Licença

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

License: CC BY-SA 4.0

Citação

Sugestão de citação: FIGUEIREDO, Adriano Marcos Rodrigues. Econometria: exercício crescimento municipal em Mato Grosso entre 2001 e 2010 - seleção. Campo Grande-MS,Brasil: RStudio/Rpubs, 2021. Disponível em http://rpubs.com/amrofi/growth_mt2001_2010_selecao.

1 Introdução

Neste exercício, farei uso dos dados do post https://rpubs.com/amrofi/growth_mt2001_2010, (e video em https://youtu.be/JvBRjFeERoE) e adaptarei para a seleção de modelos ao estilo (farei adaptação) do exercício https://rpubs.com/amrofi/Faraway_backward_selection e video (https://youtu.be/eyc2zs__7jo). Ou seja, aplicarei os métodos backward selection e stepwise sobre os dados de crescimento.

Portanto, seja o enunciado como no post inicial (https://rpubs.com/amrofi/growth_mt2001_2010).

Exemplo sobre crescimento municipal adaptado da dissertacao de William Marquezin (2014) na UFMT. Dados de 139 municipios de MT, em que 2001 é o ano base e o crescimento refere-se até 2010. A variável dependente do modelo é a taxa de crescimento da renda per capita municipal (barro) conforme Barro e Sala-i-Martin (1992)=“BARRO”. Outras variáveis são:
# “ordem” = ordenacao dos municipios
# “KEY” = ordem
# “MUNICIPIO” = nome do municipio
# “BARRO” = variavel dependente (acima descrita)
# “DASSOW” = alternativa para a variavel dependente (nao utilizada)
# Variáveis explicativas:
# 1) Renda per capita no ano inicial “LNYI_T_1”
# 2) Composição industrial (Sind): “SIND”
# 3) Composição da agropecuária (Sagro): “SAGRO”
# 4) Composição do setor de serviços (Sserv): “SSERV”
# 5) Composição da administração pública (Spub): “SPUB”
# 6) Capital humano (h): “H”
# 7) Densidade demográfica (dd): “DD”
# 8) Despesas orçamentárias (dorc): “DORC”
# 9) Operações de crédito (cred): “CRED”
# 10) Exportações Municipais (expor): “EXPOR”
# 11) Importações Municipais (impor): “IMPOR”
# 12) Mercado Regional (mreg): “MREG”
# 13) Carga tributária total municipal (t): “T”
# 14) Transferências Intergovernamentais do ICMS (ticms): “TICMS”
# 15) Transferências Intergovernamentais do FPM (tfpm): “TFPM”
# 16) O índice de GINI (gini): “GINI”
# 17) índice de THEIL (theil): “THEIL”
# variavel auxiliar não utilizada: “TMREG”
# variavel auxiliar não utilizada: “CCOM” corrente de comercio

Um data.frame com 139 observations para 24 variáveis.

Para reprodução, pode-se fazer o download prévio dos dados a partir de https://github.com/amrofi/crescimento_mt/blob/master/crescimento.rds, e armazenar no diretório do projeto, ou olhar os dados embeded no code .Rmd.

library(dynlm)
library(car)
library(lmtest)
library(sandwich)
library(tseries)
library(kableExtra)
# o arquivo dados está em formato dput embeded no script, em um chunk oculto
# que o leitor tem acesso ao baixar o Rmd, clicando em code
summary(dados)
     ordem            KEY         MUNICIPIO             BARRO         
 Min.   :  1.0   Min.   :  1.0   Length:139         Min.   :-0.07986  
 1st Qu.: 35.5   1st Qu.: 35.5   Class :character   1st Qu.: 0.03466  
 Median : 70.0   Median : 70.0   Mode  :character   Median : 0.04971  
 Mean   : 70.0   Mean   : 70.0                      Mean   : 0.05413  
     DASSOW            LNYI_T_1           SIND              SAGRO         
 Min.   :-0.05696   Min.   : 8.219   Min.   :-0.14688   Min.   :-0.37391  
 1st Qu.: 0.04068   1st Qu.: 8.840   1st Qu.: 0.02745   1st Qu.: 0.09529  
 Median : 0.06269   Median : 9.077   Median : 0.05442   Median : 0.22181  
 Mean   : 0.08061   Mean   : 9.222   Mean   : 0.06737   Mean   : 0.22179  
     SSERV               SPUB                H                DD          
 Min.   :-0.56295   Min.   :0.006014   Min.   : 2.662   Min.   :  0.2792  
 1st Qu.: 0.07236   1st Qu.:0.077798   1st Qu.:12.590   1st Qu.:  1.1508  
 Median : 0.12822   Median :0.108222   Median :15.828   Median :  2.2449  
 Mean   : 0.14414   Mean   :0.127134   Mean   :17.684   Mean   :  7.2235  
      DORC             CRED            EXPOR              IMPOR         
 Min.   : 532.4   Min.   :   0.0   Min.   :    0.00   Min.   :    0.00  
 1st Qu.:1348.8   1st Qu.:   0.0   1st Qu.:    0.00   1st Qu.:    0.00  
 Median :1606.9   Median : 757.6   Median :   39.21   Median :    0.00  
 Mean   :1800.4   Mean   :1589.0   Mean   : 2128.94   Mean   :  205.89  
      CCOM               MREG             T                TFPM         
 Min.   :    0.00   Min.   : 5863   Min.   :0.03508   Min.   :   60.68  
 1st Qu.:    0.00   1st Qu.:11363   1st Qu.:0.04787   1st Qu.:  300.37  
 Median :   92.58   Median :13452   Median :0.05877   Median :  535.94  
 Mean   : 2334.82   Mean   :16629   Mean   :0.06865   Mean   :  973.11  
     TICMS             TMREG              GINI            THEIL       
 Min.   :  87.68   Min.   :0.00849   Min.   :0.3600   Min.   :0.1900  
 1st Qu.: 243.31   1st Qu.:0.03445   1st Qu.:0.5300   1st Qu.:0.4750  
 Median : 382.59   Median :0.04830   Median :0.5800   Median :0.5500  
 Mean   : 445.03   Mean   :0.04925   Mean   :0.5755   Mean   :0.5809  
 [ reached getOption("max.print") -- omitted 2 rows ]
attach(dados)
class(dados)
[1] "tbl_df"     "tbl"        "data.frame"
# algumas variaveis vou dividir por 1000000 para nivelar expor_6 impor_6 mreg_6
# tfpm_6 ticms_6 cred_6

Estimando o modelo linear de regressão múltipla fazendo conforme a expressão do enunciado.

2 Resultados

2.1 Estimação

Fazendo as regressoes. Algumas variáveis foram construídas com uso de logaritmos e portanto, deve-se olhar a especificação destas.

# regressao multipla de BARRO~LNYI_T_1+SIND+SAGRO+SSERV+SPUB+H+DD+DORC
# +I(CRED*10^-6)+I(EXPOR*10^-6)+I(IMPOR*10^-6)+I(MREG*10^-6)+I(TFPM*10^-6)
# +I(TICMS*10^-6)+GINI variaveis transformadas
attach(dados)
Exporta <- I(EXPOR * 10^-6)
Importa <- I(IMPOR * 10^-6)
Mregio <- (MREG * 10^-6)
FPM <- I(TFPM * 10^-6)
TICMSm <- I(TICMS * 10^-6)
credito <- I(CRED * 10^-6)
mod1 <- lm(BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + DD + DORC + T + Exporta +
    Importa + Mregio + FPM + TICMSm + credito, data = dados)

Vamos utilizar o pacote stargazer posteriormente para organizar as saídas de resultados. Se a saída fosse apenas pelo comando summary, sairia da forma:

summary(mod1)

Call:
lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + 
    H + DD + DORC + T + Exporta + Importa + Mregio + FPM + TICMSm + 
    credito, data = dados)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.039810 -0.008103  0.000716  0.006618  0.031697 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.663e-01  3.869e-02  12.050  < 2e-16 ***
LNYI_T_1    -5.058e-02  4.582e-03 -11.037  < 2e-16 ***
SIND         1.284e-01  1.911e-02   6.721 6.00e-10 ***
SAGRO        1.075e-01  8.151e-03  13.187  < 2e-16 ***
SSERV        5.461e-02  1.970e-02   2.772  0.00644 ** 
SPUB        -1.438e-01  2.029e-02  -7.090 9.22e-11 ***
H            2.522e-04  2.098e-04   1.202  0.23177    
DD           4.799e-05  5.502e-05   0.872  0.38478    
DORC         4.773e-06  2.981e-06   1.601  0.11195    
T            2.015e-02  9.462e-02   0.213  0.83172    
Exporta     -2.968e-01  3.898e-01  -0.761  0.44784    
Importa      4.759e+00  1.377e+00   3.457  0.00075 ***
Mregio      -1.942e-01  1.898e-01  -1.023  0.30838    
FPM         -1.464e+00  8.606e-01  -1.701  0.09155 .  
TICMSm       4.507e+01  9.618e+00   4.686 7.27e-06 ***
credito      1.029e+00  9.060e-01   1.135  0.25843    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01302 on 123 degrees of freedom
Multiple R-squared:  0.8901,    Adjusted R-squared:  0.8767 
F-statistic: 66.39 on 15 and 123 DF,  p-value: < 2.2e-16

Agora, com a geração de AIC e BIC:

(mod1$AIC <- AIC(mod1))
[1] -795.4259
(mod1$BIC <- BIC(mod1))
[1] -745.5398

2.2 Correlação

library(corrplot)
corel <- cor(dados[, 6:24])  # somente var. explicativas
corrplot(corel, method = "number", type = "lower", number.digits = 2)

2.3 Seleção de modelos

2.3.1 Backward Selection

Vou separar o dataset com apenas as variáveis utilizadas em Mod1.

dados2 <- cbind(dados[, c(4, 6:13, 19)], Exporta, Importa, Mregio, FPM, TICMSm, credito)
# MODELO COMPLETO
mod2 <- lm(BARRO ~ ., dados2)
summary(mod2)

Call:
lm(formula = BARRO ~ ., data = dados2)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.039810 -0.008103  0.000716  0.006618  0.031697 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.663e-01  3.869e-02  12.050  < 2e-16 ***
LNYI_T_1    -5.058e-02  4.582e-03 -11.037  < 2e-16 ***
SIND         1.284e-01  1.911e-02   6.721 6.00e-10 ***
SAGRO        1.075e-01  8.151e-03  13.187  < 2e-16 ***
SSERV        5.461e-02  1.970e-02   2.772  0.00644 ** 
SPUB        -1.438e-01  2.029e-02  -7.090 9.22e-11 ***
H            2.522e-04  2.098e-04   1.202  0.23177    
DD           4.799e-05  5.502e-05   0.872  0.38478    
DORC         4.773e-06  2.981e-06   1.601  0.11195    
T            2.015e-02  9.462e-02   0.213  0.83172    
Exporta     -2.968e-01  3.898e-01  -0.761  0.44784    
Importa      4.759e+00  1.377e+00   3.457  0.00075 ***
Mregio      -1.942e-01  1.898e-01  -1.023  0.30838    
FPM         -1.464e+00  8.606e-01  -1.701  0.09155 .  
TICMSm       4.507e+01  9.618e+00   4.686 7.27e-06 ***
credito      1.029e+00  9.060e-01   1.135  0.25843    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01302 on 123 degrees of freedom
Multiple R-squared:  0.8901,    Adjusted R-squared:  0.8767 
F-statistic: 66.39 on 15 and 123 DF,  p-value: < 2.2e-16
AIC(mod2)
[1] -795.4259
BIC(mod2)
[1] -745.5398

Vou retirar as variáveis uma a uma.

Retirando T

Retiro o T e o modelo melhora.

mod2 <- update(mod2, . ~ . - T)
summary(mod2)

Call:
lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + 
    H + DD + DORC + Exporta + Importa + Mregio + FPM + TICMSm + 
    credito, data = dados2)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.039609 -0.008059  0.000518  0.006724  0.031386 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.639e-01  3.686e-02  12.586  < 2e-16 ***
LNYI_T_1    -5.019e-02  4.201e-03 -11.947  < 2e-16 ***
SIND         1.280e-01  1.893e-02   6.761 4.79e-10 ***
SAGRO        1.070e-01  7.856e-03  13.627  < 2e-16 ***
SSERV        5.703e-02  1.602e-02   3.561 0.000525 ***
SPUB        -1.437e-01  2.020e-02  -7.114 7.92e-11 ***
H            2.668e-04  1.976e-04   1.350 0.179464    
DD           5.156e-05  5.219e-05   0.988 0.325081    
DORC         4.618e-06  2.880e-06   1.603 0.111395    
Exporta     -3.028e-01  3.873e-01  -0.782 0.435739    
Importa      4.723e+00  1.361e+00   3.471 0.000715 ***
Mregio      -1.983e-01  1.881e-01  -1.054 0.293842    
FPM         -1.446e+00  8.533e-01  -1.694 0.092688 .  
TICMSm       4.521e+01  9.558e+00   4.730 6.00e-06 ***
credito      1.052e+00  8.957e-01   1.175 0.242322    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01297 on 124 degrees of freedom
Multiple R-squared:   0.89, Adjusted R-squared:  0.8776 
F-statistic: 71.68 on 14 and 124 DF,  p-value: < 2.2e-16
AIC(mod2)
[1] -797.3746
BIC(mod2)
[1] -750.423

Retirarei Exporta.

Veja que atualizo sobre o último mod2. Melhora mais um pouco.

mod2 <- update(mod2, . ~ . - Exporta)
summary(mod2)

Call:
lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + 
    H + DD + DORC + Importa + Mregio + FPM + TICMSm + credito, 
    data = dados2)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.039812 -0.007997  0.001034  0.006485  0.030941 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.715e-01  3.549e-02  13.286  < 2e-16 ***
LNYI_T_1    -5.101e-02  4.065e-03 -12.549  < 2e-16 ***
SIND         1.261e-01  1.875e-02   6.727 5.57e-10 ***
SAGRO        1.080e-01  7.748e-03  13.941  < 2e-16 ***
SSERV        5.448e-02  1.566e-02   3.480 0.000691 ***
SPUB        -1.434e-01  2.016e-02  -7.113 7.74e-11 ***
H            2.677e-04  1.973e-04   1.357 0.177242    
DD           5.371e-05  5.203e-05   1.032 0.303974    
DORC         4.904e-06  2.853e-06   1.719 0.088075 .  
Importa      4.284e+00  1.238e+00   3.461 0.000737 ***
Mregio      -1.980e-01  1.878e-01  -1.054 0.293695    
FPM         -1.419e+00  8.513e-01  -1.667 0.098024 .  
TICMSm       4.284e+01  9.051e+00   4.733 5.88e-06 ***
credito      1.074e+00  8.939e-01   1.201 0.231969    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01295 on 125 degrees of freedom
Multiple R-squared:  0.8895,    Adjusted R-squared:  0.878 
F-statistic: 77.39 on 13 and 125 DF,  p-value: < 2.2e-16
AIC(mod2)
[1] -798.6909
BIC(mod2)
[1] -754.6738

Retirarei DD

Veja que atualizo sobre o último mod2. Melhora mais um pouco.

mod2 <- update(mod2, . ~ . - DD)
summary(mod2)

Call:
lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + 
    H + DORC + Importa + Mregio + FPM + TICMSm + credito, data = dados2)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.039352 -0.008188  0.000604  0.006660  0.031126 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.719e-01  3.549e-02  13.297  < 2e-16 ***
LNYI_T_1    -5.109e-02  4.065e-03 -12.568  < 2e-16 ***
SIND         1.248e-01  1.871e-02   6.672 7.17e-10 ***
SAGRO        1.072e-01  7.711e-03  13.903  < 2e-16 ***
SSERV        5.712e-02  1.545e-02   3.697 0.000324 ***
SPUB        -1.433e-01  2.017e-02  -7.104 7.93e-11 ***
H            3.152e-04  1.919e-04   1.643 0.102951    
DORC         4.534e-06  2.831e-06   1.602 0.111732    
Importa      4.147e+00  1.231e+00   3.369 0.001003 ** 
Mregio      -1.742e-01  1.864e-01  -0.934 0.352012    
FPM         -9.286e-01  7.065e-01  -1.314 0.191118    
TICMSm       4.249e+01  9.047e+00   4.696 6.81e-06 ***
credito      8.804e-01  8.743e-01   1.007 0.315849    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01295 on 126 degrees of freedom
Multiple R-squared:  0.8885,    Adjusted R-squared:  0.8779 
F-statistic:  83.7 on 12 and 126 DF,  p-value: < 2.2e-16
AIC(mod2)
[1] -799.5112
BIC(mod2)
[1] -758.4285

Retirarei Mregio

Veja que atualizo sobre o último mod2. Melhora mais um pouco.

mod2 <- update(mod2, . ~ . - Mregio)
summary(mod2)

Call:
lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + 
    H + DORC + Importa + FPM + TICMSm + credito, data = dados2)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.038785 -0.008216  0.000828  0.006975  0.031357 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.762e-01  3.518e-02  13.536  < 2e-16 ***
LNYI_T_1    -5.183e-02  3.984e-03 -13.010  < 2e-16 ***
SIND         1.248e-01  1.870e-02   6.674 6.95e-10 ***
SAGRO        1.082e-01  7.636e-03  14.168  < 2e-16 ***
SSERV        5.482e-02  1.524e-02   3.596 0.000461 ***
SPUB        -1.429e-01  2.015e-02  -7.090 8.29e-11 ***
H            3.135e-04  1.918e-04   1.635 0.104588    
DORC         4.675e-06  2.825e-06   1.655 0.100441    
Importa      3.961e+00  1.214e+00   3.262 0.001419 ** 
FPM         -9.323e-01  7.062e-01  -1.320 0.189128    
TICMSm       4.162e+01  8.995e+00   4.627 9.01e-06 ***
credito      8.604e-01  8.736e-01   0.985 0.326550    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01295 on 127 degrees of freedom
Multiple R-squared:  0.8878,    Adjusted R-squared:  0.878 
F-statistic: 91.32 on 11 and 127 DF,  p-value: < 2.2e-16
AIC(mod2)
[1] -800.5518
BIC(mod2)
[1] -762.4037

Retirarei credito

Veja que atualizo sobre o último mod2. Melhora mais um pouco.

mod2 <- update(mod2, . ~ . - credito)
summary(mod2)

Call:
lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + 
    H + DORC + Importa + FPM + TICMSm, data = dados2)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.039267 -0.007461  0.000338  0.007006  0.031563 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.667e-01  3.381e-02  13.802  < 2e-16 ***
LNYI_T_1    -5.069e-02  3.811e-03 -13.300  < 2e-16 ***
SIND         1.240e-01  1.868e-02   6.637 8.19e-10 ***
SAGRO        1.066e-01  7.453e-03  14.297  < 2e-16 ***
SSERV        6.198e-02  1.339e-02   4.627 8.95e-06 ***
SPUB        -1.427e-01  2.015e-02  -7.082 8.42e-11 ***
H            3.643e-04  1.847e-04   1.972  0.05072 .  
DORC         4.414e-06  2.812e-06   1.569  0.11903    
Importa      3.866e+00  1.210e+00   3.194  0.00177 ** 
FPM         -8.200e-01  6.968e-01  -1.177  0.24149    
TICMSm       3.994e+01  8.830e+00   4.523 1.37e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01294 on 128 degrees of freedom
Multiple R-squared:  0.8869,    Adjusted R-squared:  0.8781 
F-statistic: 100.4 on 10 and 128 DF,  p-value: < 2.2e-16
AIC(mod2)
[1] -801.4942
BIC(mod2)
[1] -766.2805

