 2.8:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.9371 10.7 Inf    -35.86     5.984
##  B5      7.5206 10.7 Inf    -13.40    28.442
## 
## Time = 2.9:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -4.6995 10.7 Inf    -25.62    16.222
##  B5      8.4377 10.7 Inf    -12.48    29.359
## 
## Time = 3:
##  Block   lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -10.9848 10.7 Inf    -31.91     9.937
##  B5    131.4699 10.7 Inf    110.55   152.391
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## 
## $contrasts
## Time = 0:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     -1.65 14.1 Inf  -0.117  0.9071
## 
## Time = 0.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     -4.16 14.1 Inf  -0.295  0.7680
## 
## Time = 0.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     -9.96 14.1 Inf  -0.706  0.4802
## 
## Time = 0.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -14.64 14.1 Inf  -1.038  0.2992
## 
## Time = 0.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -44.73 14.1 Inf  -3.172  0.0015
## 
## Time = 0.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -19.45 14.1 Inf  -1.379  0.1679
## 
## Time = 0.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -13.95 14.1 Inf  -0.989  0.3225
## 
## Time = 0.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -11.98 14.1 Inf  -0.849  0.3957
## 
## Time = 0.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     -1.87 14.1 Inf  -0.133  0.8944
## 
## Time = 0.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     13.10 14.1 Inf   0.929  0.3529
## 
## Time = 1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     -1.51 14.1 Inf  -0.107  0.9145
## 
## Time = 1.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     -9.30 14.1 Inf  -0.660  0.5095
## 
## Time = 1.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     -5.24 14.1 Inf  -0.371  0.7103
## 
## Time = 1.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5      1.98 14.1 Inf   0.140  0.8886
## 
## Time = 1.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5      0.36 14.1 Inf   0.026  0.9797
## 
## Time = 1.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     -7.63 14.1 Inf  -0.541  0.5885
## 
## Time = 1.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     -7.07 14.1 Inf  -0.501  0.6161
## 
## Time = 1.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -13.33 14.1 Inf  -0.946  0.3444
## 
## Time = 1.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     -8.55 14.1 Inf  -0.606  0.5444
## 
## Time = 1.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -17.08 14.1 Inf  -1.211  0.2258
## 
## Time = 2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -20.90 14.1 Inf  -1.482  0.1384
## 
## Time = 2.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -16.47 14.1 Inf  -1.168  0.2428
## 
## Time = 2.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -13.81 14.1 Inf  -0.979  0.3274
## 
## Time = 2.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -42.28 14.1 Inf  -2.998  0.0027
## 
## Time = 2.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -24.51 14.1 Inf  -1.738  0.0822
## 
## Time = 2.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -16.67 14.1 Inf  -1.182  0.2373
## 
## Time = 2.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -47.66 14.1 Inf  -3.379  0.0007
## 
## Time = 2.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -31.10 14.1 Inf  -2.205  0.0274
## 
## Time = 2.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -22.46 14.1 Inf  -1.593  0.1113
## 
## Time = 2.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -13.14 14.1 Inf  -0.932  0.3515
## 
## Time = 3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -142.45 14.1 Inf -10.102  <.0001
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic
#lsmeans(m.f_ALL_beta2, pairwise ~ Block | Channel)

