Identificar los valores de la función de probabilidad bajo la fórmula de distribución de Poisson.
Realizar distribuciones de probabilidad conforme a la distribución de probabilidad de Poisson a partir del valor medio dado en ejercicios.
Se generan las tablas de probabilidad conforme a distribución Poisson, se identifican los valores de probabilidad cuando la variable discreta \(x\) tenga algún exactamente algún valor, \(\leq\) a algún valor o \(\gt\) o \(\geq\), entre otros.
Otra variable aleatoria discreta que tiene numerosas aplicaciones prácticas es la variable aleatoria de Poisson. Su distribución de probabilidad da un buen modelo para datos que representa el número de sucesos de un evento especificado en una unidad determinada de tiempo o espacio [@mendenhall_introduccion_2006].
Los experimentos que dan valores numéricos de una variable aleatoria X, el número de resultados que ocurren durante un intervalo dado o en una región específica, se llaman experimentos de Poisson.[@walpole_probabilidad_2012]
Esta distribución, suele usarse para estimar el número de veces que sucede un hecho determinado (ocurrencias) en un intervalo de tiempo o de espacio. Por ejemplo,
La variable de interés va desde el número promedio de automóviles que llegan (llegadas) a un lavado de coches en una hora o
El número medio de reparaciones necesarias en 10 kms. de una autopista o,
El número promedio de fugas de agua en tubería en un lapso 3 meses.
El número de focos promedio que fallan en una cantidad de lote de 1000 focos.
El número medio de fugas en 100 kms.de tubería, entre otros [@anderson_estadistica_2008].
\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \]en donde:
\(f(x)\) es la función de probabilidad para valores de \(x=0,1,2,3..,n\).
\(\mu\) es el valor medio esperado en cierto lapso de tiempo. Algunas veces expresado como \(\lambda\)
\(x\) es la variable aleatoria. Es una variable aleatoria discreta \((x = 0, 1, 2, . . . )\)
\(e\) valor constante, es la base de los logaritmos naturales \(2.71728\).
Propiedades de un evento Poisson:
Los valores de la esperanza (o media) y de la varianza para la distribución de Poisson son de la siguiente manera:
library(ggplot2)
source("https://raw.githubusercontent.com/rpizarrog/Trabajos-en-R-AD2021/main/funciones/funciones.para.distribuciones.r")
Se describen ejercicios en donde se encuentra la función de distribución
Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.[@anderson_estadistica_2008]
Si se puede suponer que la probabilidad de llegada de los automóviles es la misma en cualesquiera de dos lapsos de la misma duración y si la llegada o no–llegada de un automóvil en cualquier lapso es independiente de la llegada o no–llegada de un automóvil en cualquier otro lapso, se puede aplicar la función de probabilidad de Poisson.
Dichas condiciones se satisfacen y en un análisis de datos pasados encuentra que el número promedio de automóviles que llegan en un lapso de 15 minutos es igual a 10;
Aquí la variable aleatoria es \(x\) número de automóviles que llegan en un lapso de 15 minutos.