Retirarei FPM

Veja que atualizo sobre o último mod2. Melhora mais um pouco.

mod2 <- update(mod2, . ~ . - FPM)
summary(mod2)

Call:
lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + 
    H + DORC + Importa + TICMSm, data = dados2)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.038940 -0.007222  0.000099  0.006958  0.032152 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.639e-01  3.378e-02  13.733  < 2e-16 ***
LNYI_T_1    -5.038e-02  3.808e-03 -13.230  < 2e-16 ***
SIND         1.223e-01  1.865e-02   6.557 1.20e-09 ***
SAGRO        1.079e-01  7.377e-03  14.627  < 2e-16 ***
SSERV        5.937e-02  1.323e-02   4.488 1.58e-05 ***
SPUB        -1.423e-01  2.018e-02  -7.054 9.51e-11 ***
H            3.158e-04  1.803e-04   1.752  0.08223 .  
DORC         4.341e-06  2.816e-06   1.542  0.12564    
Importa      4.014e+00  1.206e+00   3.329  0.00114 ** 
TICMSm       4.038e+01  8.835e+00   4.570 1.13e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01296 on 129 degrees of freedom
Multiple R-squared:  0.8857,    Adjusted R-squared:  0.8777 
F-statistic: 111.1 on 9 and 129 DF,  p-value: < 2.2e-16
AIC(mod2)
[1] -801.9986
BIC(mod2)
[1] -769.7194

Retirarei DORC

Veja que atualizo sobre o último mod2. Melhora mais um pouco pelo BIC mas não pelo AIC nem pelo \(R^2\) ajustado. Vou optar por manter o DORC no modelo.

mod2 <- update(mod2, . ~ . - DORC)
summary(mod2)

Call:
lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + 
    H + Importa + TICMSm, data = dados2)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.038231 -0.007231 -0.000428  0.006942  0.036033 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.4758882  0.0330407  14.403  < 2e-16 ***
LNYI_T_1    -0.0515334  0.0037531 -13.731  < 2e-16 ***
SIND         0.1257862  0.0186154   6.757 4.27e-10 ***
SAGRO        0.1093928  0.0073513  14.881  < 2e-16 ***
SSERV        0.0496722  0.0116988   4.246 4.11e-05 ***
SPUB        -0.1362400  0.0198922  -6.849 2.67e-10 ***
H            0.0004369  0.0001632   2.677  0.00839 ** 
Importa      3.8473462  1.2070479   3.187  0.00180 ** 
TICMSm      50.2771919  6.0990409   8.243 1.58e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01303 on 130 degrees of freedom
Multiple R-squared:  0.8836,    Adjusted R-squared:  0.8764 
F-statistic: 123.3 on 8 and 130 DF,  p-value: < 2.2e-16
AIC(mod2)
[1] -801.4614
BIC(mod2)
[1] -772.1167

Portanto, a estimação final foi:

final <- lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + DORC +
    Importa + TICMSm, data = dados2)
summary(final)

Call:
lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + 
    H + DORC + Importa + TICMSm, data = dados2)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.038940 -0.007222  0.000099  0.006958  0.032152 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.639e-01  3.378e-02  13.733  < 2e-16 ***
LNYI_T_1    -5.038e-02  3.808e-03 -13.230  < 2e-16 ***
SIND         1.223e-01  1.865e-02   6.557 1.20e-09 ***
SAGRO        1.079e-01  7.377e-03  14.627  < 2e-16 ***
SSERV        5.937e-02  1.323e-02   4.488 1.58e-05 ***
SPUB        -1.423e-01  2.018e-02  -7.054 9.51e-11 ***
H            3.158e-04  1.803e-04   1.752  0.08223 .  
DORC         4.341e-06  2.816e-06   1.542  0.12564    
Importa      4.014e+00  1.206e+00   3.329  0.00114 ** 
TICMSm       4.038e+01  8.835e+00   4.570 1.13e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01296 on 129 degrees of freedom
Multiple R-squared:  0.8857,    Adjusted R-squared:  0.8777 
F-statistic: 111.1 on 9 and 129 DF,  p-value: < 2.2e-16
final$AIC <- AIC(final)
final$BIC <- BIC(final)

2.3.2 Escolha de Modelos baseados em critérios

A função leaps::regsubsets faz a seleção dos modelos por busca exaustiva para frente e para trás, stepwise, ou reposição sequencial. Observe que nos plots de AIC para cada modelo, deseja-se um modelo de menor AIC. O slot com as informações de quais variáveis estão em cada modelo tem nome which dentro do summary do objeto de regsubsets, neste caso chamado de “b” (o objeto resultante do summary foi chamado de rs e dentro dele estará também o resultado do BIC de cada modelo).

require(leaps)
b <- regsubsets(BARRO ~ ., data = dados2, method = c("exhaustive"))
rs <- summary(b)
rs$which
  (Intercept) LNYI_T_1  SIND SAGRO SSERV  SPUB     H    DD  DORC     T Exporta
1        TRUE    FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE   FALSE
2        TRUE    FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE   FALSE
3        TRUE     TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE   FALSE
4        TRUE     TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE   FALSE
5        TRUE     TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE   FALSE
6        TRUE     TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE   FALSE
  Importa Mregio   FPM TICMSm credito
1   FALSE  FALSE FALSE  FALSE   FALSE
2   FALSE  FALSE FALSE  FALSE   FALSE
3   FALSE  FALSE FALSE  FALSE   FALSE
4    TRUE  FALSE FALSE  FALSE   FALSE
5   FALSE  FALSE FALSE   TRUE   FALSE
6   FALSE  FALSE FALSE   TRUE   FALSE
 [ reached getOption("max.print") -- omitted 2 rows ]
# a escolha é com o BIC

rs$bic
[1]  -89.91415 -126.76529 -175.14756 -198.33254 -226.75252 -243.01860 -251.99235
[8] -254.51611
# plot do BIC
NA
[1] NA
NA
[1] NA
which.max(rs$adjr2)
[1] 8
NA
[1] NA
# abline(0,1)

O melhor resultado inclui: LNYI_T_1,SIND,SAGRO,SSERV,SPUB,H,Importa,TICMSm. Ou seja,

final2 <- lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + Importa +
    TICMSm, data = dados2)
summary(final2)

Call:
lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + 
    H + Importa + TICMSm, data = dados2)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.038231 -0.007231 -0.000428  0.006942  0.036033 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.4758882  0.0330407  14.403  < 2e-16 ***
LNYI_T_1    -0.0515334  0.0037531 -13.731  < 2e-16 ***
SIND         0.1257862  0.0186154   6.757 4.27e-10 ***
SAGRO        0.1093928  0.0073513  14.881  < 2e-16 ***
SSERV        0.0496722  0.0116988   4.246 4.11e-05 ***
SPUB        -0.1362400  0.0198922  -6.849 2.67e-10 ***
H            0.0004369  0.0001632   2.677  0.00839 ** 
Importa      3.8473462  1.2070479   3.187  0.00180 ** 
TICMSm      50.2771919  6.0990409   8.243 1.58e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01303 on 130 degrees of freedom
Multiple R-squared:  0.8836,    Adjusted R-squared:  0.8764 
F-statistic: 123.3 on 8 and 130 DF,  p-value: < 2.2e-16
final2$AIC <- AIC(final2)
final2$BIC <- BIC(final2)

2.3.3 Stepwise

O Stepwise Regression é uma combinação de eliminação backward (para trás) e seleção forward (para frente - inclusão). É a situação em que variáveis são adicionadas e removidas no processo e a cada estágio existem variações diversas de como proceder. O usual é minimizar AIC ou BIC. A função será step de um modelo de regressão, dentro do pacote stats que já vem no R básico. A função step retornará os vários modelos estimados e respectivos AIC até otimizar.

lmod <- lm(BARRO ~ ., data = dados2)
step(lmod)
Start:  AIC=-1191.89
BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + DD + DORC + 
    T + Exporta + Importa + Mregio + FPM + TICMSm + credito

           Df Sum of Sq      RSS     AIC
- T         1 0.0000077 0.020856 -1193.8
- Exporta   1 0.0000983 0.020946 -1193.2
- DD        1 0.0001290 0.020977 -1193.0
- Mregio    1 0.0001773 0.021025 -1192.7
- credito   1 0.0002185 0.021067 -1192.4
- H         1 0.0002448 0.021093 -1192.3
<none>                  0.020848 -1191.9
- DORC      1 0.0004344 0.021282 -1191.0
- FPM       1 0.0004902 0.021338 -1190.7
- SSERV     1 0.0013021 0.022150 -1185.5
- Importa   1 0.0020261 0.022874 -1181.0
- TICMSm    1 0.0037216 0.024570 -1171.1
- SIND      1 0.0076562 0.028504 -1150.4
- SPUB      1 0.0085203 0.029368 -1146.3
- LNYI_T_1  1 0.0206475 0.041496 -1098.2
- SAGRO     1 0.0294758 0.050324 -1071.4

Step:  AIC=-1193.84
BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + DD + DORC + 
    Exporta + Importa + Mregio + FPM + TICMSm + credito

           Df Sum of Sq      RSS     AIC
- Exporta   1 0.0001028 0.020959 -1195.2
- DD        1 0.0001642 0.021020 -1194.8
- Mregio    1 0.0001869 0.021043 -1194.6
- credito   1 0.0002321 0.021088 -1194.3
<none>                  0.020856 -1193.8
- H         1 0.0003065 0.021162 -1193.8
- DORC      1 0.0004324 0.021288 -1193.0
- FPM       1 0.0004829 0.021339 -1192.7
- Importa   1 0.0020259 0.022882 -1183.0
- SSERV     1 0.0021327 0.022988 -1182.3
- TICMSm    1 0.0037631 0.024619 -1172.8
- SIND      1 0.0076883 0.028544 -1152.2
- SPUB      1 0.0085127 0.029368 -1148.3
- LNYI_T_1  1 0.0240074 0.044863 -1089.4
- SAGRO     1 0.0312306 0.052086 -1068.6

Step:  AIC=-1195.16
BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + DD + DORC + 
    Importa + Mregio + FPM + TICMSm + credito

           Df Sum of Sq      RSS     AIC
- DD        1  0.000179 0.021137 -1196.0
- Mregio    1  0.000186 0.021145 -1195.9
- credito   1  0.000242 0.021200 -1195.6
<none>                  0.020959 -1195.2
- H         1  0.000309 0.021267 -1195.1
- FPM       1  0.000466 0.021424 -1194.1
- DORC      1  0.000495 0.021454 -1193.9
- Importa   1  0.002009 0.022967 -1184.4
- SSERV     1  0.002030 0.022989 -1184.3
- TICMSm    1  0.003757 0.024715 -1174.2
- SIND      1  0.007587 0.028545 -1154.2
- SPUB      1  0.008484 0.029443 -1149.9
- LNYI_T_1  1  0.026403 0.047362 -1083.8
- SAGRO     1  0.032585 0.053544 -1066.8

Step:  AIC=-1195.98
BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + DORC + Importa + 
    Mregio + FPM + TICMSm + credito

           Df Sum of Sq      RSS     AIC
- Mregio    1  0.000146 0.021284 -1197.0
- credito   1  0.000170 0.021307 -1196.9
- FPM       1  0.000290 0.021427 -1196.1
<none>                  0.021137 -1196.0
- DORC      1  0.000430 0.021568 -1195.2
- H         1  0.000453 0.021590 -1195.0
- Importa   1  0.001904 0.023041 -1186.0
- SSERV     1  0.002293 0.023430 -1183.7
- TICMSm    1  0.003700 0.024837 -1175.5
- SIND      1  0.007468 0.028605 -1155.9
- SPUB      1  0.008465 0.029602 -1151.2
- LNYI_T_1  1  0.026498 0.047636 -1085.0
- SAGRO     1  0.032428 0.053565 -1068.7

Step:  AIC=-1197.02
BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + DORC + Importa + 
    FPM + TICMSm + credito

           Df Sum of Sq      RSS     AIC
- credito   1  0.000163 0.021446 -1198.0
- FPM       1  0.000292 0.021576 -1197.1
<none>                  0.021284 -1197.0
- H         1  0.000448 0.021731 -1196.1
- DORC      1  0.000459 0.021742 -1196.0
- Importa   1  0.001784 0.023067 -1187.8
- SSERV     1  0.002167 0.023450 -1185.5
- TICMSm    1  0.003589 0.024872 -1177.4
- SIND      1  0.007465 0.028748 -1157.2
- SPUB      1  0.008424 0.029707 -1152.7
- LNYI_T_1  1  0.028365 0.049648 -1081.3
- SAGRO     1  0.033641 0.054924 -1067.2

Step:  AIC=-1197.96
BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + DORC + Importa + 
    FPM + TICMSm

           Df Sum of Sq      RSS     AIC
- FPM       1  0.000232 0.021678 -1198.5
<none>                  0.021446 -1198.0
- DORC      1  0.000413 0.021859 -1197.3
- H         1  0.000652 0.022098 -1195.8
- Importa   1  0.001710 0.023156 -1189.3
- TICMSm    1  0.003428 0.024874 -1179.3
- SSERV     1  0.003588 0.025034 -1178.5
- SIND      1  0.007381 0.028827 -1158.8
- SPUB      1  0.008403 0.029849 -1154.0
- LNYI_T_1  1  0.029637 0.051083 -1079.3
- SAGRO     1  0.034246 0.055692 -1067.3

Step:  AIC=-1198.46
BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + DORC + Importa + 
    TICMSm

           Df Sum of Sq      RSS     AIC
<none>                  0.021678 -1198.5
- DORC      1  0.000399 0.022077 -1197.9
- H         1  0.000516 0.022194 -1197.2
- Importa   1  0.001863 0.023541 -1189.0
- SSERV     1  0.003385 0.025063 -1180.3
- TICMSm    1  0.003510 0.025188 -1179.6
- SIND      1  0.007225 0.028903 -1160.5
- SPUB      1  0.008361 0.030039 -1155.1
- LNYI_T_1  1  0.029415 0.051093 -1081.3
- SAGRO     1  0.035952 0.057631 -1064.6

Call:
lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + 
    H + DORC + Importa + TICMSm, data = dados2)

Coefficients:
(Intercept)     LNYI_T_1         SIND        SAGRO        SSERV         SPUB  
  4.639e-01   -5.038e-02    1.223e-01    1.079e-01    5.937e-02   -1.423e-01  
          H         DORC      Importa       TICMSm  
  3.158e-04    4.341e-06    4.014e+00    4.038e+01  

O melhor modelo foi

final3 <- lm(BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + DORC + Importa +
    TICMSm, data = dados2)
summary(final3)

Call:
lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + 
    H + DORC + Importa + TICMSm, data = dados2)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.038940 -0.007222  0.000099  0.006958  0.032152 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.639e-01  3.378e-02  13.733  < 2e-16 ***
LNYI_T_1    -5.038e-02  3.808e-03 -13.230  < 2e-16 ***
SIND         1.223e-01  1.865e-02   6.557 1.20e-09 ***
SAGRO        1.079e-01  7.377e-03  14.627  < 2e-16 ***
SSERV        5.937e-02  1.323e-02   4.488 1.58e-05 ***
SPUB        -1.423e-01  2.018e-02  -7.054 9.51e-11 ***
H            3.158e-04  1.803e-04   1.752  0.08223 .  
DORC         4.341e-06  2.816e-06   1.542  0.12564    
Importa      4.014e+00  1.206e+00   3.329  0.00114 ** 
TICMSm       4.038e+01  8.835e+00   4.570 1.13e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01296 on 129 degrees of freedom
Multiple R-squared:  0.8857,    Adjusted R-squared:  0.8777 
F-statistic: 111.1 on 9 and 129 DF,  p-value: < 2.2e-16
final3$AIC <- AIC(final3)
final3$BIC <- BIC(final3)

Pelo AIC, este foi melhor, mas não pelo BIC.

Colocarei todos lado a lado com o stargazer.

library(stargazer)
stargazer(final, final2, final3, title = "Título: Resultados da Seleção", align = TRUE,
    type = "text", style = "all", keep.stat = c("AIC", "BIC", "rsq", "adj.rsq", "n"))

Título: Resultados da Seleção
=======================================================
                            Dependent variable:        
                    -----------------------------------
                                   BARRO               
                        (1)         (2)         (3)    
-------------------------------------------------------
LNYI_T_1             -0.050***   -0.052***   -0.050*** 
                      (0.004)     (0.004)     (0.004)  
                    t = -13.230 t = -13.731 t = -13.230
                     p = 0.000   p = 0.000   p = 0.000 
SIND                 0.122***    0.126***    0.122***  
                      (0.019)     (0.019)     (0.019)  
                     t = 6.557   t = 6.757   t = 6.557 
                     p = 0.000   p = 0.000   p = 0.000 
SAGRO                0.108***    0.109***    0.108***  
                      (0.007)     (0.007)     (0.007)  
                    t = 14.627  t = 14.881  t = 14.627 
                     p = 0.000   p = 0.000   p = 0.000 
SSERV                0.059***    0.050***    0.059***  
                      (0.013)     (0.012)     (0.013)  
                     t = 4.488   t = 4.246   t = 4.488 
                    p = 0.00002 p = 0.00005 p = 0.00002
SPUB                 -0.142***   -0.136***   -0.142*** 
                      (0.020)     (0.020)     (0.020)  
                    t = -7.054  t = -6.849  t = -7.054 
                     p = 0.000   p = 0.000   p = 0.000 
H                     0.0003*    0.0004***    0.0003*  
                     (0.0002)    (0.0002)    (0.0002)  
                     t = 1.752   t = 2.677   t = 1.752 
                     p = 0.083   p = 0.009   p = 0.083 
DORC                  0.00000                 0.00000  
                     (0.00000)               (0.00000) 
                     t = 1.542               t = 1.542 
                     p = 0.126               p = 0.126 
Importa              4.014***    3.847***    4.014***  
                      (1.206)     (1.207)     (1.206)  
                     t = 3.329   t = 3.187   t = 3.329 
                     p = 0.002   p = 0.002   p = 0.002 
TICMSm               40.377***   50.277***   40.377*** 
                      (8.835)     (6.099)     (8.835)  
                     t = 4.570   t = 8.243   t = 4.570 
                    p = 0.00002  p = 0.000  p = 0.00002
Constant             0.464***    0.476***    0.464***  
                      (0.034)     (0.033)     (0.034)  
                    t = 13.733  t = 14.403  t = 13.733 
                     p = 0.000   p = 0.000   p = 0.000 
-------------------------------------------------------
Observations            139         139         139    
R2                     0.886       0.884       0.886   
Adjusted R2            0.878       0.876       0.878   
Akaike Inf. Crit.    -801.999    -801.461    -801.999  
Bayesian Inf. Crit.  -769.719    -772.117    -769.719  
=======================================================
Note:                       *p<0.1; **p<0.05; ***p<0.01

Olhando a tabela, o resultado do AIC indica pelos modelos final e final3. Pelo BIC, seria o final2, mas que teve R2 menor que os demais.