lsmeans(m.m_ALL_beta3, pairwise ~ Block | Time) 
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 6448' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 6448)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 6448' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 6448)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $lsmeans
## Time = 0:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -11.969 10.3 Inf    -32.25     8.311
##  B5    -12.602 10.3 Inf    -32.88     7.678
## 
## Time = 0.1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -11.111 10.3 Inf    -31.39     9.169
##  B5    -11.146 10.3 Inf    -31.43     9.133
## 
## Time = 0.2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.407 10.3 Inf    -34.69     5.873
##  B5     -1.426 10.3 Inf    -21.71    18.853
## 
## Time = 0.3:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -13.067 10.3 Inf    -33.35     7.213
##  B5     18.839 10.3 Inf     -1.44    39.119
## 
## Time = 0.4:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.962 10.3 Inf    -37.24     3.318
##  B5     60.442 10.3 Inf     40.16    80.722
## 
## Time = 0.5:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -17.181 10.3 Inf    -37.46     3.098
##  B5     13.557 10.3 Inf     -6.72    33.837
## 
## Time = 0.6:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -21.130 10.3 Inf    -41.41    -0.851
##  B5      5.314 10.3 Inf    -14.97    25.593
## 
## Time = 0.7:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -21.535 10.3 Inf    -41.81    -1.255
##  B5      6.290 10.3 Inf    -13.99    26.570
## 
## Time = 0.8:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.609 10.3 Inf    -36.89     3.671
##  B5    -10.051 10.3 Inf    -30.33    10.228
## 
## Time = 0.9:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -8.660 10.3 Inf    -28.94    11.619
##  B5    -14.196 10.3 Inf    -34.48     6.084
## 
## Time = 1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -12.970 10.3 Inf    -33.25     7.310
##  B5    -11.593 10.3 Inf    -31.87     8.687
## 
## Time = 1.1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.101 10.3 Inf    -36.38     4.178
##  B5    -10.809 10.3 Inf    -31.09     9.471
## 
## Time = 1.2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -18.624 10.3 Inf    -38.90     1.656
##  B5     -7.318 10.3 Inf    -27.60    12.962
## 
## Time = 1.3:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.995 10.3 Inf    -37.27     3.284
##  B5    -14.788 10.3 Inf    -35.07     5.492
## 
## Time = 1.4:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -10.821 10.3 Inf    -31.10     9.458
##  B5    -13.555 10.3 Inf    -33.83     6.725
## 
## Time = 1.5:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -18.605 10.3 Inf    -38.89     1.674
##  B5    -10.228 10.3 Inf    -30.51    10.051
## 
## Time = 1.6:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -19.291 10.3 Inf    -39.57     0.988
##  B5    -10.166 10.3 Inf    -30.45    10.114
## 
## Time = 1.7:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.561 10.3 Inf    -35.84     4.718
##  B5     -7.010 10.3 Inf    -27.29    13.269
## 
## Time = 1.8:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -14.932 10.3 Inf    -35.21     5.348
##  B5     -6.398 10.3 Inf    -26.68    13.882
## 
## Time = 1.9:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.774 10.3 Inf    -37.05     3.505
##  B5     -1.979 10.3 Inf    -22.26    18.300
## 
## Time = 2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -19.906 10.3 Inf    -40.19     0.374
##  B5      3.422 10.3 Inf    -16.86    23.702
## 
## Time = 2.1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -19.572 10.3 Inf    -39.85     0.708
##  B5      4.492 10.3 Inf    -15.79    24.772
## 
## Time = 2.2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -16.893 10.3 Inf    -37.17     3.386
##  B5      0.772 10.3 Inf    -19.51    21.051
## 
## Time = 2.3:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -18.264 10.3 Inf    -38.54     2.016
##  B5     12.050 10.3 Inf     -8.23    32.330
## 
## Time = 2.4:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.828 10.3 Inf    -36.11     4.452
##  B5     14.234 10.3 Inf     -6.05    34.514
## 
## Time = 2.5:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -17.028 10.3 Inf    -37.31     3.251
##  B5     -1.439 10.3 Inf    -21.72    18.840
## 
## Time = 2.6:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -13.688 10.3 Inf    -33.97     6.592
##  B5     26.444 10.3 Inf      6.16    46.723
## 
## Time = 2.7:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.214 10.3 Inf    -35.49     5.065
##  B5     15.573 10.3 Inf     -4.71    35.853
## 
## Time = 2.8:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1    -15.056 10.3 Inf    -35.34     5.224
##  B5      3.078 10.3 Inf    -17.20    23.358
## 
## Time = 2.9:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -5.320 10.3 Inf    -25.60    14.960
##  B5      5.027 10.3 Inf    -15.25    25.307
## 
## Time = 3:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -9.505 10.3 Inf    -29.78    10.775
##  B5     75.072 10.3 Inf     54.79    95.352
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## 
## $contrasts
## Time = 0:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     0.633 13.1 Inf   0.048  0.9615
## 
## Time = 0.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     0.036 13.1 Inf   0.003  0.9978
## 
## Time = 0.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -12.981 13.1 Inf  -0.991  0.3218
## 
## Time = 0.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -31.906 13.1 Inf  -2.435  0.0149
## 
## Time = 0.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -77.403 13.1 Inf  -5.908  <.0001
## 
## Time = 0.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -30.738 13.1 Inf  -2.346  0.0190
## 
## Time = 0.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -26.444 13.1 Inf  -2.018  0.0435
## 
## Time = 0.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -27.825 13.1 Inf  -2.124  0.0337
## 
## Time = 0.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -6.558 13.1 Inf  -0.501  0.6167
## 
## Time = 0.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     5.536 13.1 Inf   0.423  0.6726
## 
## Time = 1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -1.377 13.1 Inf  -0.105  0.9163
## 
## Time = 1.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -5.293 13.1 Inf  -0.404  0.6862
## 
## Time = 1.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -11.306 13.1 Inf  -0.863  0.3882
## 
## Time = 1.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -2.207 13.1 Inf  -0.168  0.8662
## 
## Time = 1.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     2.733 13.1 Inf   0.209  0.8347
## 
## Time = 1.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -8.377 13.1 Inf  -0.639  0.5226
## 
## Time = 1.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -9.126 13.1 Inf  -0.697  0.4861
## 
## Time = 1.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -8.551 13.1 Inf  -0.653  0.5140
## 
## Time = 1.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -8.533 13.1 Inf  -0.651  0.5148
## 
## Time = 1.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -14.795 13.1 Inf  -1.129  0.2588
## 
## Time = 2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -23.328 13.1 Inf  -1.781  0.0750
## 
## Time = 2.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -24.063 13.1 Inf  -1.837  0.0663
## 
## Time = 2.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -17.665 13.1 Inf  -1.348  0.1776
## 
## Time = 2.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -30.314 13.1 Inf  -2.314  0.0207
## 
## Time = 2.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -30.062 13.1 Inf  -2.295  0.0218
## 
## Time = 2.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -15.589 13.1 Inf  -1.190  0.2341
## 
## Time = 2.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -40.132 13.1 Inf  -3.063  0.0022
## 
## Time = 2.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -30.788 13.1 Inf  -2.350  0.0188
## 
## Time = 2.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -18.134 13.1 Inf  -1.384  0.1663
## 
## Time = 2.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -10.347 13.1 Inf  -0.790  0.4296
## 
## Time = 3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -84.577 13.1 Inf  -6.456  <.0001
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic
#lsmeans(m.f_ALL_beta3, pairwise ~ Block | Channel)