Si la administración desea saber la probabilidad de que lleguen exactamente 5 automóviles en 15 minutos, \(x=5\),y se obtiene:
Inicializando variables y valores
media <- 10
x <- 5
Utilizando la función creada conforme a la fórmula
prob <- round(f.prob.poisson(media = media, x = x),4)
paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob)
## [1] "La probabilidad de que sean exactamente 5 automóviles es de : 0.0378"
Utilizando la función dpois()
prob2 <- round(dpois(x = 5, lambda = media),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2)
## [1] "La probabilida de que sean exactamente 5 automóviles es de : 0.0378"
options(scipen=999) # Notación normal
tabla <- data.frame(x=0:25, f.prob.x = round(dpois(x = 0:25, lambda = media),4))
tabla <- cbind(tabla, f.acum.x = ppois(q=0:25, lambda = media))
tabla
## x f.prob.x f.acum.x
## 1 0 0.0000 0.00004539993
## 2 1 0.0005 0.00049939923
## 3 2 0.0023 0.00276939572
## 4 3 0.0076 0.01033605068
## 5 4 0.0189 0.02925268808
## 6 5 0.0378 0.06708596288
## 7 6 0.0631 0.13014142088
## 8 7 0.0901 0.22022064660
## 9 8 0.1126 0.33281967875
## 10 9 0.1251 0.45792971447
## 11 10 0.1251 0.58303975019
## 12 11 0.1137 0.69677614630
## 13 12 0.0948 0.79155647639
## 14 13 0.0729 0.86446442262
## 15 14 0.0521 0.91654152707
## 16 15 0.0347 0.95125959670
## 17 16 0.0217 0.97295839022
## 18 17 0.0128 0.98572238640
## 19 18 0.0071 0.99281349540
## 20 19 0.0037 0.99654565802
## 21 20 0.0019 0.99841173934
## 22 21 0.0009 0.99930034949
## 23 22 0.0004 0.99970426319
## 24 23 0.0002 0.99987987785
## 25 24 0.0001 0.99995305062
## 26 25 0.0000 0.99998231973
ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
Se visualiza en la gráfica de la probabilidad de Poisson, con respecto a la llegada de 5 automóviles, que el punto o el momento donde existe mayor probabilidad de que este evento ocurra es en el minuto 10, considerando para ello hasta 25min.
\[P(x \leq10) = P(x=0) + P(x=1) + P(x=2) + P(x=3) + ... + P(x=10)\]
i <- 10
tabla$f.acum[i + 1]
## [1] 0.5830398
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", tabla$f.acum[i + 1])
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es: 0.583039750192985"
ppois() determina la probabilidad acumulada de una distribución Poisson.
prob <- round(ppois(q = 10, lambda = media), 4)
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", prob)
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es: 0.583"
En el ejemplo anterior se usó un lapso de 15 minutos, pero también se usan otros lapsos. Suponga que desea calcular la probabilidad de una llegada en un lapso de 3 minutos.
Regla de tres:
\[ 10 = 15\] \[ ? = 3\]
Entonces, la probabilidad de \(x=4\) llegadas en un lapso de 3 minutos con \(μ = 2\) está dada por la siguiente nueva función de probabilidad de Poisson.
\[ \mu = 2 \]
\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \]
Entonces ….
media <- 2
x <- 4
prob <- round(dpois(x = 4, lambda = media),4)
paste("La probabilidad cuando x = 4 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 4 y media igual a 2 es del: 9.02 %"
Regresando a la media \(\mu = 10 \text{ o }\lambda = 10\) , entonces la esperanza media es igual a: \(10\)
La varianza es igual a \(10\)
La raiz cuadrada de \(\sqrt{10}\)
sqrt(media)
## [1] 1.414214
En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es \(0.005\) y los accidentes son independientes entre sí [@walpole_probabilidad_2012].
¿Cuál es la probabilidad de que en cualquier periodo dado de 400 días habrá un accidente en un día?
Se multiplica la cantidad la de dias por su probabilidad para encontrar la media. Esta media será el parámetro para la distribución Poisson.