2.4 Teste de Multicolinearidade (vif)

Farei o teste no modelo final3, saído do stepwise. Não temos multicolinearidade preocupante.

library(car)
reg1.vif <- vif(final3)
reg1.vif
LNYI_T_1     SIND    SAGRO    SSERV     SPUB        H     DORC  Importa 
4.650939 1.691263 1.544229 2.164569 2.627808 2.034318 3.631505 1.527390 
  TICMSm 
5.964815 

2.5 Heterocedasticidade

2.5.1 Teste de White no modelo 1

# final3: BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + DORC + Importa +
# TICMSm, data=dados2) teste de White para heterocedasticidade, sem termos
# cruzados por causa do grau de liberdade do modelo (n=78obs)

m <- final3
data <- dados
# rotina do teste com base em m e data
u2 <- m$residuals^2

reg.auxiliar <- lm(u2 ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + DORC + Importa +
    TICMSm + I(LNYI_T_1^2) + I(SIND^2) + I(SAGRO^2) + I(SSERV^2) + I(SPUB^2) + I(H^2) +
    I(DORC^2) + Importa^2 + TICMSm^2, data = dados2)
summary(reg.auxiliar)

Call:
lm(formula = u2 ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + 
    DORC + Importa + TICMSm + I(LNYI_T_1^2) + I(SIND^2) + I(SAGRO^2) + 
    I(SSERV^2) + I(SPUB^2) + I(H^2) + I(DORC^2) + Importa^2 + 
    TICMSm^2, data = dados2)

Residuals:
       Min         1Q     Median         3Q        Max 
-4.288e-04 -1.232e-04 -4.039e-05  4.828e-05  1.341e-03 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)  
(Intercept)   -3.736e-03  4.402e-03  -0.849   0.3977  
LNYI_T_1       6.510e-04  9.113e-04   0.714   0.4764  
SIND          -1.852e-04  5.467e-04  -0.339   0.7354  
SAGRO         -2.422e-04  2.397e-04  -1.010   0.3144  
SSERV         -2.362e-04  4.144e-04  -0.570   0.5698  
SPUB           1.023e-03  9.575e-04   1.069   0.2873  
H              3.689e-06  9.408e-06   0.392   0.6956  
DORC           2.619e-07  1.552e-07   1.687   0.0941 .
Importa        2.260e-03  2.909e-02   0.078   0.9382  
TICMSm         1.189e-01  1.906e-01   0.624   0.5338  
I(LNYI_T_1^2) -3.009e-05  4.729e-05  -0.636   0.5258  
I(SIND^2)      7.275e-04  2.001e-03   0.364   0.7168  
I(SAGRO^2)     5.888e-04  4.193e-04   1.404   0.1628  
I(SSERV^2)    -9.168e-05  8.229e-04  -0.111   0.9115  
I(SPUB^2)     -1.788e-04  1.450e-03  -0.123   0.9021  
I(H^2)        -7.436e-08  1.785e-07  -0.417   0.6777  
I(DORC^2)     -4.778e-11  3.158e-11  -1.513   0.1328  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0002493 on 122 degrees of freedom
Multiple R-squared:  0.1718,    Adjusted R-squared:  0.06318 
F-statistic: 1.582 on 16 and 122 DF,  p-value: 0.08358
Ru2 <- summary(reg.auxiliar)$r.squared
LM <- nrow(data) * Ru2
# obtendo o numero de regressores menos o intercepto
k <- length(coefficients(reg.auxiliar)) - 1
k
[1] 16
p.value <- 1 - pchisq(LM, k)  # O TESTE TEM k TERMOS REGRESSORES EM reg.auxiliar
# c('LM','p.value')
#'Resultado do teste de White sem termos cruzados
c(LM = LM, p.value = p.value)
         LM     p.value 
23.87930247  0.09217401 

Ou pelo bptest:

bptest(final3, ~LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + DORC + Importa + TICMSm +
    I(LNYI_T_1^2) + I(SIND^2) + I(SAGRO^2) + I(SSERV^2) + I(SPUB^2) + I(H^2) + I(DORC^2) +
    Importa^2 + TICMSm^2, data = dados2)

    studentized Breusch-Pagan test

data:  final3
BP = 23.879, df = 16, p-value = 0.09217

Precisa corrigir para presenca de heteroscedasticidade.

2.5.2 Correção de Var-cov conforme White

# library(car) possibilidades:
# hccm(regressao1,type=c('hc0','hc1','hc2','hc3','hc4'))
vcov.white0 <- hccm(final3, type = c("hc1"))
#
coeftest(final3, vcov.white0)

t test of coefficients:

               Estimate  Std. Error  t value  Pr(>|t|)    
(Intercept)  4.6387e-01  3.2707e-02  14.1826 < 2.2e-16 ***
LNYI_T_1    -5.0378e-02  3.8373e-03 -13.1285 < 2.2e-16 ***
SIND         1.2231e-01  1.8662e-02   6.5542 1.219e-09 ***
SAGRO        1.0790e-01  9.1380e-03  11.8075 < 2.2e-16 ***
SSERV        5.9370e-02  1.1784e-02   5.0383 1.550e-06 ***
SPUB        -1.4232e-01  2.8151e-02  -5.0556 1.437e-06 ***
H            3.1584e-04  1.8541e-04   1.7035 0.0908908 .  
DORC         4.3408e-06  3.2549e-06   1.3336 0.1846715    
Importa      4.0136e+00  1.2014e+00   3.3406 0.0010935 ** 
TICMSm       4.0377e+01  1.0138e+01   3.9826 0.0001132 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.6 Resultado do stargazer (com e sem correção de White)

cov <- vcov.white0
robust.se <- sqrt(diag(cov))

stargazer(final3, final3, se = list(NULL, robust.se), column.labels = c("MQO-final3",
    "robusto"), title = "Título: Resultado da Regressão", align = TRUE, type = "text",
    style = "all", keep.stat = c("aic", "bic", "rsq", "adj.rsq", "n"))

Título: Resultado da Regressão
================================================
                        Dependent variable:     
                    ----------------------------
                               BARRO            
                      MQO-final3      robusto   
                         (1)            (2)     
------------------------------------------------
LNYI_T_1              -0.050***      -0.050***  
                       (0.004)        (0.004)   
                     t = -13.230    t = -13.129 
                      p = 0.000      p = 0.000  
SIND                   0.122***      0.122***   
                       (0.019)        (0.019)   
                      t = 6.557      t = 6.554  
                      p = 0.000      p = 0.000  
SAGRO                  0.108***      0.108***   
                       (0.007)        (0.009)   
                      t = 14.627    t = 11.808  
                      p = 0.000      p = 0.000  
SSERV                  0.059***      0.059***   
                       (0.013)        (0.012)   
                      t = 4.488      t = 5.038  
                     p = 0.00002    p = 0.00000 
SPUB                  -0.142***      -0.142***  
                       (0.020)        (0.028)   
                      t = -7.054    t = -5.056  
                      p = 0.000     p = 0.00000 
H                      0.0003*        0.0003*   
                       (0.0002)      (0.0002)   
                      t = 1.752      t = 1.703  
                      p = 0.083      p = 0.089  
DORC                   0.00000        0.00000   
                      (0.00000)      (0.00000)  
                      t = 1.542      t = 1.334  
                      p = 0.126      p = 0.183  
Importa                4.014***      4.014***   
                       (1.206)        (1.201)   
                      t = 3.329      t = 3.341  
                      p = 0.002      p = 0.001  
TICMSm                40.377***      40.377***  
                       (8.835)       (10.138)   
                      t = 4.570      t = 3.983  
                     p = 0.00002    p = 0.0001  
Constant               0.464***      0.464***   
                       (0.034)        (0.033)   
                      t = 13.733    t = 14.183  
                      p = 0.000      p = 0.000  
------------------------------------------------
Observations             139            139     
R2                      0.886          0.886    
Adjusted R2             0.878          0.878    
Akaike Inf. Crit.      -801.999      -801.999   
Bayesian Inf. Crit.    -769.719      -769.719   
================================================
Note:                *p<0.1; **p<0.05; ***p<0.01

2.7 Autocorrelação dos resíduos

library(car)
library(lmtest)
library(sandwich)

dw.mod2 <- dwtest(final3)
dw.mod2

    Durbin-Watson test

data:  final3
DW = 2.0866, p-value = 0.709
alternative hypothesis: true autocorrelation is greater than 0

Fiz uma rotina para rodar vários BGtest até ordem 12.

# padrao do teste de BG, com distribuição qui-quadrado
bgorder = 1:12  # definindo até a máxima ordem do bgtest
d = NULL
for (p in bgorder) {
    bgtest.chi <- bgtest(final3, order = p, type = c("Chisq"), data = dados)
    print(bgtest.chi)
    d = rbind(d, data.frame(bgtest.chi$statistic, bgtest.chi$p.value))
}

    Breusch-Godfrey test for serial correlation of order up to 1

data:  final3
LM test = 0.28808, df = 1, p-value = 0.5915


    Breusch-Godfrey test for serial correlation of order up to 2

data:  final3
LM test = 1.4421, df = 2, p-value = 0.4862


    Breusch-Godfrey test for serial correlation of order up to 3

data:  final3
LM test = 1.4646, df = 3, p-value = 0.6905


    Breusch-Godfrey test for serial correlation of order up to 4

data:  final3
LM test = 2.4191, df = 4, p-value = 0.6592


    Breusch-Godfrey test for serial correlation of order up to 5

data:  final3
LM test = 4.57, df = 5, p-value = 0.4706


    Breusch-Godfrey test for serial correlation of order up to 6

data:  final3
LM test = 4.6906, df = 6, p-value = 0.5841


    Breusch-Godfrey test for serial correlation of order up to 7

data:  final3
LM test = 5.1586, df = 7, p-value = 0.6406


    Breusch-Godfrey test for serial correlation of order up to 8

data:  final3
LM test = 6.7512, df = 8, p-value = 0.5637


    Breusch-Godfrey test for serial correlation of order up to 9

data:  final3
LM test = 8.7766, df = 9, p-value = 0.4581


    Breusch-Godfrey test for serial correlation of order up to 10

data:  final3
LM test = 12.956, df = 10, p-value = 0.2262


    Breusch-Godfrey test for serial correlation of order up to 11

data:  final3
LM test = 13.226, df = 11, p-value = 0.2788


    Breusch-Godfrey test for serial correlation of order up to 12

data:  final3
LM test = 13.29, df = 12, p-value = 0.3483
d

Não concluiu por autocorrelação residual!

2.8 Teste de Jarque-Bera para normalidade

u.hat <- resid(final3)
library(tseries)
JB.mod2 <- jarque.bera.test(u.hat)
JB.mod2

    Jarque Bera Test

data:  u.hat
X-squared = 2.9947, df = 2, p-value = 0.2237

2.9 Teste RESET de Ramsey com potencias de 2 e 3

TesteRESET.power <- lmtest::resettest(final3, power = 2:3)
TesteRESET.power

    RESET test

data:  final3
RESET = 6.4532, df1 = 2, df2 = 127, p-value = 0.002142

2.10 Investigação de outliers - teste de Bonferroni para outlier (modelo 2)

outlierTest(final3)
No Studentized residuals with Bonferroni p < 0.05
Largest |rstudent|:
    rstudent unadjusted p-value Bonferroni p
58 -3.209014          0.0016835      0.23401
qqPlot(final3)

[1]  58 121
vif(final3)
LNYI_T_1     SIND    SAGRO    SSERV     SPUB        H     DORC  Importa 
4.650939 1.691263 1.544229 2.164569 2.627808 2.034318 3.631505 1.527390 
  TICMSm 
5.964815 

O outlier 58 é o município de Juruena.

Referências

MARQUEZIN, William Ricardo. O Fundo de Participação dos Municípios e sua contribuição para a redução da desigualdade econômica em Mato Grosso. Universidade Federal de Mato Grosso, Faculdade de Economia, Programa de Pós-Graduação em Agronegócio e Desenvolvimento Regional. UFMT: Cuiabá-MT, 2014. Dissertação (Mestrado). Disponível em: https://www.ufmt.br/adr/arquivos/6b93f9815cfad275fb05f3502deffda6.pdf.