#Post hocs for Lpress models

#Feedback Posthocs
lsmeans(m.f_ALL_beta1, pairwise ~ Block | Time) #Here we can directly isolate the timepoints that are interacting
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 6448' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 6448)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 6448' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 6448)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $lsmeans
## Time = -0.5:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1      5.386 13.4 Inf   -20.788      31.6
##  B5     -2.528 13.4 Inf   -28.702      23.6
## 
## Time = -0.4:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -1.293 13.4 Inf   -27.467      24.9
##  B5     -1.798 13.4 Inf   -27.972      24.4
## 
## Time = -0.3:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -1.101 13.4 Inf   -27.275      25.1
##  B5     -0.012 13.4 Inf   -26.186      26.2
## 
## Time = -0.2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -4.079 13.4 Inf   -30.253      22.1
##  B5      0.523 13.4 Inf   -25.651      26.7
## 
## Time = -0.1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -0.636 13.4 Inf   -26.810      25.5
##  B5      2.092 13.4 Inf   -24.081      28.3
## 
## Time = 0:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1      2.719 13.4 Inf   -23.455      28.9
##  B5      6.071 13.4 Inf   -20.103      32.2
## 
## Time = 0.1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1      2.658 13.4 Inf   -23.516      28.8
##  B5     15.732 13.4 Inf   -10.442      41.9
## 
## Time = 0.2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1      4.706 13.4 Inf   -21.468      30.9
##  B5     17.619 13.4 Inf    -8.555      43.8
## 
## Time = 0.3:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     13.322 13.4 Inf   -12.852      39.5
##  B5     18.390 13.4 Inf    -7.784      44.6
## 
## Time = 0.4:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     15.061 13.4 Inf   -11.113      41.2
##  B5     19.642 13.4 Inf    -6.532      45.8
## 
## Time = 0.5:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     21.511 13.4 Inf    -4.663      47.7
##  B5     26.563 13.4 Inf     0.389      52.7
## 
## Time = 0.6:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     34.564 13.4 Inf     8.390      60.7
##  B5     43.722 13.4 Inf    17.548      69.9
## 
## Time = 0.7:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     47.470 13.4 Inf    21.296      73.6
##  B5     59.647 13.4 Inf    33.473      85.8
## 
## Time = 0.8:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     45.679 13.4 Inf    19.505      71.9
##  B5     54.469 13.4 Inf    28.295      80.6
## 
## Time = 0.9:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     39.505 13.4 Inf    13.331      65.7
##  B5     48.080 13.4 Inf    21.906      74.3
## 
## Time = 1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     46.276 13.4 Inf    20.102      72.4
##  B5     48.554 13.4 Inf    22.380      74.7
## 
## Time = 1.1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     45.845 13.4 Inf    19.671      72.0
##  B5     56.268 13.4 Inf    30.094      82.4
## 
## Time = 1.2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     38.552 13.4 Inf    12.378      64.7
##  B5     61.364 13.4 Inf    35.190      87.5
## 
## Time = 1.3:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     34.766 13.4 Inf     8.592      60.9
##  B5     51.422 13.4 Inf    25.248      77.6
## 
## Time = 1.4:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     40.058 13.4 Inf    13.884      66.2
##  B5     54.699 13.4 Inf    28.525      80.9
## 
## Time = 1.5:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     41.326 13.4 Inf    15.152      67.5
##  B5    109.087 13.4 Inf    82.913     135.3
## 
## Time = 1.6:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     49.423 13.4 Inf    23.249      75.6
##  B5     79.171 13.4 Inf    52.997     105.3
## 
## Time = 1.7:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     48.581 13.4 Inf    22.408      74.8
##  B5     74.928 13.4 Inf    48.754     101.1
## 
## Time = 1.8:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     50.016 13.4 Inf    23.842      76.2
##  B5     73.642 13.4 Inf    47.468      99.8
## 
## Time = 1.9:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     49.349 13.4 Inf    23.175      75.5
##  B5     70.024 13.4 Inf    43.850      96.2
## 
## Time = 2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     54.661 13.4 Inf    28.487      80.8
##  B5     63.726 13.4 Inf    37.552      89.9
## 
## Time = 2.1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     52.203 13.4 Inf    26.029      78.4
##  B5     82.935 13.4 Inf    56.761     109.1
## 
## Time = 2.2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     47.225 13.4 Inf    21.051      73.4
##  B5    129.736 13.4 Inf   103.562     155.9
## 
## Time = 2.3:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     49.578 13.4 Inf    23.404      75.8
##  B5    110.349 13.4 Inf    84.175     136.5
## 
## Time = 2.4:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     55.706 13.4 Inf    29.532      81.9
##  B5     53.658 13.4 Inf    27.484      79.8
## 
## Time = 2.5:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     13.862 13.4 Inf   -12.312      40.0
##  B5      5.576 13.4 Inf   -20.598      31.7
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## 
## $contrasts
## Time = -0.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     7.914 14.6 Inf   0.543  0.5869
## 
## Time = -0.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     0.505 14.6 Inf   0.035  0.9724
## 
## Time = -0.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -1.089 14.6 Inf  -0.075  0.9404
## 
## Time = -0.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -4.601 14.6 Inf  -0.316  0.7521
## 
## Time = -0.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -2.728 14.6 Inf  -0.187  0.8514
## 
## Time = 0:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -3.352 14.6 Inf  -0.230  0.8180
## 
## Time = 0.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -13.074 14.6 Inf  -0.898  0.3694
## 
## Time = 0.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -12.914 14.6 Inf  -0.887  0.3753
## 
## Time = 0.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -5.068 14.6 Inf  -0.348  0.7279
## 
## Time = 0.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -4.581 14.6 Inf  -0.315  0.7531
## 
## Time = 0.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -5.053 14.6 Inf  -0.347  0.7287
## 
## Time = 0.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -9.158 14.6 Inf  -0.629  0.5295
## 
## Time = 0.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -12.177 14.6 Inf  -0.836  0.4031
## 
## Time = 0.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -8.791 14.6 Inf  -0.604  0.5462
## 
## Time = 0.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -8.575 14.6 Inf  -0.589  0.5560
## 
## Time = 1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -2.278 14.6 Inf  -0.156  0.8757
## 
## Time = 1.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -10.424 14.6 Inf  -0.716  0.4742
## 
## Time = 1.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -22.812 14.6 Inf  -1.566  0.1173
## 
## Time = 1.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -16.657 14.6 Inf  -1.144  0.2528
## 
## Time = 1.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -14.641 14.6 Inf  -1.005  0.3148
## 
## Time = 1.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -67.761 14.6 Inf  -4.652  <.0001
## 
## Time = 1.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -29.748 14.6 Inf  -2.042  0.0411
## 
## Time = 1.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -26.347 14.6 Inf  -1.809  0.0705
## 
## Time = 1.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -23.626 14.6 Inf  -1.622  0.1048
## 
## Time = 1.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -20.675 14.6 Inf  -1.419  0.1558
## 
## Time = 2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -9.065 14.6 Inf  -0.622  0.5337
## 
## Time = 2.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -30.732 14.6 Inf  -2.110  0.0349
## 
## Time = 2.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -82.512 14.6 Inf  -5.665  <.0001
## 
## Time = 2.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -60.771 14.6 Inf  -4.172  <.0001
## 
## Time = 2.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     2.048 14.6 Inf   0.141  0.8882
## 
## Time = 2.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     8.286 14.6 Inf   0.569  0.5694
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic
#lsmeans(m.f_ALL_beta1, pairwise ~ Block | Channel) #this is expected but not the focus of the study