n <- 400
prob <- 0.005
media <- n * prob
media
## [1] 2
La variable aleatoria son los días desde \(x=0\)…hasta \(x=n\)
tabla <- data.frame(x=0:10, f.prob.x = round(dpois(x = 0:10, lambda = media),4))
tabla <- cbind(tabla, f.acum.x = ppois(q = 0:10, lambda = media))
tabla
## x f.prob.x f.acum.x
## 1 0 0.1353 0.1353353
## 2 1 0.2707 0.4060058
## 3 2 0.2707 0.6766764
## 4 3 0.1804 0.8571235
## 5 4 0.0902 0.9473470
## 6 5 0.0361 0.9834364
## 7 6 0.0120 0.9954662
## 8 7 0.0034 0.9989033
## 9 8 0.0009 0.9997626
## 10 9 0.0002 0.9999535
## 11 10 0.0000 0.9999917
ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
\(P(x=1)\)
Recordar que el índice de la tabla empieza en el valor cero de tal forma que se necesita el siguiente valor \(x+1\) en la tabla:
i <- 1
prob <- tabla$f.prob.x[i+1]
paste("La probabiidad del valor de x=1 es: ", prob)
## [1] "La probabiidad del valor de x=1 es: 0.2707"
paste("La probabiidad del valor de x=1 es: ", round(dpois(x = 1, lambda = media), 4))
## [1] "La probabiidad del valor de x=1 es: 0.2707"
i <- 3
prob <- round(tabla$f.acum.x[i+1],4)
paste("La probabiidad del valor de x<=3 es: ", prob)
## [1] "La probabiidad del valor de x<=3 es: 0.8571"
paste("La probabilidad acumlada del valor de x<=3 es: ", round(ppois(q = 3, lambda = media, lower.tail = TRUE), 4))
## [1] "La probabilidad acumlada del valor de x<=3 es: 0.8571"
La media de los accidentes según el planteamiento, en un total de 400 días de 2, es decir que durante los 400 días es probable que únicamente se reporten dos accidentes. Con este valor se aplica para la distribución de Poisson como parámetro. Así, los días serán la variable aleatoria, hasta cumplir los 400 días. Según la gráfica, la mayor probabilidad se encuentra entre los dos primeros días del registro.
Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con \(\lambda = 5\) [@walpole_probabilidad_2012].
media <- 5
tabla <- data.frame(x=0:20, f.prob.x = round(dpois(x = 0:20, lambda = media),8))
tabla <- cbind(tabla, f.acum.x = ppois(q = 0:20, lambda = media))
tabla
## x f.prob.x f.acum.x
## 1 0 0.00673795 0.006737947
## 2 1 0.03368973 0.040427682
## 3 2 0.08422434 0.124652019
## 4 3 0.14037390 0.265025915
## 5 4 0.17546737 0.440493285
## 6 5 0.17546737 0.615960655
## 7 6 0.14622281 0.762183463
## 8 7 0.10444486 0.866628326
## 9 8 0.06527804 0.931906365
## 10 9 0.03626558 0.968171943
## 11 10 0.01813279 0.986304731
## 12 11 0.00824218 0.994546908
## 13 12 0.00343424 0.997981148
## 14 13 0.00132086 0.999302010
## 15 14 0.00047174 0.999773746
## 16 15 0.00015725 0.999930992
## 17 16 0.00004914 0.999980131
## 18 17 0.00001445 0.999994584
## 19 18 0.00000401 0.999998598
## 20 19 0.00000106 0.999999655
## 21 20 0.00000026 0.999999919
ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
\[P(X \leq 3)\]
\[P(X=0) + P(X=1) + P(X=2) + P(X=3)\]
i <- 3
prob <- tabla$f.acum.x[i+1]
paste("La probabiidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabiidad del valor de x<=3 es: 26.5026 %"
paste("La probabilidad del valor de x<=3 es: ", round(ppois(q = 3, lambda = media),4) * 100, "%")
## [1] "La probabilidad del valor de x<=3 es: 26.5 %"
\[ 1 - P(X \leq 1) \] \[ 1 - (P(X=0) + P(x=1))\]
i <- 1
prob <- 1 - tabla$f.acum.x[i+1]
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es: 95.9572 %"
prob <- ppois(q = 1, lambda = media, lower.tail = FALSE)
paste("La probabiidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabiidad del valor de x>1 es: 95.9572 %"
La media corresponde a 5 automóviles por año que por una falla en los frenos puedan experimentar una catástrofe; como se ve en la gráfica, a medida que incrementa la cantidad de vehículos, disminuye esta probabilidad de catástrofe.
La distribución de Poisson permite visualizar el contexto dentro del cual un evento ocurre exitosamente. Esta teoría de probabilidad y estadística, expresa a partir de una frecuencia de ocurrencia media o constante, ocurra un determinado número de eventos durante cierto periodo de tiempo.
Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. 2008. Estadística Para Administración y Economía. 10th ed. Australia • Brasil • Corea • España • Estados Unidos • Japón • México • Reino Unido • Singapur: Cengage Learning,.
Mendenhall, William, Robert J. Beaver, and Barbara M. Beaver. 2006. Introducción a La Probabilidad y Estadística. 13a Edición.
Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.