LS0tDQp0aXRsZTogIkVjb25vbWV0cmlhOiBleGVyY8OtY2lvIGNyZXNjaW1lbnRvIG11bmljaXBhbCBlbSBNYXRvIEdyb3NzbyBlbnRyZSAyMDAxIGUgMjAxMCAtIHNlbGXDp8OjbyBkZSB2YXJpw6F2ZWlzIg0KYXV0aG9yOiAiQWRyaWFubyBNYXJjb3MgUm9kcmlndWVzIEZpZ3VlaXJlZG8sICplLW1haWw6IGFkcmlhbm8uZmlndWVpcmVkb0B1Zm1zLmJyKiINCmFic3RyYWN0OiANCiAgVGhpcyBpcyBhbiB1bmRlcmdyYWQgc3R1ZGVudCBsZXZlbCBleGVyY2lzZSBmb3IgY2xhc3MgdXNlLiBXZSBhbmFseXNlIDEzOSBtdW5pY2lwYWwgY3Jvc3Mtc2VjdGlvbiBkYXRhIGZvciB0aGUgQnJhemlsaWFuIFN0YXRlIG9mIE1hdG8gR3Jvc3NvIG9uIGEgc3RhdGljIGdyb3d0aCBtb2RlbC4gDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclZCAlQiAlWScpYCINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDoNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQogICAgdGhlbWU6IGRlZmF1bHQNCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDogeWVzDQogICAgZGZfcHJpbnQ6IHBhZ2VkDQogICAgZmlnX2NhcHRpb246IHRydWUNCiAgcGRmX2RvY3VtZW50Og0KICAgIHRvYzogeWVzDQotLS0NCg0KYGBge3Iga25pdHJfaW5pdCwgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgY2FjaGU9RkFMU0V9DQpsaWJyYXJ5KGtuaXRyKQ0KbGlicmFyeShybWFya2Rvd24pDQpsaWJyYXJ5KHJtZGZvcm1hdHMpDQoNCiMjIEdsb2JhbCBvcHRpb25zDQpvcHRpb25zKG1heC5wcmludD0iMTAwIikNCm9wdHNfY2h1bmskc2V0KGVjaG89VFJVRSwNCgkgICAgICAgICAgICAgY2FjaGU9VFJVRSwNCiAgICAgICAgICAgICAgIHByb21wdD1GQUxTRSwNCiAgICAgICAgICAgICAgIHRpZHk9VFJVRSwNCiAgICAgICAgICAgICAgIGNvbW1lbnQ9TkEsDQogICAgICAgICAgICAgICBtZXNzYWdlPUZBTFNFLA0KICAgICAgICAgICAgICAgd2FybmluZz1GQUxTRSkNCm9wdHNfa25pdCRzZXQod2lkdGg9MTAwKQ0KYGBgDQoNCiMgTGljZW7Dp2EgeyNMaWNlbsOnYSAudW5udW1iZXJlZH0NCg0KVGhpcyB3b3JrIGlzIGxpY2Vuc2VkIHVuZGVyIHRoZSBDcmVhdGl2ZSBDb21tb25zIEF0dHJpYnV0aW9uLVNoYXJlQWxpa2UgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZS4gVG8gdmlldyBhIGNvcHkgb2YgdGhpcyBsaWNlbnNlLCB2aXNpdCA8aHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktc2EvNC4wLz4gb3Igc2VuZCBhIGxldHRlciB0byBDcmVhdGl2ZSBDb21tb25zLCBQTyBCb3ggMTg2NiwgTW91bnRhaW4gVmlldywgQ0EgOTQwNDIsIFVTQS4NCg0KIVtMaWNlbnNlOiBDQyBCWS1TQSA0LjBdKGh0dHBzOi8vbWlycm9ycy5jcmVhdGl2ZWNvbW1vbnMub3JnL3ByZXNza2l0L2J1dHRvbnMvODh4MzEvcG5nL2J5LXNhLnBuZyl7d2lkdGg9IjI1JSJ9DQoNCiMgQ2l0YcOnw6NvIHsjQ2l0YcOnw6NvIC51bm51bWJlcmVkfQ0KDQpTdWdlc3TDo28gZGUgY2l0YcOnw6NvOiBGSUdVRUlSRURPLCBBZHJpYW5vIE1hcmNvcyBSb2RyaWd1ZXMuIEVjb25vbWV0cmlhOiBleGVyY8OtY2lvIGNyZXNjaW1lbnRvIG11bmljaXBhbCBlbSBNYXRvIEdyb3NzbyBlbnRyZSAyMDAxIGUgMjAxMCAtIHNlbGXDp8Ojby4gQ2FtcG8gR3JhbmRlLU1TLEJyYXNpbDogUlN0dWRpby9ScHVicywgMjAyMS4gRGlzcG9uw612ZWwgZW0gPGh0dHA6Ly9ycHVicy5jb20vYW1yb2ZpL2dyb3d0aF9tdDIwMDFfMjAxMF9zZWxlY2FvPi4NCg0KIyBJbnRyb2R1w6fDo28NCg0KTmVzdGUgZXhlcmPDrWNpbywgZmFyZWkgdXNvIGRvcyBkYWRvcyBkbyBwb3N0IDxodHRwczovL3JwdWJzLmNvbS9hbXJvZmkvZ3Jvd3RoX210MjAwMV8yMDEwPiwgKGUgdmlkZW8gZW0gPGh0dHBzOi8veW91dHUuYmUvSnZCUmpGZUVSb0U+KSBlIGFkYXB0YXJlaSBwYXJhIGEgc2VsZcOnw6NvIGRlIG1vZGVsb3MgYW8gZXN0aWxvIChmYXJlaSBhZGFwdGHDp8OjbykgZG8gZXhlcmPDrWNpbyA8aHR0cHM6Ly9ycHVicy5jb20vYW1yb2ZpL0ZhcmF3YXlfYmFja3dhcmRfc2VsZWN0aW9uPiBlIHZpZGVvICg8aHR0cHM6Ly95b3V0dS5iZS9leWMyenNfXzdqbz4pLiBPdSBzZWphLCBhcGxpY2FyZWkgb3MgbcOpdG9kb3MgKmJhY2t3YXJkIHNlbGVjdGlvbiogZSAqc3RlcHdpc2UqIHNvYnJlIG9zIGRhZG9zIGRlIGNyZXNjaW1lbnRvLg0KDQpQb3J0YW50bywgc2VqYSBvIGVudW5jaWFkbyBjb21vIG5vIHBvc3QgaW5pY2lhbCAoPGh0dHBzOi8vcnB1YnMuY29tL2Ftcm9maS9ncm93dGhfbXQyMDAxXzIwMTA+KS4NCg0KPiBFeGVtcGxvIHNvYnJlIGNyZXNjaW1lbnRvIG11bmljaXBhbCBhZGFwdGFkbyBkYSBkaXNzZXJ0YWNhbyBkZSBXaWxsaWFtIE1hcnF1ZXppbiAoMjAxNCkgbmEgVUZNVC4gRGFkb3MgZGUgMTM5IG11bmljaXBpb3MgZGUgTVQsIGVtIHF1ZSAyMDAxIMOpIG8gYW5vIGJhc2UgZSBvIGNyZXNjaW1lbnRvIHJlZmVyZS1zZSBhdMOpIDIwMTAuIEEgdmFyacOhdmVsIGRlcGVuZGVudGUgZG8gbW9kZWxvIMOpIGEgdGF4YSBkZSBjcmVzY2ltZW50byBkYSByZW5kYSBwZXIgY2FwaXRhIG11bmljaXBhbCAoYmFycm8pIGNvbmZvcm1lIEJhcnJvIGUgU2FsYS1pLU1hcnRpbiAoMTk5Mik9IkJBUlJPIi4gT3V0cmFzIHZhcmnDoXZlaXMgc8OjbzpcDQo+IFwjICJvcmRlbSIgPSBvcmRlbmFjYW8gZG9zIG11bmljaXBpb3NcDQo+IFwjICJLRVkiID0gb3JkZW1cDQo+IFwjICJNVU5JQ0lQSU8iID0gbm9tZSBkbyBtdW5pY2lwaW9cDQo+IFwjICJCQVJSTyIgPSB2YXJpYXZlbCBkZXBlbmRlbnRlIChhY2ltYSBkZXNjcml0YSlcDQo+IFwjICJEQVNTT1ciID0gYWx0ZXJuYXRpdmEgcGFyYSBhIHZhcmlhdmVsIGRlcGVuZGVudGUgKG5hbyB1dGlsaXphZGEpXA0KPiBcIyBWYXJpw6F2ZWlzIGV4cGxpY2F0aXZhczpcDQo+IFwjIDEpIFJlbmRhIHBlciBjYXBpdGEgbm8gYW5vIGluaWNpYWwgIkxOWUlfVFxfMSJcDQo+IFwjIDIpIENvbXBvc2nDp8OjbyBpbmR1c3RyaWFsIChTaW5kKTogIlNJTkQiXA0KPiBcIyAzKSBDb21wb3Npw6fDo28gZGEgYWdyb3BlY3XDoXJpYSAoU2Fncm8pOiAiU0FHUk8iXA0KPiBcIyA0KSBDb21wb3Npw6fDo28gZG8gc2V0b3IgZGUgc2VydmnDp29zIChTc2Vydik6ICJTU0VSViJcDQo+IFwjIDUpIENvbXBvc2nDp8OjbyBkYSBhZG1pbmlzdHJhw6fDo28gcMO6YmxpY2EgKFNwdWIpOiAiU1BVQiJcDQo+IFwjIDYpIENhcGl0YWwgaHVtYW5vIChoKTogIkgiXA0KPiBcIyA3KSBEZW5zaWRhZGUgZGVtb2dyw6FmaWNhIChkZCk6ICJERCJcDQo+IFwjIDgpIERlc3Blc2FzIG9yw6dhbWVudMOhcmlhcyAoZG9yYyk6ICJET1JDIlwNCj4gXCMgOSkgT3BlcmHDp8O1ZXMgZGUgY3LDqWRpdG8gKGNyZWQpOiAiQ1JFRCJcDQo+IFwjIDEwKSBFeHBvcnRhw6fDtWVzIE11bmljaXBhaXMgKGV4cG9yKTogIkVYUE9SIlwNCj4gXCMgMTEpIEltcG9ydGHDp8O1ZXMgTXVuaWNpcGFpcyAoaW1wb3IpOiAiSU1QT1IiXA0KPiBcIyAxMikgTWVyY2FkbyBSZWdpb25hbCAobXJlZyk6ICJNUkVHIlwNCj4gXCMgMTMpIENhcmdhIHRyaWJ1dMOhcmlhIHRvdGFsIG11bmljaXBhbCAodCk6ICJUIlwNCj4gXCMgMTQpIFRyYW5zZmVyw6puY2lhcyBJbnRlcmdvdmVybmFtZW50YWlzIGRvIElDTVMgKHRpY21zKTogIlRJQ01TIlwNCj4gXCMgMTUpIFRyYW5zZmVyw6puY2lhcyBJbnRlcmdvdmVybmFtZW50YWlzIGRvIEZQTSAodGZwbSk6ICJURlBNIlwNCj4gXCMgMTYpIE8gw61uZGljZSBkZSBHSU5JIChnaW5pKTogIkdJTkkiXA0KPiBcIyAxNykgw61uZGljZSBkZSBUSEVJTCAodGhlaWwpOiAiVEhFSUwiXA0KPiBcIyB2YXJpYXZlbCBhdXhpbGlhciBuw6NvIHV0aWxpemFkYTogIlRNUkVHIlwNCj4gXCMgdmFyaWF2ZWwgYXV4aWxpYXIgbsOjbyB1dGlsaXphZGE6ICJDQ09NIiBjb3JyZW50ZSBkZSBjb21lcmNpbw0KDQpVbSBkYXRhLmZyYW1lIGNvbSAxMzkgb2JzZXJ2YXRpb25zIHBhcmEgMjQgdmFyacOhdmVpcy4NCg0KYGBge3IsIGVjaG89RkFMU0UsIGV2YWw9VFJVRX0NCiMgaW5jbHVkZSB0aGlzIGNvZGUgY2h1bmsgYXMtaXMgdG8gc2V0IG9wdGlvbnMNCmtuaXRyOjpvcHRzX2NodW5rJHNldChjb21tZW50PU5BLCBwcm9tcHQ9VFJVRSwgb3V0LndpZHRoPTc1MCwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9OCkNCmBgYA0KDQpQYXJhIHJlcHJvZHXDp8OjbywgcG9kZS1zZSBmYXplciBvIGRvd25sb2FkIHByw6l2aW8gZG9zIGRhZG9zIGEgcGFydGlyIGRlIDxodHRwczovL2dpdGh1Yi5jb20vYW1yb2ZpL2NyZXNjaW1lbnRvX210L2Jsb2IvbWFzdGVyL2NyZXNjaW1lbnRvLnJkcz4sIGUgYXJtYXplbmFyIG5vIGRpcmV0w7NyaW8gZG8gcHJvamV0bywgb3Ugb2xoYXIgb3MgZGFkb3MgKmVtYmVkZWQqIG5vIGNvZGUgLlJtZC4NCg0KYGBge3IsIGV2YWw9VFJVRSwgbWVzc2FnZT1GLCB3YXJuaW5nPUZ9DQpsaWJyYXJ5KGR5bmxtKTtsaWJyYXJ5KGNhcik7bGlicmFyeShsbXRlc3QpDQpsaWJyYXJ5KHNhbmR3aWNoKTtsaWJyYXJ5KHRzZXJpZXMpO2xpYnJhcnkoa2FibGVFeHRyYSkNCiMgbyBhcnF1aXZvIGRhZG9zIGVzdMOhIGVtIGZvcm1hdG8gZHB1dCBlbWJlZGVkIG5vIHNjcmlwdCwgDQojIGVtIHVtIGNodW5rIG9jdWx0byBxdWUgbyBsZWl0b3IgdGVtIGFjZXNzbyBhbyBiYWl4YXIgbyBSbWQsDQojIGNsaWNhbmRvIGVtIGNvZGUNCmBgYA0KDQpgYGB7cixlY2hvPUZBTFNFfQ0KZGFkb3M8LQ0Kc3RydWN0dXJlKGxpc3Qob3JkZW0gPSBjKDEsIDIsIDMsIDQsIDUsIDYsIDcsIDgsIDksIDEwLCAxMSwgMTIsIA0KMTMsIDE0LCAxNSwgMTYsIDE3LCAxOCwgMTksIDIwLCAyMSwgMjIsIDIzLCAyNCwgMjUsIDI2LCAyNywgMjgsIA0KMjksIDMwLCAzMSwgMzIsIDMzLCAzNCwgMzUsIDM2LCAzNywgMzgsIDM5LCA0MCwgNDEsIDQyLCA0MywgNDQsIA0KNDUsIDQ2LCA0NywgNDgsIDQ5LCA1MCwgNTEsIDUyLCA1MywgNTQsIDU1LCA1NiwgNTcsIDU4LCA1OSwgNjAsIA0KNjEsIDYyLCA2MywgNjQsIDY1LCA2NiwgNjcsIDY4LCA2OSwgNzAsIDcxLCA3MiwgNzMsIDc0LCA3NSwgNzYsIA0KNzcsIDc4LCA3OSwgODAsIDgxLCA4MiwgODMsIDg0LCA4NSwgODYsIDg3LCA4OCwgODksIDkwLCA5MSwgOTIsIA0KOTMsIDk0LCA5NSwgOTYsIDk3LCA5OCwgOTksIDEwMCwgMTAxLCAxMDIsIDEwMywgMTA0LCAxMDUsIDEwNiwgDQoxMDcsIDEwOCwgMTA5LCAxMTAsIDExMSwgMTEyLCAxMTMsIDExNCwgMTE1LCAxMTYsIDExNywgMTE4LCAxMTksIA0KMTIwLCAxMjEsIDEyMiwgMTIzLCAxMjQsIDEyNSwgMTI2LCAxMjcsIDEyOCwgMTI5LCAxMzAsIDEzMSwgMTMyLCANCjEzMywgMTM0LCAxMzUsIDEzNiwgMTM3LCAxMzgsIDEzOSksIEtFWSA9IGMoMSwgMiwgMywgNCwgNSwgNiwgDQo3LCA4LCA5LCAxMCwgMTEsIDEyLCAxMywgMTQsIDE1LCAxNiwgMTcsIDE4LCAxOSwgMjAsIDIxLCAyMiwgDQoyMywgMjQsIDI1LCAyNiwgMjcsIDI4LCAyOSwgMzAsIDMxLCAzMiwgMzMsIDM0LCAzNSwgMzYsIDM3LCAzOCwgDQozOSwgNDAsIDQxLCA0MiwgNDMsIDQ0LCA0NSwgNDYsIDQ3LCA0OCwgNDksIDUwLCA1MSwgNTIsIDUzLCA1NCwgDQo1NSwgNTYsIDU3LCA1OCwgNTksIDYwLCA2MSwgNjIsIDYzLCA2NCwgNjUsIDY2LCA2NywgNjgsIDY5LCA3MCwgDQo3MSwgNzIsIDczLCA3NCwgNzUsIDc2LCA3NywgNzgsIDc5LCA4MCwgODEsIDgyLCA4MywgODQsIDg1LCA4NiwgDQo4NywgODgsIDg5LCA5MCwgOTEsIDkyLCA5MywgOTQsIDk1LCA5NiwgOTcsIDk4LCA5OSwgMTAwLCAxMDEsIA0KMTAyLCAxMDMsIDEwNCwgMTA1LCAxMDYsIDEwNywgMTA4LCAxMDksIDExMCwgMTExLCAxMTIsIDExMywgMTE0LCANCjExNSwgMTE2LCAxMTcsIDExOCwgMTE5LCAxMjAsIDEyMSwgMTIyLCAxMjMsIDEyNCwgMTI1LCAxMjYsIDEyNywgDQoxMjgsIDEyOSwgMTMwLCAxMzEsIDEzMiwgMTMzLCAxMzQsIDEzNSwgMTM2LCAxMzcsIDEzOCwgMTM5KSwgDQogICAgTVVOSUNJUElPID0gYygiQWNvcml6YWwiLCAiw4FndWEgQm9hIiwgIkFsdGEgRmxvcmVzdGEiLCAiQWx0byBBcmFndWFpYSIsIA0KICAgICJBbHRvIEJvYSBWaXN0YSIsICJBbHRvIEdhcsOnYXMiLCAiQWx0byBQYXJhZ3VhaSIsICJBbHRvIFRhcXVhcmkiLCANCiAgICAiQXBpYWPDoXMiLCAiQXJhZ3VhaWFuYSIsICJBcmFndWFpbmhhIiwgIkFyYXB1dGFuZ2EiLCAiQXJlbsOhcG9saXMiLCANCiAgICAiQXJpcHVhbsOjIiwgIkJhcsOjbyBkZSBNZWxnYcOnbyIsICJCYXJyYSBkbyBCdWdyZXMiLCAiQmFycmEgZG8gR2Fyw6dhcyIsIA0KICAgICJCb20gSmVzdXMgZG8gQXJhZ3VhaWEiLCAiQnJhc25vcnRlIiwgIkPDoWNlcmVzIiwgIkNhbXBpbsOhcG9saXMiLCANCiAgICAiQ2FtcG8gTm92byBkbyBQYXJlY2lzIiwgIkNhbXBvIFZlcmRlIiwgIkNhbXBvcyBkZSBKw7psaW8iLCANCiAgICAiQ2FuYWJyYXZhIGRvIE5vcnRlIiwgIkNhbmFyYW5hIiwgIkNhcmxpbmRhIiwgIkNhc3RhbmhlaXJhIiwgDQogICAgIkNoYXBhZGEgZG9zIEd1aW1hcsOjZXMiLCAiQ2zDoXVkaWEiLCAiQ29jYWxpbmhvIiwgIkNvbMOtZGVyIiwgDQogICAgIkNvbG5pemEiLCAiQ29tb2Rvcm8iLCAiQ29uZnJlc2EiLCAiQ29ucXVpc3RhIEQnT2VzdGUiLCAiQ290cmlndWHDp3UiLCANCiAgICAiQ3VpYWLDoSIsICJDdXJ2ZWzDom5kaWEiLCAiRGVuaXNlIiwgIkRpYW1hbnRpbm8iLCAiRG9tIEFxdWlubyIsIA0KICAgICJGZWxpeiBOYXRhbCIsICJGaWd1ZWlyw7Nwb2xpcyBEJ09lc3RlIiwgIkdhw7pjaGEgZG8gTm9ydGUiLCANCiAgICAiR2VuZXJhbCBDYXJuZWlybyIsICJHbMOzcmlhIEQnT2VzdGUiLCAiR3VhcmFudMOjIGRvIE5vcnRlIiwgDQogICAgIkd1aXJhdGluZ2EiLCAiSW5kaWF2YcOtIiwgIkl0YcO6YmEiLCAiSXRpcXVpcmEiLCAiSmFjaWFyYSIsIA0KICAgICJKYW5nYWRhIiwgIkphdXJ1IiwgIkp1YXJhIiwgIkp1w61uYSIsICJKdXJ1ZW5hIiwgIkp1c2NpbWVpcmEiLCANCiAgICAiTGFtYmFyaSBEJ09lc3RlIiwgIkx1Y2FzIGRvIFJpbyBWZXJkZSIsICJMdWNpYXJhIiwgIlZpbGEgQmVsYSBkYSBTYW50w61zc2ltYSBUcmluZGFkZSIsIA0KICAgICJNYXJjZWzDom5kaWEiLCAiTWF0dXDDoSIsICJNaXJhc3NvbCBkJ09lc3RlIiwgIk5vYnJlcyIsICJOb3J0ZWzDom5kaWEiLCANCiAgICAiTm9zc2EgU2VuaG9yYSBkbyBMaXZyYW1lbnRvIiwgIk5vdmEgQmFuZGVpcmFudGVzIiwgIk5vdmEgTmF6YXLDqSIsIA0KICAgICJOb3ZhIExhY2VyZGEiLCAiTm92YSBTYW50YSBIZWxlbmEiLCAiTm92YSBCcmFzaWzDom5kaWEiLCANCiAgICAiTm92YSBDYW5hw6MgZG8gTm9ydGUiLCAiTm92YSBNdXR1bSIsICJOb3ZhIE9sw61tcGlhIiwgIk5vdmEgVWJpcmF0w6MiLCANCiAgICAiTm92YSBYYXZhbnRpbmEiLCAiTm92byBNdW5kbyIsICJOb3ZvIEhvcml6b250ZSBkbyBOb3J0ZSIsIA0KICAgICJOb3ZvIFPDo28gSm9hcXVpbSIsICJQYXJhbmHDrXRhIiwgIlBhcmFuYXRpbmdhIiwgIk5vdm8gU2FudG8gQW50w7RuaW8iLCANCiAgICAiUGVkcmEgUHJldGEiLCAiUGVpeG90byBkZSBBemV2ZWRvIiwgIlBsYW5hbHRvIGRhIFNlcnJhIiwgDQogICAgIlBvY29uw6kiLCAiUG9udGFsIGRvIEFyYWd1YWlhIiwgIlBvbnRlIEJyYW5jYSIsICJQb250ZXMgZSBMYWNlcmRhIiwgDQogICAgIlBvcnRvIEFsZWdyZSBkbyBOb3J0ZSIsICJQb3J0byBkb3MgR2HDumNob3MiLCAiUG9ydG8gRXNwZXJpZGnDo28iLCANCiAgICAiUG9ydG8gRXN0cmVsYSIsICJQb3hvcsOpbyIsICJQcmltYXZlcmEgZG8gTGVzdGUiLCAiUXVlcsOqbmNpYSIsIA0KICAgICJTw6NvIEpvc8OpIGRvcyBRdWF0cm8gTWFyY29zIiwgIlJlc2VydmEgZG8gQ2FiYcOnYWwiLCAiUmliZWlyw6NvIENhc2NhbGhlaXJhIiwgDQogICAgIlJpYmVpcsOjb3ppbmhvIiwgIlJpbyBCcmFuY28iLCAiU2FudGEgQ2FybWVtIiwgIlNhbnRvIEFmb25zbyIsIA0KICAgICJTw6NvIEpvc8OpIGRvIFBvdm8iLCAiU8OjbyBKb3PDqSBkbyBSaW8gQ2xhcm8iLCAiU8OjbyBKb3PDqSBkbyBYaW5ndSIsIA0KICAgICJTw6NvIFBlZHJvIGRhIENpcGEiLCAiUm9uZG9sw6JuZGlhIiwgIlJvbmRvbsOzcG9saXMiLCAiUm9zw6FyaW8gT2VzdGUiLCANCiAgICAiU2FudGEgQ3J1eiBkbyBYaW5ndSIsICJTYWx0byBkbyBDw6l1IiwgIlNhbnRhIFJpdGEgZG8gVHJpdmVsYXRvIiwgDQogICAgIlNhbnRhIFRlcmV6aW5oYSIsICJTYW50byBBbnTDtG5pbyBkbyBMZXN0ZSIsICJTYW50byBBbnTDtG5pbyBkbyBMZXZlcmdlciIsIA0KICAgICJTw6NvIEbDqWxpeCBkbyBBcmFndWFpYSIsICJTYXBlemFsIiwgIlNlcnJhIE5vdmEgRG91cmFkYSIsIA0KICAgICJTaW5vcCIsICJTb3JyaXNvIiwgIlRhYmFwb3LDoyIsICJUYW5nYXLDoSBkYSBTZXJyYSIsICJUYXB1cmFoIiwgDQogICAgIlRlcnJhIE5vdmEgZG8gTm9ydGUiLCAiVGVzb3VybyIsICJUb3JpeG9yw6l1IiwgIlVuacOjbyBkbyBTdWwiLCANCiAgICAiVmFsZSBkZSBTw6NvIERvbWluZ29zIiwgIlbDoXJ6ZWEgR3JhbmRlIiwgIlZlcmEiLCAiVmlsYSBSaWNhIiwgDQogICAgIk5vdmEgR3Vhcml0YSIsICJOb3ZhIE1hcmlsw6JuZGlhIiwgIk5vdmEgTWFyaW5nw6EiLCAiTm92YSBNb250ZSBWZXJkZSINCiAgICApLCBCQVJSTyA9IGMoMC4wNTk5NjQxODYxMTA3ODkxLCAwLjA0NTIwMzExNTM5MDE5NjgsIDAuMDQ0Njg1NTAwNDgwNTE0MywgDQogICAgMC4yMDQxMDI0MjI0NzM2MjcsIDAuMDQ1NTk4Mzk1MDM2ODU3NSwgMC4wMDc3Njc4NzU2OTU5OTQ0NiwgDQogICAgMC4wMjk0MzMxNTIwMzE4Mzc5LCAwLjA0MjMxNDE5MDk3MDA1MTYsIDAuMTE0ODE4NzAwMDE2OTY5LCANCiAgICAwLjA1MDk3NjMxMjk0MjY5ODUsIDAuMDYwOTU5MTA0NzAxNjEzMiwgMC4wMzM2NzYxMDUwMzA3MjA2LCANCiAgICAwLjA0NjQxNzE4MTU4NDYzOCwgMC4wNDkwMTk0MDE5NDM4MzMxLCAwLjA0ODIxMjkzNjkyODc5MzMsIA0KICAgIDAuMDQ0MDUzMjA3NTQyNDM5MiwgMC4wMjQwODQ1NjU5NTQ1NjgzLCAwLjE0ODY0MTUzOTU2NTkxOSwgDQogICAgMC4wMTU1ODI5NTQ0ODYyMzkyLCAwLjAzNzA2ODE4NzI2OTE4NDEsIDAuMDQ5NzExNjUwNTA3NzA1OCwgDQogICAgMC4wMDExODU3OTg4MjE5MDQzOCwgMC4wMDQ5ODU0MzI4NzI2MTMzNiwgLTAuMDEzNTcwNTg2NDk4MzA2NSwgDQogICAgMC4wNzcxOTc1NjQ3OTEyMTY1LCAwLjAzODAxODI2NjcwNTI2NDksIDAuMDY2MTM5NDA4MTkxMzIwNiwgDQogICAgMC4wNTk0NTIwNzQxMTQxNTM3LCAwLjAxNjI0MTk5ODQ0ODM5NTYsIDAuMDY2MDU0ODc2NDk1NTQzMSwgDQogICAgMC4wNjE4OTA4MDY5NDQxODE3LCAwLjAyNzA4Njc1OTMzNjY1NywgMC4wOTkxOTY3Njg0NjM0NjE3LCANCiAgICAwLjA0ODU0NDY4NTQ3MTU1MzEsIDAuMDQ2NTIyODc3MjQ2NjQ2MSwgMC4xMDMwMjQ1MDYzMTI2MjQsIA0KICAgIDAuMDQ4NjUxMjcyMTUyMTY4NCwgMC4wMjk3NzU4ODQ4NjcwMDczLCAwLjA5NDkwNDU0MjkwODAzNTMsIA0KICAgIDAuMDQ0Mjg2MjM4MjQwNTM2OSwgMC4wMzYxMzkzOTM3NzU2MDk5LCAwLjA2MjA4MjYwNzEyMjk5NDUsIA0KICAgIDAuMDY2Mjc0MjQwNDgwNTUwMywgMC4wNTUzMzE3NDExODQ1MTQ4LCAwLjA1NDU2ODQwMTU4MDE3MTgsIA0KICAgIDAuMDIxMzU3Nzk3MTU4ODU3NCwgMC4wNTMxNDcxODA4NjM5MjMxLCAwLjA0Mjc4NTkzNzc3MDI4MTEsIA0KICAgIDAuMDI3ODkyMzA0NDE3NzA4NywgMC4xMjQ4NTI1ODMxODEwNzUsIDAuMDQwNzY0MTEwNzg4OTM4NiwgDQogICAgMC4wMjE5NjQ0NjE1OTQyNzgxLCAwLjAzMDkwODk3MDI1NDU5NjgsIDAuMDc5MTA0MDIxOTY3MTAyMSwgDQogICAgMC4wNzE2MTI4ODM2NzkwMzY1LCAwLjExMDQzMTM4NzI4ODY4NSwgMC4wNTQxMTEwMzcyNzUxMTE2LCANCiAgICAtMC4wMDYwMTg0OTk3Mzc5NzkwNywgMC4wNDIyOTc5MTg0OTIzNzY4LCAwLjA3NDE5MzgxMjg4NzQ4NDgsIA0KICAgIDAuMDI1MTc0NzAzNTUyODAwNywgMC4wMzgyMTYyNjEzMzgwNTQxLCAwLjA4NDU5ODk3MDY3OTk4MzEsIA0KICAgIDAuMDYzODUwNTY4NDY1MzczOSwgMC4wNzA3MTY4NjI3OTE3NDA3LCAwLjA3NDMyNDYyNDk0MjA5NjIsIA0KICAgIDAuMDAyMDEyNjA5Njc3NjY2OTEsIDAuMDM5NzMwNTU1NzUyMzQxNiwgMC4wNTM5Njg3NjgxNzQ5MzA1LCANCiAgICAwLjExMTE1NDczNzU2OTYyOCwgMC4wOTgyMzY2MjQ4Mzk0MTc0LCAwLjExMDU1NzYwNDc2MjUyLCANCiAgICAwLjA5MDY0MTA3ODE5MDE2NDYsIDAuMDU2MzY3NTMwNTU0NjExMywgMC4wOTYyNTU4ODI2MDc5MTA0LCANCiAgICAwLjAzNzQyMjYxOTkwNDE5NDIsIC0wLjAyMTE5MDI5NzAwOTU0NDEsIDAuMDQ5NjIyMDkzMTM0ODY3LCANCiAgICAwLjAzODY0NzQxODA4MTQ2MjYsIDAuMDc1NDI4NDc0NTcxMTAwMywgMC4wMzM4NjIwNjA1NzY2NDYzLCANCiAgICAwLjA1NTAwODA4NjAyNDM0NjQsIDAuMDk3NzQ5MTcxNzE2NDM1OSwgMC4wNDMyMDkzMzU4OTEwMjEzLCANCiAgICAwLjEwNDAzNDE1NjQxNDA4MywgMC4wNDQwNDEyOTYxNTA5NzIzLCAwLjA1Njg2OTYyODE5MTU3NTUsIA0KICAgIDAuMDM0MTIxODY5NjYxOTEwMywgMC4wNjk3NTU2NTc0NTgxMjIxLCAwLjA0MDk4Nzk1OTE4Njk1NzQsIA0KICAgIDAuMDY3Njc0ODUyODE0ODMzNSwgMC4wMjk1MzczOTA1NzAwMTY4LCAwLjA2NDE0ODYxNzM2OTgyNDEsIA0KICAgIDAuMDk2OTE5NDcyNDc2MTIyMywgMC4wNTMxNTUzNzc4OTk3NDczLCAwLjA3ODQ0ODQ2NjM3MTMxODEsIA0KICAgIDAuMDYzNzQwNTAyNDk5NTQ2MywgMC4wNTYxNzkyOTUzODA1NTc4LCAwLjA5OTEwMTY0NDg2OTYyNDEsIA0KICAgIDAuMDE5ODMzOTMyMTIxNTgwNCwgMC4wNTYxMjcxNjgwODI5ODQ3LCAwLjA1NjI2MjY1MTM0MzcyMDMsIA0KICAgIDAuMDU4MTg5MDY1MzMwNzQzNywgMC4wMzgzNjc3MTc0ODAwNjQyLCAwLjA0NzM1ODc3NjE4MzI5MDYsIA0KICAgIDAuMDQ2MzU2MTM2NzgyODgwMywgMC4wMzMyNDY0MDIxMTMxNTE3LCAwLjAwOTYwNTMzNTUwNzI5Mjg3LCANCiAgICAwLjA1Nzc1MjA3NjU5NDYyOTEsIDAuMDEyMTk5MjkwMjgwNzQ1NywgMC4xMzA4MDkwNzI5MDAxNSwgDQogICAgMC4wNjI3NTA0NzMxNDgwNTI1LCAwLjA5MzQyNzMzMTMxOTU0NzksIDAuMTA0MDIzMDIxNDU0MDg4LCANCiAgICAwLjA1OTE3Mjg3Njk2MDI5MzYsIDAuMDAzODI0NDMxOTA4MzI2NzEsIDAuMDU4NTUwMzQxNzcyNDE4LCANCiAgICAtMC4wNDE5NTIzNjIyMDMwNjMsIC0wLjA3OTg1OTQ0Mjk4NjgxODQsIDAuMDcxMzQ5ODg2MzIwMTE1MywgDQogICAgLTAuMDAyNzYzMDYwNDM1NDIwNTIsIDAuMTAyNTUxOTk4NzI0NTA4LCAwLjAyMDU3MzY0MTY1MDQ3NiwgDQogICAgLTAuMDAxMDc1NDYwNzI2MzQyODIsIDAuMTE5ODk2NTI3MDc5MzcyLCAwLjAxNzkwODU3OTY4MDgyNjYsIA0KICAgIDAuMDIzMDY5ODE4Njk0MDk4OCwgMC4wNjgxODM5ODk2MjY4NiwgMC4wMjI2NjYyNTA5ODQyMDE5LCANCiAgICAwLjA0NjQ3Mzc1Mzc3NzY1MzUsIDAuMDg2OTQ1NjQyMzMwMDY5NSwgMC4xMzQ2MjYzODQyNjU2MSwgDQogICAgMC4wMzUxOTc3MDkwNjM0NzQ4LCAwLjA0MTE2NDYyMDY0MTg0NjYsIDAuMDQ1Njc4NDY5MTkyODI0MSwgDQogICAgMC4wNjM0OTI3MjM0NTMwODgzLCAwLjA0NjY4ODI3NTE2Nzg4MzYsIDAuMDc1NDg0NzkwMTgwMjA2NywgDQogICAgMC4xMTA1MDIzNzM5MTg3MjUpLCBEQVNTT1cgPSBjKDAuMDc5NDk0ODcxMDQ0MzcyOCwgMC4wNTU3ODI4NjU0OTE0NDc1LCANCiAgICAwLjA1NTAwNzE5MjM0ODU0NDEsIDAuNTg2MzU0MDA3OTM0Njg4LCAwLjA1NjM3NzY1MDk3MjczOTIsIA0KICAgIDAuMDA4MDQ1ODQ0OTkzMjg3MDUsIDAuMDMzNjk5ODM0NzMxODA3OCwgMC4wNTE0OTk0OTQ1MzcyNjMsIA0KICAgIDAuMjAxMTY4NTA4MDc4MTk5LCAwLjA2NDY4MzcwODY0NTM2MzMsIDAuMDgxMjA5MjcyMTA4NzE3MSwgDQogICAgMC4wMzkzMzY2MDg2NjI4NTE4LCAwLjA1NzYxNjQ0NzY2OTg1MzcsIDAuMDYxNjE0NjgwNzk0MzM1MiwgDQogICAgMC4wNjAzNjU1NDM3MzY4ODIzLCAwLjA1NDA2NDU1ODExNTI0MzYsIDAuMDI2ODk0MTQ4MTgwMTIwNSwgDQogICAgMC4zMTIyODM0Njg5OTY0NDgsIDAuMDE2NzI4NjA4OTIwMTIwNCwgMC4wNDQwMDA0MTU4NjYyMzk0LCANCiAgICAwLjA2MjY5NDE2MjY0OTAzNTgsIDAuMDAxMTkyMTQ4OTI2NDQ2NDQsIDAuMDA1MDk4OTcwMDM0MjUyODQsIA0KICAgIC0wLjAxMjc3NDU5NjEwMzE3NjYsIDAuMTExNDczODI5NjAxMzA0LCAwLjA0NTMzMjQxNjk4MDEzMjUsIA0KICAgIDAuMDkwMzg4MDgxNjc3NjkwNSwgMC4wNzg2MTgzODc5NjM4ODQxLCAwLjAxNzQ4OTEzMDEyNzAyMDcsIA0KICAgIDAuMDkwMjM0ODQyMzYwMDEwNywgMC4wODI4Mjg3MjA0MDY5MTM4LCAwLjAzMDY3Mzg0Nzc2NjQwNDksIA0KICAgIDAuMTYwMjA5NjE2NDk5MzQyLCAwLjA2MDg3ODI5Mjk5NjQyNTMsIDAuMDU3Nzc3MDI3OTczODUwOSwgDQogICAgMC4xNjk3MTkzODE1Nzk2NTYsIDAuMDYxMDQzMzU4MTcyODAyMiwgMC4wMzQxNDcyMDc1NTM0NzkzLCANCiAgICAwLjE0OTkyODM0OTk4MTAyNCwgMC4wNTQ0MTEzNDA2NTExMDI2LCAwLjA0MjcwOTIyMDgzMjQyMjQsIA0KICAgIDAuMDgzMTYzNzg4NzcwNzYyNiwgMC4wOTA2MzI3NDc0NzQ0NjQyLCAwLjA3MTcxMTUwNTA3NjU5MzksIA0KICAgIDAuMDcwNDU5ODA3OTIzMTgyOSwgMC4wMjM1NDg1OTE2ODkwMDg0LCAwLjA2ODE1MjEyNjk3OTcxMjIsIA0KICAgIDAuMDUyMTkxMzYxNTMxMjE5OSwgMC4wMzE3MDU1MTA1NjIzNTQsIDAuMjMwNjgxNDMwNzU1NTIzLCANCiAgICAwLjA0OTI0NjcwOTc2NzE3NDQsIDAuMDI0Mjg1ODQxODE2MDc1MSwgMC4wMzU2MzYwOTcwMzAzMTQyLCANCiAgICAwLjExNTMyNTkyMDMyMTAxOCwgMC4xMDA1NjI3NDA2MDM