lsmeans(m.f_ALL_beta2, pairwise ~ Block | Time) 
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 6448' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 6448)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 6448' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 6448)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $lsmeans
## Time = -0.5:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1      8.360 17.7 Inf  -26.2840      43.0
##  B5      2.618 17.7 Inf  -32.0264      37.3
## 
## Time = -0.4:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -4.936 17.7 Inf  -39.5800      29.7
##  B5     -2.752 17.7 Inf  -37.3957      31.9
## 
## Time = -0.3:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -1.433 17.7 Inf  -36.0769      33.2
##  B5     -2.841 17.7 Inf  -37.4853      31.8
## 
## Time = -0.2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -3.757 17.7 Inf  -38.4015      30.9
##  B5     -1.737 17.7 Inf  -36.3812      32.9
## 
## Time = -0.1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     -0.719 17.7 Inf  -35.3634      33.9
##  B5      2.227 17.7 Inf  -32.4173      36.9
## 
## Time = 0:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1      2.453 17.7 Inf  -32.1911      37.1
##  B5     12.032 17.7 Inf  -22.6117      46.7
## 
## Time = 0.1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1      4.542 17.7 Inf  -30.1024      39.2
##  B5     20.343 17.7 Inf  -14.3012      55.0
## 
## Time = 0.2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1      9.009 17.7 Inf  -25.6352      43.7
##  B5     23.615 17.7 Inf  -11.0291      58.3
## 
## Time = 0.3:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     20.137 17.7 Inf  -14.5072      54.8
##  B5     26.494 17.7 Inf   -8.1497      61.1
## 
## Time = 0.4:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     17.064 17.7 Inf  -17.5803      51.7
##  B5     23.456 17.7 Inf  -11.1881      58.1
## 
## Time = 0.5:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     24.881 17.7 Inf   -9.7627      59.5
##  B5     28.082 17.7 Inf   -6.5622      62.7
## 
## Time = 0.6:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     41.638 17.7 Inf    6.9938      76.3
##  B5     38.917 17.7 Inf    4.2728      73.6
## 
## Time = 0.7:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     40.873 17.7 Inf    6.2289      75.5
##  B5     61.519 17.7 Inf   26.8749      96.2
## 
## Time = 0.8:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     36.790 17.7 Inf    2.1460      71.4
##  B5     58.992 17.7 Inf   24.3483      93.6
## 
## Time = 0.9:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     41.405 17.7 Inf    6.7605      76.0
##  B5     45.073 17.7 Inf   10.4285      79.7
## 
## Time = 1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     43.332 17.7 Inf    8.6882      78.0
##  B5     43.561 17.7 Inf    8.9170      78.2
## 
## Time = 1.1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     48.267 17.7 Inf   13.6225      82.9
##  B5     66.807 17.7 Inf   32.1626     101.5
## 
## Time = 1.2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     39.154 17.7 Inf    4.5099      73.8
##  B5     60.038 17.7 Inf   25.3939      94.7
## 
## Time = 1.3:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     34.580 17.7 Inf   -0.0645      69.2
##  B5     58.330 17.7 Inf   23.6864      93.0
## 
## Time = 1.4:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     50.884 17.7 Inf   16.2395      85.5
##  B5     47.977 17.7 Inf   13.3328      82.6
## 
## Time = 1.5:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     47.725 17.7 Inf   13.0813      82.4
##  B5    161.092 17.7 Inf  126.4480     195.7
## 
## Time = 1.6:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     52.321 17.7 Inf   17.6767      87.0
##  B5    107.676 17.7 Inf   73.0319     142.3
## 
## Time = 1.7:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     45.135 17.7 Inf   10.4906      79.8
##  B5     77.545 17.7 Inf   42.9013     112.2
## 
## Time = 1.8:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     48.556 17.7 Inf   13.9120      83.2
##  B5     79.398 17.7 Inf   44.7543     114.0
## 
## Time = 1.9:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     55.565 17.7 Inf   20.9211      90.2
##  B5     59.460 17.7 Inf   24.8155      94.1
## 
## Time = 2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     64.082 17.7 Inf   29.4384      98.7
##  B5     66.446 17.7 Inf   31.8022     101.1
## 
## Time = 2.1:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     60.928 17.7 Inf   26.2843      95.6
##  B5     78.809 17.7 Inf   44.1654     113.5
## 
## Time = 2.2:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     49.793 17.7 Inf   15.1488      84.4
##  B5    141.258 17.7 Inf  106.6143     175.9
## 
## Time = 2.3:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     53.920 17.7 Inf   19.2760      88.6
##  B5    149.652 17.7 Inf  115.0082     184.3
## 
## Time = 2.4:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1     56.536 17.7 Inf   21.8916      91.2
##  B5     73.966 17.7 Inf   39.3217     108.6
## 
## Time = 2.5:
##  Block  lsmean   SE  df asymp.LCL asymp.UCL
##  B1      7.433 17.7 Inf  -27.2107      42.1
##  B5      0.733 17.7 Inf  -33.9112      35.4
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## 
## $contrasts
## Time = -0.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     5.742 18.9 Inf   0.304  0.7608
## 
## Time = -0.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -2.184 18.9 Inf  -0.116  0.9078
## 
## Time = -0.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     1.408 18.9 Inf   0.075  0.9405
## 
## Time = -0.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -2.020 18.9 Inf  -0.107  0.9147
## 
## Time = -0.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -2.946 18.9 Inf  -0.156  0.8759
## 
## Time = 0:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -9.579 18.9 Inf  -0.508  0.6115
## 
## Time = 0.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -15.801 18.9 Inf  -0.838  0.4021
## 
## Time = 0.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -14.606 18.9 Inf  -0.774  0.4387
## 
## Time = 0.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -6.358 18.9 Inf  -0.337  0.7361
## 
## Time = 0.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -6.392 18.9 Inf  -0.339  0.7347
## 
## Time = 0.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -3.200 18.9 Inf  -0.170  0.8653
## 
## Time = 0.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     2.721 18.9 Inf   0.144  0.8853
## 
## Time = 0.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -20.646 18.9 Inf  -1.095  0.2737
## 
## Time = 0.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -22.202 18.9 Inf  -1.177  0.2391
## 
## Time = 0.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -3.668 18.9 Inf  -0.194  0.8458
## 
## Time = 1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -0.229 18.9 Inf  -0.012  0.9903
## 
## Time = 1.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -18.540 18.9 Inf  -0.983  0.3256
## 
## Time = 1.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -20.884 18.9 Inf  -1.107  0.2682
## 
## Time = 1.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -23.751 18.9 Inf  -1.259  0.2079
## 
## Time = 1.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     2.907 18.9 Inf   0.154  0.8775
## 
## Time = 1.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5  -113.367 18.9 Inf  -6.011  <.0001
## 
## Time = 1.6:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -55.355 18.9 Inf  -2.935  0.0033
## 
## Time = 1.7:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -32.411 18.9 Inf  -1.718  0.0857
## 
## Time = 1.8:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -30.842 18.9 Inf  -1.635  0.1020
## 
## Time = 1.9:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -3.894 18.9 Inf  -0.206  0.8364
## 
## Time = 2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5    -2.364 18.9 Inf  -0.125  0.9003
## 
## Time = 2.1:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -17.881 18.9 Inf  -0.948  0.3431
## 
## Time = 2.2:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -91.465 18.9 Inf  -4.850  <.0001
## 
## Time = 2.3:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -95.732 18.9 Inf  -5.076  <.0001
## 
## Time = 2.4:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5   -17.430 18.9 Inf  -0.924  0.3554
## 
## Time = 2.5:
##  contrast estimate   SE  df z.ratio p.value
##  B1 - B5     6.701 18.9 Inf   0.355  0.7224
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic
#lsmeans(m.f_ALL_beta2, pairwise ~ Block | Channel)