1ODIsIDAuMTg5MDc4MTYyMzQ3NTU1LCANCiAgICAwLjA2OTcxMzk0NzU0NjEwMTQsIC0wLjAwNTg1ODQwMjg0MjAzNzQyLCAwLjA1MTQ3NTY4MTU4Mzk4NTcsIA0KICAgIDAuMTA1NTM3MTI3NDExODIxLCAwLjAyODI1NDgxNDY3NDExMTMsIDAuMDQ1NjExNDQwMzE5NDI1NywgDQogICAgMC4xMjY4MDU3ODUyNTU1NjEsIDAuMDg2Mjc5NzQ3NjcxMzYxMSwgMC4wOTg4NjI2MjcxMDI0ODg3LCANCiAgICAwLjEwNTc5MjMzOTQyNDg1OSwgMC4wMDIwMzA5NDc5MjMyNDA4OSwgMC4wNDc3NjE5NzgyNTQ5MTE2LCANCiAgICAwLjA2OTQ4MjU2MzM0Njk0MzgsIDAuMTkxMDM4ODE1NDU1ODc1LCAwLjE1Nzg3NTE1NTYwNTU1LCANCiAgICAwLjE4OTQxOTM1ODI4ODc4NiwgMC4xNDAxMDE2OTMwNzA5NiwgMC4wNzM0MjM3NjUxMTIyNTQxLCANCiAgICAwLjE1MzEyMjUxMTI3ODM1LCAwLjA0NDQ5NTk5NTE1MzY4MjQsIC0wLjAxOTI5MjIyMzA2ODU0ODIsIA0KICAgIDAuMDYyNTU0MTI5MTk3OTExNSwgMC4wNDYyMjA3Njk2NDI4OTE3LCAwLjEwNzk1NzkzNzk4MjIxOCwgDQogICAgMC4wMzk1ODg2MDg3Njg0ODQzLCAwLjA3MTE3OTczNjU5NzczMDEsIDAuMTU2Njk3Njc2NTc4NTUzLCANCiAgICAwLjA1MjgxNDgyNjI5OTIxMDQsIDAuMTcyMjgyODc1ODA0MzgxLCAwLjA1NDA0Njg1MTgxNTgyOCwgDQogICAgMC4wNzQyNTk1NDI4MDY2NDg1LCAwLjAzOTk0MTM5OTQ3NzEyNjIsIDAuMDk3MDU0MDEwNTIxNTM4OCwgDQogICAgMC4wNDk1NzAwOTc5ODQzMTk5LCAwLjA5MzE5MTkyNzkwNTgzMDUsIDAuMDMzODM1NzUyNDA4OTcxOCwgDQogICAgMC4wODY4MDk5NDc2MzExNDUzLCAwLjE1NDcwNTMxNzg3MDQ3LCAwLjA2ODE2NTM1MjMxMjIwNTgsIA0KICAgIDAuMTEzOTkzODc1MTUxMTE4LCAwLjA4NjA4NDMxMDM0NzE3NjEsIDAuMDczMTExNDA2MTgyMjc2MiwgDQogICAgMC4xNTk5Nzc0MzQ4NzYwNjQsIDAuMDIxNzE0MzY5NTA0MTU0NywgMC4wNzMwMjQ5OTkyNTQ3NzE4LCANCiAgICAwLjA3MzI0OTY2MjQ0NDI1NjMsIDAuMDc2NDczOTI4OTU3NjcyNSwgMC4wNDU4MjUyMTUzMjIyOTM1LCANCiAgICAwLjA1OTA1MjM3OTk5NTkyOTUsIDAuMDU3NTIzNzczNjY2NDkwOSwgMC4wMzg3NTU5MDE4NjA3OTE5LCANCiAgICAwLjAxMDAzMjc0MzU4MzY3NzMsIDAuMDc1NzM3NjI0ODY1MjYyNywgMC4wMTI4OTQxODk4MjQ1NzMyLCANCiAgICAwLjI0OTUwNDQxMTk2MzI4MiwgMC4wODQzMzUwNTE4MDEyMjUyLCAwLjE0NjQ4MDgyMzM3NjY4NywgDQogICAgMC4xNzIyNTQ0NzcwMDEwMjgsIDAuMDc4MTQyMjM5MDE2NTUyOCwgMC4wMDM4OTEwMTE4NjExMDkyNywgDQogICAgMC4wNzcwODQ4NTIxMjYxOTUxLCAtMC4wMzQ5NDE3Mzg5NDQ4MDIyLCAtMC4wNTY5NTkwNjczODAxOTkzLCANCiAgICAwLjEwMDA2MjMwNjExOTkwNiwgLTAuMDAyNzI4OTg4MTg3NDA2MDEsIDAuMTY4NTI3NjY2NDUxNjUsIA0KICAgIDAuMDIyNjAxNTg5OTc0OTgzNywgLTAuMDAxMDcwMjcyNzA3Mzg0NjYsIDAuMjE1NzcwOTUyOTEwODMyLCANCiAgICAwLjAxOTQzMjU3MzUwNjMxMTcsIDAuMDI1NjM5NTIxODUwMTM0MiwgMC4wOTQxMzAyMzk4MjY5MTQ2LCANCiAgICAwLjAyNTE0MzcyOTUyMzIyNjksIDAuMDU3NzAyMzc3MTM1NjgxMywgMC4xMzE4ODQwMzg0ODEzNjQsIA0KICAgIDAuMjYyMTA4OTI2OTMxNjEsIDAuMDQxNDExMDc3Mjk2Mjk3MSwgMC4wNDk4MjU3NzY3NzQ2NDkyLCANCiAgICAwLjA1NjQ5ODM5ODE2ODExNjksIDAuMDg1NjQ1MDUyMjYzMDI4NSwgMC4wNTgwMjg2MTg5MDgzMDg5LCANCiAgICAwLjEwODA2ODk5OTE4NzQyMywgMC4xODkyNzAwMDg0NDgzOTEpLCBMTllJX1RfMSA9IGMoOC42MDkwNjg4MzI5Mzc3NywgDQogICAgOS41MDE1OTgzNjI4NjIwNSwgOS4xNDU5MjA0NjY3ODc0NiwgOS4zNzgyMzY0NDQ5NTUwMSwgOC44OTgxODc2ODU2NzIwNSwgDQogICAgMTAuMjExMTU5MzE1NzAyNCwgOC41MzExMTk1NzU4NTY0OSwgMTAuNzIwMzMxMzQ1MTM3OSwgOC43NDE3NTQ2OTE0NTYwNSwgDQogICAgOS4zNzY2MTY2NjMzNTA2OCwgOC44NTc2MzU2Mzg1MTEzOSwgOS41NDk3NjU4Mzc2MjMwNiwgOC42NjMyMDM4MjU3NTExMiwgDQogICAgOS4yMjAyMjE4MzQ0ODA2MiwgOC42NjIwMzU1NDQwMjMxNSwgOS4yNTIwNjQ1MDE3MDM2LCA5LjM1NzI3NzY4OTUwMTIxLCANCiAgICA4LjI2NTIzMDk5NzcyNjc2LCA5LjgxOTE5NTAwNzkzMzMxLCA4LjkzMzMwODA5NDQ5MTg1LCA4LjY0MDEyNjUxMzExOTQzLCANCiAgICAxMC42MjQzMzI1NjA5MDc0LCAxMC40MDc4OTM5MzI2MzA2LCAxMS4zOTY1NjAyODY2MTE4LCA4Ljk2OTEzNDcyNTEwNTE4LCANCiAgICA5LjU0MjUzNjQ3ODM0NDUzLCA4LjU4MjE1MDUxNTE0NzY5LCA4Ljk1OTI5NjI2NDYyODMsIDkuMDk0MzgyNjE4ODY0OTgsIA0KICAgIDkuMDQ5ODQ2OTY2NDk5MzIsIDkuMjY5Njg3ODQzMzU3MiwgOS4zMzQ0NDUwNjAwMjY4OSwgOC40ODQzMjU4ODkyNzIwOCwgDQogICAgOS4xMzY1MzU3MjI3MzMxMiwgOC44NDQwMjgzNzExMzU2NCwgOC41NDg5MDY2MDU4OTE2MSwgOC44NDgzNTQ0ODM5NjY3LCANCiAgICA5LjYzNzczNTUyNTM4NDk3LCA4LjIyOTQwMDMyNDQ3OTIxLCA5LjE1NDkzMzAyMDkyMjMsIDEwLjE1OTg4MjE0ODQwOTQsIA0KICAgIDkuNTMyODM0NDQ0ODk3MTQsIDkuMjE4Mzk4NTc0NjE3ODgsIDkuMDEyMzcxNjg1ODk4NjQsIDkuMTg0NTg1MDQ4MjEzOTIsIA0KICAgIDkuNjg2NDgwODQ5MTg4OTQsIDguOTk0MTMzODI0NTIxMzgsIDguODE4NDIyNDEwODAyODcsIDkuMzE2NTQ5Nzg3NDE4MjgsIA0KICAgIDguOTY1MDA1MzAzMTI4MzYsIDkuMzYxODkyNDA0NDcxNDIsIDEwLjY3NzQ1MzcyNjgwNjQsIDkuMzgwMzM0NDYzMDcwMTksIA0KICAgIDguODI3OTc1MjM5MzY2ODUsIDguODk2MjY5ODE3ODk3NDIsIDguOTgyNzE2NzE5MzUxMDUsIDguOTcyMTc3MTYwMDAyODgsIA0KICAgIDkuMTg1OTM4MzYwOTYyMjUsIDkuMDAwMzk4NDgzNTc0NzEsIDkuMzY4NTQ5MTQ1NDA0MiwgMTAuMjcyMTU1MDQzMjQ2LCANCiAgICA4LjgzMzA5NTYxODU3NjcxLCA4Ljk3ODQzMjUwNDQ3MTE2LCA4Ljk4MDI4MzIzMDMyMzY2LCA5LjI2ODExNDc5ODYzMzE5LCANCiAgICA4Ljk4NjEzMDg4NjYyNTk2LCA5LjY1MTk5NDEwMjExNTI3LCA4Ljg0MjQxMzc0NzI4ODY2LCA4LjU4NDcwMDc3MzI2ODk1LCANCiAgICA4LjY1MDc1MTIxMzIxMTI2LCA4LjM1OTk2MTEyNDU5Njk2LCA4Ljg3NjM2MjkwNzU4MDkxLCA4LjcwNDA4NDYyMzgwMzI5LCANCiAgICA4Ljc3MTExNjQyNjM0NDc4LCA4Ljc4Nzk2NjMyOTA4NjQ0LCAxMC4zNzkzNTk3ODU3OTc3LCA5Ljk0Njg3NzY4NDEzMjEzLCANCiAgICA5Ljk2NDE2ODg0OTg4MjUyLCA5LjExNzg2NjA4NjcxMTk2LCA5LjA3NDE4MDA3MzQ2MDI1LCA4LjkyNzgzNjM1MTg3MTE5LCANCiAgICA5Ljg3Mjc3NjE3NTUzNTExLCA4Ljg2NTA3MDU0NjI5NzM4LCA5LjMwODExNTc1MTY0NzI3LCA4LjQwODQ2NzkzODU0NTk4LCANCiAgICA5Ljc2Nzk1OTQ1NTE2NzI5LCA4LjU4MzQyMjM0NjQ1OTExLCA5LjEyNzA5MTE3NzA5Njg3LCA4LjU3MTYxMDc5OTI4NzU1LCANCiAgICA4Ljg4MDcwODQzMDU4MTg5LCA4Ljg0NDY0MTY3MDUwOTksIDkuMTg4OTA1Mzc0NDcyNSwgOC41NTM3OTg5Nzg2Mzg2NiwgDQogICAgOS4yODk1NTE0NzUwMTU2MywgOC45MzQ2MTgxMjYwNDE0MiwgOC42NDk1ODI3MzE0Mzk3LCA5LjA5MDkwNzY3NTM3Mzg3LCANCiAgICAxMC4wODU0Nzk0MDE4Mzk3LCA5LjQzNzUzMTQzNjUwNDAxLCA5LjI5MDIzMjI2MjM3NjI1LCA4Ljc2OTM0NjQwNzUyMDEyLCANCiAgICA4Ljk1NTQ3MTEwMjExMzI4LCA5LjAzOTE1Nzc2NDE3MjE4LCA4Ljg5OTQ2Mzg0MDYzNzcxLCA5LjY1MDg2MTI0Mjg3MDMxLCANCiAgICA5LjA3Njg2NjkxOTU1Mzk0LCA4Ljc4Mjg1MzgwMTUwNDIzLCA5LjYwNTI4MTQ2OTExODk0LCA5LjQxNTk5MTAyNjYxMjcsIA0KICAgIDguNzM5NTE2NjE4NjkyMDYsIDguODM3MzIxNDQyNDc2ODgsIDkuNjAzMTg3NDk5OTY0NzMsIDguNjA2NTY2MDU2MDQ3ODgsIA0KICAgIDguOTMyMDQzMjc1NjEwOTUsIDguODIzMTU2MjA3NDE5MzIsIDExLjI2MDQzODMzMzUwNTksIDguODQzMDk4NTMwMzY3OTgsIA0KICAgIDkuMzQ4Njc1NjI5NzA3MTYsIDExLjU5MzIyMDIxNjE2OTMsIDguOTg4MjY3Njg4MzQwNDIsIDExLjE0MDMzNzIyMjY1OTUsIA0KICAgIDguNjI2MTk2NjM5OTc3MjUsIDkuNjAxMDY3MDUyMzczMDMsIDEwLjM1NDA2MjA5MzQ4MTIsIDguNjg5NTI5NTE3NDczNSwgDQogICAgOS40ODg1Mzg1NjMyOTI1OCwgMTAuMTE2ODc1MzMzNTI5NywgOC44NTg3NDI0MDYyNjA2MSwgOS40MTQwNTY3MTc5NTg1MiwgDQogICAgOS4xMzQ1NDgwNjYyMjE1LCA5LjIzMjYxMTY5NTE1NTA4LCA4LjIxOTMzMTg2MDU0MTYyLCA5LjIwNDcwNTg5NTgxNjA0LCANCiAgICA5LjQyMjgzMDA5Nzk4OTYsIDkuMTA3NzIyMTkwNDUzNzksIDguNzYwNDI4NDI5ODkzOTUsIDkuNTI1OTc1OTAyMjI2MywgDQogICAgOS41NzAwNzkwMDAzNzY3NCwgOC44Njg1NTIzNzg4ODA3MyksIFNJTkQgPSBjKDAuMDM0MDY1ODM2Njc4Mzk0OSwgDQogICAgMC4xMDQyMDIwNTQxNzIxLCAwLjA1MjExMTAzNjY5NDUzMTEsIDAuMzU1OTM4MzQ5NDU5OTQ0LCAwLjA2OTcyMTk2NTUzMjcxNDUsIA0KICAgIDAuMDA2MDI1MTc1MDE5ODk4MTYsIDAuMDYyMTA0OTY2OTI5MjE3OCwgMC4wNDIzNzk2MDIwNDQzMTcyLCANCiAgICAwLjEwNzMzNjI2MDU3MDQ0NCwgMC4wMTg3NTE3MTMyNDM5MTc1LCAwLjAxMzY1MjAxNjAxMzEwNDksIA0KICAgIDAuMjM4OTgxOTAyODUzNDMzLCAwLjA1NjA3Nzg0NTE2MTE0NzgsIDAuMTUwNjk2ODI0NDQ1NjU4LCANCiAgICAwLjAzMjExMjIxODM4MTkzNDcsIDAuMTEyODY5MzA4NjI2OTI4LCAwLjAyNTUwNTc3NzI2NDY5NDgsIA0KICAgIDAuMDkyMTM3NDgxOTU2Njk2MywgMC4wNDY4Mzk4MjQxNzA1NjUzLCAwLjAyNjIyNTg3NTM0MzM1NDUsIA0KICAgIDAuMDYyMDgxNzQ2MjQzMjg5MiwgMC4wOTcwNDgwMDY1MjQyNjcyLCAwLjAxNTYwOTAwNTcwMzY0NjYsIA0KICAgIDAuMDI3OTI3NTY3OTk0NDQ0NCwgMC4wNTM5NTg0MDEyOTcyMDEsIDAuMDAwMzE3NjU1Njg5NTQ3NjY1LCANCiAgICAwLjA0MzY4MzkyODUyNTg2OTMsIDAuMDQ4NjY1ODY5NDYyMjI1MywgLTAuMDIzNTM3OTc2MDM4NDU2NSwgDQogICAgMC4wNTc3NDYxMjIwMTkyMTQ1LCAwLjA2NTYzOTQwODYzMjU5OTksIDAuMTEwOTkzNTA4MTUzNjUzLCANCiAgICAwLjI2Njk1MTMwNDQ3NDA4OCwgMC4wNDE1NjQzNzc0OTgyMTQ5LCAwLjA1MTY2MDk2Njc0MzgwNTEsIA0KICAgIDAuMTk3OTY3MDMwNDQyMDYxLCAwLjAzMDc2Mjg2NTY0NTA1MSwgMC4wODI2MjAyODYwMTc4NjYxLCANCiAgICAwLjE0OTY4NTUxNjMzMzcyOSwgMC4wMjc3MDE0NDUyNDc1NTcxLCAwLjA2Mzc2NzM0MTE2MjcwNjIsIA0KICAgIDAuMDQ2MTY4NDk1ODM4OTUxMywgMC4wMTU2NzM4ODk0ODY1MDQsIDAuMDU2MTkyNTY3NjI3NDAyNSwgDQogICAgMC4wMzc1NDQ4OTczMDQzOTM5LCAwLjAzODc3MzY0NDc4OTQyNDIsIDAuMDM4NjQ1NjMzMjM4NDEzLCANCiAgICAwLjEwNzE4ODE4NjI1NzkyNywgMC4wMjE3OTY0ODIxOTUwMzAyLCAwLjIxMzk4NjUxMzUyOTcwNSwgDQogICAgLTAuMDc0MTM0NzYyNzEwODcyNywgMC4wMTU1NzA4MTI3MzI1MTM2LCAwLjA4NTEwMzI0ODY4MDk0NjcsIA0KICAgIDAuMTM4MjgzMjQxMzY1MzU2LCAwLjIyNjY3NDM4OTk2NjQ0MywgMC4xMzk3MjY1NzA4MDIwODEsIA0KICAgIDAuMDcxNTczMzUxMjIwNTg0LCAwLjA5MDk4ODcyMDM2OTc2NiwgMC4wNzgzMTY1MDI4NTU5OTA5LCANCiAgICAwLjEzMTA0NjI3OTgzNzM2NSwgMC4xNDgyMDQwNTQ1MzI0MDMsIDAuMDI1NzYyMDEzNDI0MDQ2MSwgDQogICAgMC4xMDQ4NzY3MTAxOTE5NzcsIC0wLjA0ODM2NjMyMzMxNjY0NjQsIDAuMjkxOTA1ODM1NTA3MTA0LCANCiAgICAwLjIyNTE2MjA1NjU3NzczNiwgLTAuMTQzNTQ5MDQ2NDAxNzQzLCAwLjA3Mjc0NTE2ODc2MDUzMjcsIA0KICAgIDAuMDQzODkxOTI2MTI3Njg2NCwgMC4xMTc5NzE1ODE5MjE4OTQsIDAuMDg0MzIwMTc1MDMyNjMzOCwgDQogICAgMC4yODU5MDkwNTYxMDIzNDIsIDAuMDkxNjQ3NjQ4ODI2OTkzNCwgMC4wMjM1NzQ0MDE3ODY4MDY2LCANCiAgICAwLjEzMTgzNjk3OTk2MDE0OCwgMC4xNzc5Njg3NjA1ODkzODgsIC0wLjE0Njg3NTM3MDQ0MDgzMSwgDQogICAgMC4wNjE2NzQ1ODgyOTg5Nzc4LCAwLjEwMzQyMjExNTYxNzcwMywgMC4wODUxNzI2MDQyMDI4MjE3LCANCiAgICAwLjAwNjUxNTgwNTIyOTE5MjQ5LCAtMC4xMDI2NzA4MDQxNTY1MDgsIDAuMDMwNzM2MjI3NjI3NDY2NywgDQogICAgMC4xMTY2Njg1ODk4NTc5NTEsIDAuMTAxMDk5MjgxOTA0MDk3LCAwLjA4NTE3MDkxODAzNjEwMjcsIA0KICAgIDAuMDYyOTI4OTgwMjE3MjQxNCwgMC4wMjMyMDcxNTg2NTAyMTk1LCAwLjA4NzkyNDYwNzQ5MjE3NDIsIA0KICAgIDAuMDY1MDU4NzQxNDUxNDE4LCAwLjAzNjExMjQwMzc4NTY4NjYsIDAuMDE2OTc3Mjk3MjQ0MjM3MSwgDQogICAgMC4xMDQ2MTk3OTY4MDA0MjUsIDAuMDIzOTUxOTYzODU4NDk0MywgMC4wMjk0MTExNzczMTgxOTIyLCANCiAgICAwLjAyNDI3MDUxNzk1MDUzNTgsIDAuMDI3MTg5OTA2Njc0NjYyOCwgMC4xMzM0MTkxNjY1MTg5NjEsIA0KICAgIDAuMDY4NDAzMzI4MDU0MjgwOCwgLTAuMDQ2NTEyOTk3NjgwNzg1NiwgMC4wMzQ4MjgyMDEzNDE0MzczLCANCiAgICAwLjA0NzAxNjgyNzAwNjkyNjYsIDAuMDM5NTMyNzc1OTY5ODY1OSwgMC4wMzg0NDI5MzAxMTI4NzU2LCANCiAgICAwLjA4MzM3MzI1Mzc0MzcxNDYsIDAuMDI4Mjk2MDczMDE2ODA1NCwgMC4wMzIyMTA4Mjc1NTEyODc1LCANCiAgICAwLjAwMjg4ODQwMTQ1NzgwODQ2LCAwLjAyMTU0MDE0MzQwODc4NjMsIDAuMDQzMDIwNDA3NjUzNjI1MywgDQogICAgLTAuMDM0ODUwMjA5OTI2Mzg0OCwgMC4zNTkyNjMzMDAwNzgyMzksIDAuMDQ1MzM0MDQ5MjI2NzE2NSwgDQogICAgMC4wNzQwMjQ3NjExODk3ODI1LCAwLjAyMDgxNTg3NTcyMDI4OTYsIDAuMDE2NzE2OTA2Mzg1MTM0MiwgDQogICAgMC4wNTQ0MTgzNjUzMzUxMzE3LCAwLjAwNzA4MTIzMjkyNjcwMzE1LCAwLjAzODU4NDAwODE0MTQyMSwgDQogICAgMC4wNDUzOTM3ODkwNzY5MjM5LCAwLjA0NzgyMjc3MDMzNjc4MjcsIDAuMDU5MzA4NDUxODM5MTc4LCANCiAgICAwLjA5Nzc3MDExNjgyNzgyMywgMC4xMTQzMjkwMjA1Mjc4NDYsIDAuMDcwODA2MTY4MzA4NTk4OCwgDQogICAgMC4wNzIyMzc3NzA2OTEyMzM3LCAwLjA0NTgwMzAyNjk2NjM1OTcsIDAuMDYxMDY0MzY0Njg5ODI1MywgDQogICAgMC4wMTczMDUwOTI3MTM5NDU3LCAwLjAzMTM1MjY1NTM0NTk3NjYsIC0wLjA5MTA1MDUxNzk0MDI5MjcsIA0KICAgIDAuMTMxMjAyNDYzODM2OTEyLCAwLjEwMTE1ODIwNDc0ODg3OCwgMC4wMjA1NzcxODYyNzc3MjA5LCANCiAgICAwLjA4NTI0MjY4OTAyMDQ0MiwgMC4wMjY3MjQ5OTk4NDA1OTI5LCAwLjA5NjM1MzQxMjk1MzI1NzMsIA0KICAgIDAuMDc4NjE0NzQxMDY5MzQxMSwgMC4wNjg5NDEzMjQ4MTY1NTY3KSwgU0FHUk8gPSBjKDAuMjI4OTU0OTkwNjg3OTQ3LCANCiAgICAwLjExNDYzNjM1ODg1MDg4NSwgMC4xNTEyODQ3MTY2MTgxNywgMC4yNzk3NDIxMjM4NTE2MTYsIDAuMzU4Njg3NTE4MDg1NTg2LCANCiAgICAwLjA2ODM1OTQ2OTgwNDMwMjEsIDAuMTE3MTkzNzk1OTEyMjA5LCAwLjIyMDM0MjkxOTg0MzA5NiwgDQogICAgMC41OTYyMjUzODg0NjU0NTcsIDAuMjQxMTI0MTEzMzc1NzksIDAuMTEwNjkxNTExMTM5MjE2LCAwLjA1MDU0MjY1NTUwMDczMDMsIA0KICAgIDAuMDYwODY0NTU5NDQ5Njc2OCwgMC4yMjYxMDY0MTE5ODIwOTIsIDAuMjE2ODU5MDAzMjk4MDc5LCANCiAgICAwLjE1ODYzNDE3NjQyNzU2MywgMC4wMjMzNDgzNzQyMjYxMTY5LCAwLjY4NzM1MzU2OTkyNDY1OSwgDQogICAgMC4wNDE4MTM4NDgxMDAxMjA2LCAwLjEwMjc0OTU1ODkxOTUzOCwgMC4xOTg2ODU0NTY3NDE5NiwgDQogICAgLTAuMjQxMTAxMzU0MTU2OTE4LCAwLjIxNDU1NDU5MjQ0MjA5OSwgLTAuMjY2NzM1MjE1NjA3NTE0LCANCiAgICAwLjMxMjIwODIwOTM4NTA2MiwgMC4wNDU4NzU0NDIxMTU4NjU2LCAwLjI2NzU2MzczNzk3Nzg1MSwgDQogICAgMC4zMzk3NzY5MzYxMzM0NiwgMC4xMzAwNDY4MzA0ODAwMjMsIDAuMzA4OTc5Mzk0MjEzMjYsIDAuMzAyNTc4ODQyODIzNzYxLCANCiAgICAwLjA2Mjk0OTE1MDgwMjcwNTIsIDAuNTIyMDYzMDc2MDc1MjE0LCAwLjE2MzA5ODg2MjAxNjQyNiwgDQogICAgMC4yNDk1MzY4MzEzNzI5MzUsIDAuMzIxMTgyOTAwMzk0NzE5LCAwLjM5Nzc5ODI0OTQ0MzEwNCwgDQogICAgMC4wMDE2NTEyODY0MzM4OTQ5MSwgMC4yMjM2NDMwMzU0MDYyNzIsIDAuMjYxMjk5NzA1MjUyMzkzLCANCiAgICAwLjAyNDg0Nzk0NDAyMTA0MDEsIDAuMzM5MDQ3OTk2MDIyNTA1LCAwLjM1NzU5MzI3Mzk2OTQwOCwgDQogICAgMC4xNDYzMTY2NzExMDQ1NzgsIDAuMzUwNDgyNTQyODAyMTc0LCAwLjAxNTU4MjU0NTAyODc2NTEsIA0KICAgIDAuMjAxNjEzODgwNjY5Nzg2LCAwLjExMTc4NzAwNDY4MjA0MSwgMC4xODgwMTc1NjY2MDY4MDIsIA0KICAgIDAuMjg1ODEzMTgwNTQ0MDIxLCAwLjA4Njg2ODAwMjIzMzIwNTUsIDAuMDg4NDg1ODg5OTU4ODU2OCwgDQogICAgMC4wNTI4Nzg4MTI1Njg1NTYxLCAwLjM0NTIxNjIxNTQxMzQ3NywgMC4xMDAxMjc1MjM4MTI2MjYsIA0KICAgIDAuNDcwMTA0MDQ5NTE0MDU0LCAwLjE2MjI1MTY5NjA1MzY1OCwgMC4yMjIzNjQzODU1NzM3MTIsIA0KICAgIDAuMDI5MDg1ODIzNDQ3NjM3MiwgMC4zMzA2NDc1MTgxMzE5OTEsIC0wLjA0MjQzOTA4MzQyNjU0MzQsIA0KICAgIDAuMDk5NTAwNDQ1MTA5ODIsIDAuNDA5NjQ0MjQ0MjU5MDM1LCAwLjIyNDc4MjYxNDc2MjAwOSwgMC4yMzA3MjY0NzMzOTM4NzcsIA0KICAgIDAuMTU1OTQ0NzM2NjE2ODU1LCAwLjA2MDE3MDg2MDM1NjM1NjQsIDAuMDM4MDY4MDA4MzgyMjE1OSwgDQogICAgMC4xNjIwMzU1ODA1ODI2MzEsIDAuNjk0OTc5MzkyOTIzMTk4LCAwLjQ4NzY4OTkwMjI1ODE0LCAwLjMzNTc2Mjk3MDM3MjAxLCANCiAgICAwLjQwODEyNzUyNjc4MTkwMywgMC4xNzY5OTMzNjEyNzQxODUsIDAuMzk2MTAwNjc5MzY0NDUsIDAuMTExMTE3OTgwNjg5MjA1LCANCiAgICAwLjA1MTgzODA0MDUzMDE5OTYsIDAuNDg2NDcxNDU2MDU3NzE1LCAwLjA0NDYwNjkxMjQ5NjE4MDcsIA0KICAgIDAuNTY4MjQ0MzA3ODAxMjU0LCAwLjIxMjM2NzMzMjE2NDExOCwgMC4yMjc0MjEwNTE0NDg5NTUsIA0KICAgIDAuNTMzNzMxMDY5NDIwMTM2LCAwLjE3NTY4NjI2OTkwOTE3LCAwLjMxMDMxODM4OTc3OTI3NiwgMC4yMjAzMTkwMDcwMjkxODQsIA0KICAgIDAuMjY5MjAwMDEyNzAyMzU0LCAwLjA0MDM2Njk4MzUyOTcwMzQsIDAuMjYwMDMxMzY5NTc0MDg3LCANCiAgICAwLjI5NDEyNTM3Mjc0OTY3NywgMC4yNDQyODAyOTM3ODA3ODMsIDAuMTA1MTQwNTg5ODA0Mzc2LCANCiAgICAwLjIyMTgxMjQ1OTQ5Mzk0LCAwLjUxMTIxMjEzOTgyMzM4NSwgMC4yOTIxNTg1NDkwNzIxNDEsIDAuMjQyODE1MzQ1NTQ0NDU4LCANCiAgICAwLjMwMzQxMDY2ODA5NTc2OSwgMC4wNTIyNjM1NDY2MDIzMjQzLCAwLjQ4MzA5MzM1NDY1Njg5OCwgDQogICAgMC4wODE1NzcyMTc5MDYzNTQxLCAwLjI4NzUxNTU2ODQ3NTEyMywgMC4yOTAzODE2MjExNTExNTQsIA0KICAgIDAuMjMwNDUzMzY0MDY5ODgxLCAwLjA3NjE4Mzg0NjA5NSwgMC4yNDk2NjExNjIxNjk4NjcsIDAuMjM1OTQwNjQ3MTM3MDg4LCANCiAgICAwLjE4MTAxMzUyMzQ5MTUyLCAwLjE1NzQ4NTkwNTE1NTM2LCAwLjMxNTAzMTAxNzYxOTUwOCwgMC4wMzY0ODMyMDY1OTQ2MjIxLCANCiAgICAwLjYzNjQzNjE2Mjk4NTA1NSwgMC4wMDk2NjkxMzcwMTA3MTA3OSwgMC4zNzY3MTI3NzgyOTg0OTgsIA0KICAgIDAuNTgzNDg5NzUwNjA1NDc0LCAwLjA2NDI3MDg1NDY2MTY0MjYsIDAuMjcwODYyODA2Mzc2OTYxLCANCiAgICAwLjM4ODUyMDIyNDY4NTUwOSwgLTAuMzczOTA3MzcxNTg0MTU5LCAwLjExMDI5MTk3NzUzNTEyNCwgDQogICAgMC4zMjc5NjM2ODEzNDk3OTUsIDAuMTM0MTYwNzY1Njk0MDI4LCAwLjQ3NDIwNTc0MzgxMzg4NiwgDQogICAgMC4wMzUxNjcyNDM5ODkzNjc0LCAtMC4yNTMxMTI4MzMwODcyNTQsIDAuNTA1NjYwMzE4NjMzNzU5LCANCiAgICAwLjA2NzA2Mjg5MDI2NzQ3NCwgMC4zMDEzMDE1NTY5ODY5NzQsIDAuMTgyMTMyNDI5Nzc2NjczLCANCiAgICAwLjE5Mjc5NDQ2NTA0ODAzMywgMC4wOTEwODU5MzAzMTQ2MDIxLCAwLjM3NzUxNDIyODExMDgwOCwgDQogICAgMC4zOTczMTM5NjUwNDY5MTcsIDAuMDA2ODIwMDIwNjMzODUyOTMsIDAuMjQzMTQwOTM5Njk3NzYsIA0KICAgIDAuMjc4MjkyNzMyNDY2MTg2LCAwLjE5OTgxMzg5ODE4MzkwNiwgLTAuMDc3MzQ4OTIwNjM1NCwgMC42Njk3NzQzOTI2MzYyNzcsIA0KICAgIDAuNTg2MTkyNDIyOTkyNzQyKSwgU1NFUlYgPSBjKDAuMDczODAxNTQxMjkzNjU2LCAwLjM1NDU1NzE3NDMxNTc4MywgDQogICAgMC4xMzg5NjQ2Njk4Mzg3OTgsIDAuNzEyNjg0NTEzMzA0MDE1LCAwLjE0OTY4MDY0Nzg4ODEwMywgDQogICAgMC4xMjgyNjI5MjI3NDc4ODIsIDAuMDY2NjgwOTkyMjExMTczLCAwLjQ3NDYxMDYzNjQ2MTUzLCAwLjIzNTIxODA0MDkzNjAwNywgDQogICAgMC4wNDgwOTkzMzIyMjYxMjQ3LCAwLjA0ODIwOTExNzkzMzg2MDksIDAuMTA0MTIyMTkxMDUxMTYzLCANCiAgICAwLjExNTQ3MDczOTE2MDk1LCAwLjE2NjY5Njg3MzMwNjUwNCwgMC4wNjI4NzE3MTQzMzQzNDcxLCANCiAgICAwLjEzMTc5NTAyOTYwNDM2NCwgMC4xNjg3MzU5ODE3Mzk3ODcsIDAuMTk5MjI3Njg2NzA2ODI1LCANCiAgICAwLjE5MjMzNTc0Nzg1MDUxNCwgMC4xNDQwNzEyMzcyMjE1NTYsIDAuMDkzOTIyMTI2NTQ5MTcxMiwgDQogICAgMC4yMjM0MzUwMTgzODU1ODcsIDAuMjI2MjYyNjkwMTUxMjI3LCAwLjIyNjcxMTA2NzI4NzE3NiwgDQogICAgMC4wOTUxMjA4NjY0ODcwMzI2LCAwLjI2NjY1NzYwNzI5MzI5OSwgMC4wNjQ3NTUwMjgxNzA3ODM0LCANCiAgICAwLjA4NDc2OTEzMDExODE2MiwgMC4wMjk3MTU3NDgyNzcwMjI2LCAwLjEwMjYxMjIyNDYzNzg3MiwgDQogICAgMC4wODEzOTc3NDMyNjc4NDQ0LCAwLjExOTQwMDEzNTkwMDU4MiwgMC4zNDkwMjU1NzYxMTMyMTYsIA0KICAgIDAuMjE4NDI2NzAyOTg4NDk3LCAwLjE1Mzc3NzgyMDQ3MDczMywgMC4yMzgwMzM1MzE0Nzc5ODgsIA0KICAgIDAuMTU0MDUxNDUwNjUyODUyLCAwLjI0MjkwNzk0ODk1OTI2LCAwLjE4ODkyMjE2NjgxMTIyNywgMC4wNzE4MjA5NjY0NzQ0MzE1LCANCiAgICAwLjE0Mzc4OTg4MzQ1MDAxMSwgMC4wNTQ5MjYyOTg4MDM0MDM3LCAwLjIwNjczNjQ3ODg2MzA1NiwgDQogICAgMC4wOTQwNzA4NDMzNzk0NDA5LCAwLjE2NzExMjIwNDUwMDkyNCwgMC4xMDIzMTUzNTM1MTk0NDQsIA0KICAgIDAuMDg1NzIyNjcwMjU2NjY3NCwgMC4xMTE1NDQ1MDI1MDIzMDgsIDAuMDM4NjI0NDc5ODUwMjkxNywgDQogICAgMC4xMTg1OTUxNDgxNzg5NiwgMC4wNTU1ODA2NTkwNTUzNjAxLCAwLjE2NTg0OTQ0MDYxMjg5MywgDQogICAgMC4xMTY5Njg0MDA4NTYxNjMsIDAuMDczNTYwMjcwNDI0MTExNCwgMC4wMTcyMzE0NjcyODM5NjQxLCANCiAgICAwLjIzMzMyMDY3MjAxMjk2NSwgMC4xNTE4Njc3ODE2NTYyMTYsIDAuMTE3MDk2NDU0NzIzMjI1LCANCiAgICAwLjAyMzExMTg2NDI0MDU2MiwgMC4xOTg0MDA3MTIyMzk4NDEsIDAuNDUwNzU5NDE1ODc1NTc1LCANCiAgICAwLjAwOTMxMDQ4MDg0MzIyMjcyLCAwLjEzMjc0MTgxODgzODA2LCAwLjA1MzY0ODMyMDU0MzM3NTgsIA0KICAgIDAuMjEwNjY4NzcyNzcyMTEsIDAuMjQ2NjAzOTY5NDcyMTIyLCAwLjA0NDc3MzE2Nzg0NTY1NjYsIA0KICAgIDAuMDQ5MjE3ODQ3MTU2MTY0NCwgMC4wNTUyNjIyNzYyMjAyMzM4LCAwLjI1MDQyNTIxNDA5Mzg2OSwgDQogICAgMC4xNTIyNDc4Njg4MDI2NDYsIDAuMTc3MjE4MDkyMDE2MTU0LCAwLjEzOTI2NTgwNjM0MzYwNywgDQogICAgMC4wNTI0ODc2ODEyOTIwMTAxLCAwLjE3Mzg1MDE1OTg4ODgyMywgMC40MzA4MjIwNTg1NjM0NzYsIA0KICAgIDAuMDMxNTI5MTM0OTA3MDMzMiwgMC4yMjE5NzczMDkzNzI1OTEsIDAuMTAwMTY0NzQyODE3MDAzLCANCiAgICAwLjEyNjc2MTc4NTIyMjc4MiwgMC4wNTU5MzYxNDg4OTI1MjEzLCAwLjAzOTEzNTg3NDkyODUxNTEsIA0KICAgIDAuMTI4MjIyMTI3MDA2MjAyLCAwLjA4NDc3NDUwNTU2ODY3NTYsIDAuMTcwOTcxMDA0MDczNDI2LCANCiAgICAwLjA3Mjg5MzgwMzIxMDI0MjEsIDAuMTQwMjIzNDQ4NzU4Mzk2LCAwLjA0NTc0NDM4MTc3NDYyMTMsIA0KICAgIDAuMTE4NTUxMDkyMjQxNzY0LCAwLjE0NDc3NzMxNTI0OTEyOSwgMC4wNjMxMDAzNDkzMTQ2Njk3LCANCiAgICAwLjE0Mzc4NDg5MTcxOTU2MywgMC4yMDkwMDIxNzIzOTYyOTgsIDAuMDk3NjE1MzM2ODE3NDA3NSwgDQogICAgMC4wODg0NzMxMjQ2NTQ2NzA4LCAwLjA3MTExMjQ5Njk5NDMzLCAwLjA0NzQ0NzAwMTgyNjU3ODYsIA0KICAgIDAuMzUwNDUwNTUzMTE1NjQxLCAwLjQzNTUzMDUzMDQ1NzAzNywgMC4wNzExNzAyNjIzOTAzMjcsIA0KICAgIDAuMDk5MjAwODE1MDIxNjYwOSwgMC4xNjQxNDAxMDcyNTU5NTQsIDAuMTM2NjExMDg0MTkwNTA2LCANCiAgICAwLjExNzY4ODA0NjUyODMzNywgMC4xMDIwMTA2MTA0MDgyOSwgMC4wMzc2Nzc5NTUwODU2OTEyLCANCiAgICAwLjAzODkyNzA1OTQyNjMyNjEsIDAuMTE2NDQ5MjYwNzQ1NjgyLCAwLjA4MzYyNjI5NjYxNDA0NTYsIA0KICAgIDAuMDA1Nzk1OTMyODkzMTM5MDUsIDAuMTM3MTQxMjExOTM3MDE1LCAwLjM1NDc1MDg0NzE4MjgzMywgDQogICAgMC4xMTM4MzU1ODY1NDIzMTUsIDAuMjc5NjkwMjc0OTI0NzU3LCAwLjA0MTY2NjE4NTY4MDM3NTUsIA0KICAgIDAuMTgxMzU0NDI1