lsmeans(m.f_ALL_beta3, pairwise ~ Block | Time) 
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 6448' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 6448)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 6448' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 6448)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## $lsmeans
## Time = -0.5:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     11.579 17 Inf    -21.65      44.8
##  B5      8.007 17 Inf    -25.22      41.2
## 
## Time = -0.4:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     -6.186 17 Inf    -39.41      27.0
##  B5     -5.318 17 Inf    -38.54      27.9
## 
## Time = -0.3:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     -3.811 17 Inf    -37.04      29.4
##  B5     -4.141 17 Inf    -37.37      29.1
## 
## Time = -0.2:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     -3.286 17 Inf    -36.51      29.9
##  B5     -3.002 17 Inf    -36.23      30.2
## 
## Time = -0.1:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     -2.108 17 Inf    -35.33      31.1
##  B5      0.642 17 Inf    -32.58      33.9
## 
## Time = 0:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1      1.647 17 Inf    -31.58      34.9
##  B5     12.059 17 Inf    -21.17      45.3
## 
## Time = 0.1:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1      2.801 17 Inf    -30.42      36.0
##  B5     21.063 17 Inf    -12.16      54.3
## 
## Time = 0.2:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1      7.999 17 Inf    -25.23      41.2
##  B5     23.365 17 Inf     -9.86      56.6
## 
## Time = 0.3:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     13.604 17 Inf    -19.62      46.8
##  B5     24.221 17 Inf     -9.00      57.4
## 
## Time = 0.4:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     11.981 17 Inf    -21.24      45.2
##  B5     20.351 17 Inf    -12.87      53.6
## 
## Time = 0.5:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     15.835 17 Inf    -17.39      49.1
##  B5     21.726 17 Inf    -11.50      55.0
## 
## Time = 0.6:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     25.625 17 Inf     -7.60      58.9
##  B5     23.818 17 Inf     -9.41      57.0
## 
## Time = 0.7:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     28.392 17 Inf     -4.83      61.6
##  B5     37.881 17 Inf      4.66      71.1
## 
## Time = 0.8:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     24.873 17 Inf     -8.35      58.1
##  B5     50.670 17 Inf     17.44      83.9
## 
## Time = 0.9:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     31.407 17 Inf     -1.82      64.6
##  B5     40.401 17 Inf      7.18      73.6
## 
## Time = 1:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     34.333 17 Inf      1.11      67.6
##  B5     31.436 17 Inf     -1.79      64.7
## 
## Time = 1.1:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     39.167 17 Inf      5.94      72.4
##  B5     51.257 17 Inf     18.03      84.5
## 
## Time = 1.2:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     30.151 17 Inf     -3.07      63.4
##  B5     59.303 17 Inf     26.08      92.5
## 
## Time = 1.3:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     27.141 17 Inf     -6.08      60.4
##  B5     60.114 17 Inf     26.89      93.3
## 
## Time = 1.4:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     41.773 17 Inf      8.55      75.0
##  B5     41.190 17 Inf      7.96      74.4
## 
## Time = 1.5:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     41.967 17 Inf      8.74      75.2
##  B5    134.047 17 Inf    100.82     167.3
## 
## Time = 1.6:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     42.719 17 Inf      9.49      75.9
##  B5    136.825 17 Inf    103.60     170.1
## 
## Time = 1.7:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     35.221 17 Inf      2.00      68.4
##  B5     66.906 17 Inf     33.68     100.1
## 
## Time = 1.8:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     40.751 17 Inf      7.53      74.0
##  B5     77.007 17 Inf     43.78     110.2
## 
## Time = 1.9:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     46.621 17 Inf     13.40      79.8
##  B5     61.695 17 Inf     28.47      94.9
## 
## Time = 2:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     54.552 17 Inf     21.33      87.8
##  B5     57.102 17 Inf     23.88      90.3
## 
## Time = 2.1:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     62.160 17 Inf     28.93      95.4
##  B5     63.649 17 Inf     30.42      96.9
## 
## Time = 2.2:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     56.064 17 Inf     22.84      89.3
##  B5     97.049 17 Inf     63.82     130.3
## 
## Time = 2.3:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     46.765 17 Inf     13.54      80.0
##  B5    120.539 17 Inf     87.31     153.8
## 
## Time = 2.4:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     54.115 17 Inf     20.89      87.3
##  B5     93.189 17 Inf     59.96     126.4
## 
## Time = 2.5:
##  Block  lsmean SE  df asymp.LCL asymp.UCL
##  B1     18.198 17 Inf    -15.03      51.4
##  B5     13.303 17 Inf    -19.92      46.5
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## 
## $contrasts
## Time = -0.5:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5     3.572 17 Inf   0.210  0.8334
## 
## Time = -0.4:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5    -0.869 17 Inf  -0.051  0.9592
## 
## Time = -0.3:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5     0.331 17 Inf   0.019  0.9845
## 
## Time = -0.2:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5    -0.284 17 Inf  -0.017  0.9867
## 
## Time = -0.1:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5    -2.751 17 Inf  -0.162  0.8713
## 
## Time = 0:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -10.412 17 Inf  -0.613  0.5398
## 
## Time = 0.1:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -18.262 17 Inf  -1.075  0.2822
## 
## Time = 0.2:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -15.366 17 Inf  -0.905  0.3655
## 
## Time = 0.3:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -10.617 17 Inf  -0.625  0.5318
## 
## Time = 0.4:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5    -8.370 17 Inf  -0.493  0.6221
## 
## Time = 0.5:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5    -5.891 17 Inf  -0.347  0.7287
## 
## Time = 0.6:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5     1.807 17 Inf   0.106  0.9153
## 
## Time = 0.7:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5    -9.490 17 Inf  -0.559  0.5763
## 
## Time = 0.8:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -25.798 17 Inf  -1.519  0.1287
## 
## Time = 0.9:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5    -8.994 17 Inf  -0.530  0.5964
## 
## Time = 1:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5     2.896 17 Inf   0.171  0.8646
## 
## Time = 1.1:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -12.090 17 Inf  -0.712  0.4765
## 
## Time = 1.2:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -29.152 17 Inf  -1.717  0.0860
## 
## Time = 1.3:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -32.973 17 Inf  -1.942  0.0522
## 
## Time = 1.4:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5     0.583 17 Inf   0.034  0.9726
## 
## Time = 1.5:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -92.080 17 Inf  -5.422  <.0001
## 
## Time = 1.6:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -94.105 17 Inf  -5.541  <.0001
## 
## Time = 1.7:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -31.685 17 Inf  -1.866  0.0621
## 
## Time = 1.8:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -36.256 17 Inf  -2.135  0.0328
## 
## Time = 1.9:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -15.074 17 Inf  -0.888  0.3747
## 
## Time = 2:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5    -2.550 17 Inf  -0.150  0.8807
## 
## Time = 2.1:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5    -1.489 17 Inf  -0.088  0.9301
## 
## Time = 2.2:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -40.985 17 Inf  -2.413  0.0158
## 
## Time = 2.3:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -73.774 17 Inf  -4.344  <.0001
## 
## Time = 2.4:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5   -39.074 17 Inf  -2.301  0.0214
## 
## Time = 2.5:
##  contrast estimate SE  df z.ratio p.value
##  B1 - B5     4.895 17 Inf   0.288  0.7732
## 
## Results are averaged over the levels of: Channel 
## Degrees-of-freedom method: asymptotic
#lsmeans(m.f_ALL_beta3, pairwise ~ Block | Channel)

#Filter out significant timepoints, based on <.05 as Tukey HSD is already adjusted for more conservative CIs

p_ST_beta1 <- p_ALL_beta1 %>% filter(Time %in% c(-1.0, -0.9, -0.8, -0.7, -0.6, 1.1, 1.2, 1.3, 1.4))
p_ST_beta2 <- p_ALL_beta2 %>% filter(Time %in% c(0.9, 1.0, 1.1, 1.2, 1.3, 1.4))
p_ST_beta3 <- p_ALL_beta3 %>% filter(Time %in% c(0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4))

m_ST_beta1 <- m_ALL_beta1 %>% filter(Time %in% c(2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0))
m_ST_beta2 <- m_ALL_beta2 %>% filter(Time %in% c(0.4, 2.3, 2.6, 2.7, 3.0))
m_ST_beta3 <- m_ALL_beta3 %>% filter(Time %in% c(0.3, 0.4, 0.5, 0.6, 0.7, 2.3, 2.4, 2.6, 2.7, 3.0))

lp_ST_beta1 <- f_ALL_beta1 %>% filter(Time %in% c(1.5, 1.6, 2.1, 2.2, 2.3))
lp_ST_beta2 <- f_ALL_beta2 %>% filter(Time %in% c(1.5, 1.6, 2.2, 2.3))
lp_ST_beta3 <- f_ALL_beta3 %>% filter(Time %in% c(1.5, 1.6, 1.8, 2.2, 2.3, 2.4))

#Final RT Models prep

#p_ST_beta1 <- read.csv("p_ST_beta1.csv", sep = ",")

#p_ST_beta1$RT <- factor(p_ST_beta1$RT)
#p_ST_beta2$RT <- factor(p_ST_beta2$RT)
#p_ST_beta3$RT <- factor(p_ST_beta3$RT)

#Checking factors
#(l <- sapply(p_ST_beta1, function(x) is.factor(x)))

m.p_ST_beta1 <- lmer(ERDS ~  Block * RT + (1|Participant), data = p_ST_beta1)
Anova(m.p_ST_beta1)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##            Chisq Df Pr(>Chisq)    
## Block    32.4677  1  1.212e-08 ***
## RT        2.7465  1    0.09747 .  
## Block:RT 33.0413  1  9.022e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m.f_ALL_beta1)

m.p_ST_beta2 <- lmer(ERDS ~  Block * RT + (1|Participant), data = p_ST_beta2)
Anova(m.p_ST_beta2)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##            Chisq Df Pr(>Chisq)   
## Block    10.6169  1   0.001121 **
## RT        0.1188  1   0.730386   
## Block:RT  0.0711  1   0.789764   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m.f_ALL_beta2)

m.p_ST_beta3 <- lmer(ERDS ~ Block * RT + (1|Participant), data = p_ST_beta3)
Anova(m.p_ST_beta3)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##           Chisq Df Pr(>Chisq)   
## Block    4.5298  1   0.033310 * 
## RT       1.8206  1   0.177242   
## Block:RT 9.2913  1   0.002302 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m2.f_ALL_beta3)

#Final RT Models motor

m.m_ST_beta1 <- lmer(ERDS ~  Block * RT + (1|Participant), data = m_ST_beta1)
Anova(m.m_ST_beta1)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##            Chisq Df Pr(>Chisq)    
## Block     9.1588  1   0.002475 ** 
## RT        0.7977  1   0.371775    
## Block:RT 48.4232  1  3.435e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m.f_ALL_beta1)

m.m_ST_beta2 <- lmer(ERDS ~  Block * RT + (1|Participant), data = m_ST_beta2)
Anova(m.m_ST_beta2)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##            Chisq Df Pr(>Chisq)    
## Block     6.9428  1  0.0084159 ** 
## RT        0.0009  1  0.9765240    
## Block:RT 12.8091  1  0.0003449 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m.f_ALL_beta2)

m.m_ST_beta3 <- lmer(ERDS ~ Block * RT + (1|Participant), data = m_ST_beta3)
Anova(m.m_ST_beta3)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##            Chisq Df Pr(>Chisq)    
## Block    25.6719  1  4.047e-07 ***
## RT        3.8256  1    0.05048 .  
## Block:RT  3.1481  1    0.07601 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m2.f_ALL_beta3)

#Final RT Models Last Press

m.lp_ST_beta1 <- lmer(ERDS ~  Block * RT + (1|Participant), data = lp_ST_beta1)
Anova(m.lp_ST_beta1)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##            Chisq Df Pr(>Chisq)    
## Block    14.1532  1  0.0001685 ***
## RT        2.8442  1  0.0917037 .  
## Block:RT  2.2904  1  0.1301798    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m.f_ALL_beta1)

m.lp_ST_beta2 <- lmer(ERDS ~  Block * RT + (1|Participant), data = lp_ST_beta2)
Anova(m.lp_ST_beta2)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##           Chisq Df Pr(>Chisq)   
## Block    9.4327  1   0.002132 **
## RT       0.6039  1   0.437086   
## Block:RT 7.3925  1   0.006550 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m.f_ALL_beta2)

m.lp_ST_beta3 <- lmer(ERDS ~ Block * RT + (1|Participant), data = lp_ST_beta3)
Anova(m.lp_ST_beta3)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: ERDS
##            Chisq Df Pr(>Chisq)    
## Block    11.1977  1  0.0008190 ***
## RT        0.4143  1  0.5197757    
## Block:RT 13.7786  1  0.0002057 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary(m2.f_ALL_beta3)

#PREP beta1 plot

#########
#Need Effects library
#Running effect and preparing a new DF
ae.m.1<-allEffects(m.p_ST_beta1)
ae.m.df.1<-as.data.frame(ae.m.1[[1]])

#Model plot: with 95% CIs
ae.prep.beta1 <- ggplot(na.omit(ae.m.df.1), aes(x=RT, y=fit, color=Block))+
  geom_line(aes(group=Block), size=1) +
  geom_ribbon(data= ae.m.df.1, aes(ymin=lower, ymax=upper, group=Block, fill=Block), alpha=0.2) +
  geom_point(aes(color = Block, shape = Block), size=2.2)+
  ylab("ERDS (%)")+
  xlab("RT (ms)")+
  ggtitle("Prep Beta1 ERDS (%) - Block x RT")+
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line =element_line(colour = "black"))

####
plot(ae.prep.beta1)

#PREP beta3 plot

#########
#Need Effects library
#Running effect and preparing a new DF
ae.m.2<-allEffects(m.p_ST_beta3)
ae.m.df.2<-as.data.frame(ae.m.2[[1]])

#Model plot: with 95% CIs
ae.prep.beta3 <- ggplot(na.omit(ae.m.df.2), aes(x=RT, y=fit, color=Block))+
  geom_line(aes(group=Block), size=1) +
  geom_ribbon(data= ae.m.df.2, aes(ymin=lower, ymax=upper, group=Block, fill=Block), alpha=0.2) +
  geom_point(aes(color = Block, shape = Block), size=2.2)+
  ylab("ERDS (%)")+
  xlab("RT (ms)")+
  ggtitle("Prep Beta3 ERDS (%) - Block x RT")+
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line =element_line(colour = "black"))

####
plot(ae.prep.beta3)

#Motor beta1 plot

#########
#Need Effects library
#Running effect and preparing a new DF
ae.m.3<-allEffects(m.m_ST_beta1)
ae.m.df.3<-as.data.frame(ae.m.3[[1]])

#Model plot: with 95% CIs
ae.motor.beta1 <- ggplot(na.omit(ae.m.df.3), aes(x=RT, y=fit, color=Block))+
  geom_line(aes(group=Block), size=1) +
  geom_ribbon(data= ae.m.df.3, aes(ymin=lower, ymax=upper, group=Block, fill=Block), alpha=0.2) +
  geom_point(aes(color = Block, shape = Block), size=2.2)+
  ylab("ERDS (%)")+
  xlab("RT (ms)")+
  ggtitle("Motor Beta2 ERDS (%) - Block x RT")+
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line =element_line(colour = "black"))

####
plot(ae.motor.beta1)

#Motor beta2 plot

#########
#Need Effects library
#Running effect and preparing a new DF
ae.m.4<-allEffects(m.m_ST_beta2)
ae.m.df.4<-as.data.frame(ae.m.4[[1]])

#Model plot: with 95% CIs
ae.motor.beta2 <- ggplot(na.omit(ae.m.df.4), aes(x=RT, y=fit, color=Block))+
  geom_line(aes(group=Block), size=1) +
  geom_ribbon(data= ae.m.df.4, aes(ymin=lower, ymax=upper, group=Block, fill=Block), alpha=0.2) +
  geom_point(aes(color = Block, shape = Block), size=2.2)+
  ylab("ERDS (%)")+
  xlab("RT (ms)")+
  ggtitle("Motor Beta2 ERDS (%) - Block x RT")+
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line =element_line(colour = "black"))

####
plot(ae.motor.beta2)

#Lpress beta2 plot

#########
#Need Effects library
#Running effect and preparing a new DF
ae.m.5<-allEffects(m.lp_ST_beta2)
ae.m.df.5<-as.data.frame(ae.m.5[[1]])

#Model plot: with 95% CIs
ae.lpress.beta2 <- ggplot(na.omit(ae.m.df.5), aes(x=RT, y=fit, color=Block))+
  geom_line(aes(group=Block), size=1) +
  geom_ribbon(data= ae.m.df.5, aes(ymin=lower, ymax=upper, group=Block, fill=Block), alpha=0.2) +
  geom_point(aes(color = Block, shape = Block), size=2.2)+
  ylab("ERDS (%)")+
  xlab("RT (ms)")+
  ggtitle("Last Press Beta2 ERDS (%) - Block x RT")+
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line =element_line(colour = "black"))

####
plot(ae.lpress.beta2)

#Lpress beta3 plot

#########
#Need Effects library
#Running effect and preparing a new DF
ae.m.6<-allEffects(m.lp_ST_beta3)
ae.m.df.6<-as.data.frame(ae.m.6[[1]])

#Model plot: with 95% CIs
ae.lpress.beta3 <- ggplot(na.omit(ae.m.df.5), aes(x=RT, y=fit, color=Block))+
  geom_line(aes(group=Block), size=1) +
  geom_ribbon(data= ae.m.df.6, aes(ymin=lower, ymax=upper, group=Block, fill=Block), alpha=0.2) +
  geom_point(aes(color = Block, shape = Block), size=2.2)+
  ylab("ERDS (%)")+
  xlab("RT (ms)")+
  ggtitle("Last Press Beta3 ERDS (%) - Block x RT")+
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line =element_line(colour = "black"))

####
plot(ae.lpress.beta3)