ODI2ODg2LCAwLjA2OTgwNTk3NjQ5ODUwMTksIDAuMDI2MDU0NjgxNjA4Mjk1MSwgDQogICAgLTAuNTYyOTQ5NTU3OTE1NzYyLCAwLjIyOTcyNzI0NTg3NTA3MSwgMC4zNDUwMzU0MjMxMTE0MDcsIA0KICAgIDAuMTMxNjI2NTEwNDQwMTEsIDAuMzMyMjE0NDE0MTMzOTg1LCAwLjMxMzAxNjU2Nzg2MzY4NSwgMC4xNTc1NTM0NDgwMzcxNDUsIA0KICAgIDAuMjIzNjkxNTc5Mzc3NjE3LCAwLjE5ODE3MDIyNzIxODA1MSwgMC4xMzE0MDI5NTk2ODk2NDMsIA0KICAgIDAuMDM0NTk4MjcwOTc0MjczMiwgMC4wNTMxOTI4ODYzMTAwMzE5LCAwLjA4Mjg2NDM5MDkwNTk5LCANCiAgICAwLjE2MjI3MDk5NTI5MTY1MSwgMC4yNTExOTcyMjA1MTUwMDIsIDAuMTAyMDkwNDc5NTg3NDU2LCANCiAgICAwLjE1NzE3ODUwMTMyNjM1NywgMC4wODMyMzQ1MjEzNDI3NzI2LCAwLjExNTYyODQ5OTQ5NjQ0NiwgDQogICAgMC4yMzYyNDE4NDQ1NTMwNjUsIDAuMjM4MTUxOTgwOTI2ODM4KSwgU1BVQiA9IGMoMC4xMDkxOTY0MzMxNjE5MSwgDQogICAgMC4xMTA3NDkzNzU1MDcwOTUsIDAuMDk5NjkyMjExNDc5NjIyOCwgMC4xNjEzMDg1NDIwNTc5NTIsIA0KICAgIDAuMjM3NjY3NzA0NjAzMjA4LCAwLjA0MjczNTc0MTc0OTU3MTQsIDAuMTk3MjgzNzk1MjYyNDgzLCANCiAgICAwLjA1OTQzMzkyNzQ2NzMxMywgMC4yMzExNTAxMTAxMDYwMDIsIDAuMDcxNzA1NTEzMjQxNjc5NiwgDQogICAgMC4xNjA3NDQzNDE1NTQ3OTcsIDAuMDc3NTg3ODMzMjY1NjkzLCAwLjA4OTM0MTU2MzgwNjI3NDgsIA0KICAgIDAuMTI4NDY0MTAzODQ2MzczLCAwLjEzMTMzMDI0MjYyNTU4NCwgMC4wOTUxMzY5MDM3ODU3NjQsIA0KICAgIDAuMDg2NjY2NTE5NjE3MjAzNSwgMC4zNTY5ODQ1OTk5MzgxODQsIDAuMDkzMTAwNzUxNDY0MzIxOCwgDQogICAgMC4xMTg2MDUzNDA4NTgwNywgMC4xOTQ1MTk1MjA2NTc3MTEsIDAuMDM5NjU4MDYyMjk0MjI2MiwgDQogICAgMC4wNTU4NjE4MzYzNjU3MzY2LCAwLjAyODAyNjI0OTM0ODA3MiwgMC4wOTEwNjQ4MTg3MDI0OTAzLCANCiAgICAwLjA4NDY4NDM0ODE0ODMwOTYsIDAuMTM3NzE0NDkyMzYyNTY3LCAwLjEyMDA2OTkwMTczNDgzNCwgDQogICAgMC4wODE0MTIwMzk2NzkwMDgzLCAwLjEyOTIzOTQ0MTA3OTEsIDAuMDg0MDQyNjIzNTk3NTIwNSwgDQogICAgMC4wOTE1NTI2MjcyNDM3NDg3LCAwLjQ4MzUxMTc5Njk1MTUzNywgMC4xMjQxNzQyMTE2MDc3NTEsIA0KICAgIDAuMTcwMDE0MTU1NjQ1NzE1LCAwLjMyNDgxNDI4MjA3MDc1LCAwLjI0NDM2NTIyMDc3NDQ0NCwgMC4wNzAwNDc3NjEyMzU2ODQ0LCANCiAgICAwLjIzMDUzOTg4NDQxODA1MywgMC4wOTg1MDQzMDQ2NDE1Nzg0LCAwLjA0NzEwODQ0Mzc5MzM2MjQsIA0KICAgIDAuMDUzMjAzMTAwMjczOTUyMSwgMC4xNjI5MTkxNzg1NTAxLCAwLjA4Mjg1NjI4NzA2NTE2MDUsIA0KICAgIDAuMTQ1OTE1MzM3MjY0NjE4LCAwLjA3NDE4ODMzOTM3NDk3ODYsIDAuMTAyMjg5OTcyNTAxMTQxLCANCiAgICAwLjEzMjY1OTkzMjg1ODAyLCAwLjA4OTY5Mzk5NTQ2NzUyNjEsIDAuMTcyMzY1OTY0MDc3MTY5LCANCiAgICAwLjAyODY0OTYxOTk5Mjg0NjQsIDAuMDMyNjU2MDU4NDQzNTU1MywgMC4wODI5ODYwNzI0NzE0NDQzLCANCiAgICAwLjEyNTI3ODc5ODEwNjg5MSwgMC4wNzExMzI3MDg2OTA2NTE5LCAwLjEwODIyMjA3MDUyMzgzOCwgDQogICAgMC4xMjMxNzU1Mjk3MDAwMjIsIDAuMjAzNTcxNDY5Mjk3NDQsIDAuMDkzNDY1NzA3Mzg1MzkzNiwgDQogICAgMC4xMDE4NzEwMDM5MTQ4MTYsIDAuMDg1MDIyMzcyNDMyODkwOCwgMC4xMTgwNTk3ODAwMzcyODksIA0KICAgIDAuMTM2MTUwMjQ2MjYzNjI1LCAwLjAzNTcyNjI4OTYzNjEzNjIsIDAuMTI1NzIxMTQ0ODExNDk5LCANCiAgICAwLjEyNDE5NzQxMjQzNDA4NiwgMC4wNjExNDE4NzQ1OTc5MDM1LCAwLjA4MDMxNjkxMDMxNDUxNTYsIA0KICAgIDAuMTM5MjA3NTA0NzEyMjE5LCAwLjMwNTY5NDkzMDM4OTcyMiwgMC40Mzk0NjkzNTg0ODk5OTksIA0KICAgIDAuMjE4NjkwODM3MTIzNDM5LCAwLjE3ODA2MzY4Njk3MjQ1MSwgMC4wMDg2MzUxMjU2MjIyODY1NSwgDQogICAgMC4xMzg3MTk4OTQ3MjQ5MjQsIDAuMDgxNDUyOTQyMDk1NTU4LCAwLjA1Njk2ODQ0NjAwNjY3OTQsIA0KICAgIDAuMDc0NDUwNTQ3MTEyMzg5NSwgMC4xMDkyODExMDY4NDcsIDAuMTY3OTExNDUwOTIxOTg2LCAwLjEwNTMwNjE1NTMzMzIyLCANCiAgICAwLjAwNjAxNDQ0Njc5MjE2Njc1LCAwLjEzMzc0MTQwMzg3MjQ1MywgMC4xMjE2Nzc1NjY0NjgwOTUsIA0KICAgIDAuNjU1MDI0NTE0NTU3NzQ1LCAwLjA0OTMwNjUyNTAyOTU3NzIsIDAuMjEwMTI4OTgyMzE1Njg0LCANCiAgICAwLjA5OTM0MDE2NTY5Mzc1MTcsIDAuMTQ3NjQ4Njg5MTY5MDg3LCAwLjE5MzI1ODg4Mjk1NjAzMSwgDQogICAgMC4wOTIxNzMwNDc5OTg4MTE4LCAwLjA4OTQ3MDA0MTc1MTMyOTMsIDAuMTk2MTM5ODU1ODQxMzMzLCANCiAgICAwLjA3ODAwNzMzNDIxMDkyOTIsIDAuMTI3MjgxNDE5MTE1NjY4LCAwLjExNTIwNzY2Njc4MjU1OCwgDQogICAgMC4wNjA3MjUyNjYwOTY3MTMsIDAuMDU3NTUwMTk3MjA0MDc3MywgMC4xNDkwMDc2NzEyMjE1MzgsIA0KICAgIDAuMDcxOTMwODU0Nzk1ODYyMSwgMC4xNzE0MzUyNTgzNTg1MTgsIDAuMTU2MDExNTczMzE2NDc3LCANCiAgICAwLjE1NTk3NDA2NDg4ODU4MiwgMC4xMzcwOTc1MDY3NTM4ODQsIDAuMDY2MjU1MjQzNjE1MzU5NSwgDQogICAgMC4wOTE4MTg4NzMzODAyNjI1LCAwLjE5MDA2NTA3MDM5OTI3NywgMC4wODU2NzM5NjcxNjc0NjQ1LCANCiAgICAwLjA3MDQwNDkxMTY4NDE3NDYsIDAuMTc3NTQ5ODI2NjcwNzY1LCAwLjE5ODU1NTE0NDI1NTkwNSwgDQogICAgMC4wODgyNTYxMzc5MzQ3NjgyLCAwLjEzNzk4Nzc2OTk3MjQ4NSwgMC4zMTEwMzQ5Mjk4NTE0MTQsIA0KICAgIDAuMDgxNjk4ODc4MTQ5OTYxLCAwLjAzNjQxNTc5NzgxNDIzNiwgMC4xNjQyOTI4MzkyODcxODIsIA0KICAgIDAuMDI5MTQ2MTA4NDczMzMwMiwgMC4wNzczMDcwOTQxNzc5ODE5LCAwLjEwNzg2OTI1NjMwMTY5LCANCiAgICAwLjAzNTkyODAxODM1OTQ2NjYsIDAuMzI4NTE3ODY4MjQ2NzM0LCAwLjExMjkyMjYyNTc0MTg0NiwgDQogICAgMC4wNjQ0MTY5MzE3NzUyMzQxLCAwLjA4NzkwNzQ2NzQ0MzAzNjgsIDAuMTA5NDkzMDMzMzQwOTQ2LCANCiAgICAwLjA4MDE1ODc0MDMwODY5MzcsIDAuMDYxMjYyNzYyMTMxOTU1NCwgMC4wODU2MzIxNzM0Nzc0MjYsIA0KICAgIDAuMDU4NjI1NzIzMTU3OTI0NywgMC4wNTcxMzEwNzkyMDE3NTkyLCAwLjIyNDMwMTM5MzEyNDE2MiwgDQogICAgMC4xMTExNzM0MzIwNjA1OTMsIDAuMDY4Njg3MTgxODA5NjA4MSwgMC4xNDE1ODM3MTk3ODYyOTYsIA0KICAgIDAuMTEwMjU5MjkxMDkzMDU1LCAwLjA5MDcwNzAyNjA0NTc5NTcsIDAuMTM1OTE3Mjk5OTgwMTg0LCANCiAgICAwLjE1MTM2OTE3Nzg4MTAxKSwgSCA9IGMoOS40MjcxMjExMDIyNDgsIDI3LjQ4OTkyNTE1ODMxODksIA0KICAgIDIyLjc0ODk2OTE4NzMzMzcsIDI5LjE2NDAwNzY1Nzk0NTEsIDE2LjM4NDA3MzE1Njc5MTcsIDE2Ljc2MTk0MTY3MjMxODUsIA0KICAgIDEzLjM2NTQ5MDkwNTQzNjYsIDE5Ljg3NjU0MzIwOTg3NjUsIDEwLjE4OTczOTk4NTk0NTEsIDI2LjM4OTMyMDA4NjkyOTUsIA0KICAgIDI0LjY1NzUzNDI0NjU3NTMsIDE4LjUyMjEyOTA2OTk5NDEsIDIxLjE0OTIwMzI4MzQzNzksIDE0LjgwMDA2NDU4MjA5OTksIA0KICAgIDguODI2MjQxNjAxODk2OTgsIDE5Ljg2NjA1NzA1NDU0MzEsIDM2LjgxMTIyOTQ2MzE2MjEsIDEzLjE5MDU5NDUzMjU5NDEsIA0KICAgIDExLjE5MTA5OTQ3NjQzOTcsIDI0Ljc1MjAyNDc1MjAyNDcsIDYuODkwNzMyNjY3Njk3OTMsIDI0Ljg0MjI0MjY5MjM5MTMsIA0KICAgIDI5LjMyNDMwNzIyNTEwNDQsIDIyLjMxNTIwMjIzMTUyMDIsIDE2Ljk5MTgxODc1MzkzMzIsIDE4LjUwMTY4NDQwMTkwMzYsIA0KICAgIDEwLjI4Njc1NDY2NTQ1MjgsIDkuNzE5MzUzNjYyOTgxNDEsIDI3LjY5ODE4NTI5MTMwODUsIDE5LjIzMDc2OTIzMDc2OTIsIA0KICAgIDEzLjA5NTY3MTE1MzE0NjYsIDIxLjgwNTMzOTU1NDE3MzEsIDguNTYzODQ5OTQzMTYwMjgsIDE2LjA4MTk1MTg2NDI5NDcsIA0KICAgIDEzLjI1MjY3NjQwMzg2ODMsIDIzLjYxMjc1MDg4NTQ3ODEsIDkuODA4NTAwNzAwNjA3MTksIDU1LjkxMzY2NjQ1NTA2NDgsIA0KICAgIDEyLjI0OTg5NzkxNzUxNzMsIDkuMDY1MjIyNTEwMDA3MDYsIDI4Ljc0NjMyNzEzMDI2NDQsIDIzLjI0NDM3MzM4NTgwNzQsIA0KICAgIDE0LjcyNjA1ODcyMTMwMjQsIDE0LjQ1NDY2NDkxNDU4NiwgMTMuMzYwOTAzNDUxNTY2NywgMjQuOTEwMzIyODM3NzgzOSwgDQogICAgMTEuNTIsIDE0LjMwNzkzMTU3MDc2MiwgMTcuMjM1MTYyNjE2MjgzMiwgMTIuODc5MTAyNjE3MzY2LCANCiAgICAxNS45NzM3NDE3OTQzMTA3LCAyMi4xODc0MTg0Mjg2MDg3LCAyOC4zMjU0MTEwNDk2Mzc2LCA3LjI3NjUwNzI3NjUwNzI3LCANCiAgICAxNS4xMDM3MTg1NzM3NTAxLCAxMy43OTM1MjQzNjc1NDI0LCAxOC42NzA0MDI0NDUyMzY4LCA4LjUxODk0NTc4MDQ1OTY2LCANCiAgICAxNC4zNDMxODY5ODYxODE1LCA4LjQ1ODk5MjI3NjU3MjI3LCAyNy4wOTQwODI3NzUyNzcyLCAyMi44ODAyMTUzNDMyMDMyLCANCiAgICA5LjQ1NDE0Mzk1MTQxODEyLCAxNy4wMDg1MDQyNTIxMjYsIDE5Ljc1NzI2Nzg1MjEwMjcsIDE3Ljg0Mzc0ODc2NjMzMzcsIA0KICAgIDIxLjUxNzU1Mzc5Mzg4NDQsIDIxLjU5MDU1NjA3MzMxNDcsIDkuMjMwNTAzNzk1NzIxMTgsIDQuNjQzMTY0MjMwNDM4NTIsIA0KICAgIDEzLjkwMjY4MTIzMTM4MDMsIDkuNTA4MTM2NzcwODkwNDcsIDEyLjY2MTg3MDUwMzU5NzEsIDE0LjM2OTY5MzAxMTEwMzgsIA0KICAgIDExLjA0NTE2OTc5ODg3OSwgMzAuNzkwNjMwMDM4MjUxMiwgMjEuMzkzMTE5OTcyNjE2OCwgOS4wODU5OTI0MjgzMzk2NCwgDQogICAgMTguNzQxOTc2ODkzNDUzMSwgMTEuNTk5OTQzNDE0OTEwMSwgMTIuODEzNjY3OTEyNDM5OSwgMTIuNzQyMDE1NTU1MTg3OCwgDQogICAgNy4wMTU5MDI3MTI4MTU3MSwgMTIuOTE0OTM3NzU5MzM2MSwgMTYuOTU3NjA1OTg1MDM3NCwgMTYuMzc2NzI4NDc3NjY1MiwgDQogICAgMTMuMjk1NjI0NDcxNzUwOCwgMTYuMTQwODY1NzM3MzQ0LCAxNS4wNDE4NTI4NTQxNzU4LCAyNC4zMjI4MzAyOTI5Nzk1LCANCiAgICAyNS43OTkyMTQ4MDY1MDU4LCAyMC4zNDUwNDQyMTc4NTE0LCAxNy42Njc4NDQ1MjI5NjgyLCAxNS4wNTEzOTUwMDczNDIxLCANCiAgICAxMi42OTQwNjM5MjY5NDA2LCAzLjU3MjQxMDAwMjc0OCwgMTUuNzkzNjU5ODExMzg1LCAzMy40NDU5MDcwNDk5MjksIA0KICAgIDEyLjUxODIzOTc2NjUzMDksIDE1LjEzNDczNjA2NDk2ODYsIDI1LjYwMTI0MTI3MjMwNDEsIDE1LjQyNzkyNzkyNzkyNzksIA0KICAgIDE5LjU1NDM0Mjg4MzEyODcsIDE4LjU3MzQwNDQ2NTUyMDYsIDIxLjEwNDI5NDQ3ODUyNzYsIDE1LjQ2NzM4Mzk5NDYyLCANCiAgICAxNS44Mjg5MzY0MDY1NTM3LCAxMy4zMTE1MzY2NjUxMDk3LCAxMS45NjEyNjgyNzQxNTk4LCA5Ljg5ODU5OTcxMDI4NDg4LCANCiAgICAxNS44MjgxNTE0OTgwMjE0LCAzNi44NzU0Nzk0MTcwMjg5LCAxNS4xNTY2NTY0ODY4MjI3LCAyNC4yMjMyNzU0MDgxMDk1LCANCiAgICAxMS41Mjk1OTI2MjEwNjA3LCAyMS44OTc4MTAyMTg5NzgxLCAxOS4zMjY5MzYwNzI0NDIyLCAyLjY2MTc0MTUzOTQ2NDM5LCANCiAgICA3MS41OTk2ODA1OTYyMjAzLCAyMi41MDQ5ODUyODE1NDk3LCAyNi4yNzIxMjM4OTM4MDUzLCAxMy4xODY4MTMxODY4MTMxLCANCiAgICAyNy44MjkzNjI3NjMzMDQ1LCAyNS4wMjAyOTg5MjAzOTgxLCAxMi4xMDA0MzM1OTg4NzA2LCAyOC4wMTAzNzE1Njg1ODA4LCANCiAgICAxNS40NTI3NTExNjczODA3LCAxOC44NDYyMjE5MDc2MjY5LCAxNC4yNTY2MTkxNDQ2MDI4LCAyMC4wNjkzNzU2MTk0MjUxLCANCiAgICAxMi40NzY3NzE5NjcwODI1LCAxNS4zNjk1MjI1NjM3NjcxLCAyMS40NzkyNTA4Mzc5MjAzLCAxMC4wNjM1MDc1NzIwNTY2LCANCiAgICA5LjYyNDgxODk1MDYxNDQsIDExLjM2MTMzMDg5ODc2MjQsIDE2Ljc1MjEzNjc1MjEzNjcsIDExLjM4MDg4MDEyMTM5NiwgDQogICAgMTMuNjAwMzk1NjQ3ODczNCksIEREID0gYyg2LjY3Nzk2NjEwMTY5NDkxLCAyLjgyMjg2MDIzODM1MzE5LCANCiAgICA1LjM2ODkyMDM5MjU4NDUxLCAyLjg4NDIyNjAyNjEzNjU3LCAyLjI4MDE5MTEzODE0MDc0LCAyLjY2NjkyNTA2NDU5OTQ4LCANCiAgICA1LjM1ODY0Mjk3MjUzNjM0LCA1LjU4MjM1Njk5NTE3NTc0LCAwLjQxNjAyMTA0OTU1NDE1OCwgMC41MTM1NTIyOTU5MTgzNjcsIA0KICAgIDEuNjY0MTMzNzM4NjAxODIsIDkuNjg5NTQ2NTk5NDk2MjIsIDI0LjAyNTUyMjA0MTc2MzMsIDAuNzUzNzAxMzc1MDg2MTk2LCANCiAgICAwLjY2NjExMDkxNjExMDkxNiwgNS43OTMzMjIxNDEzOTE1MywgNi4yMDIzNzQ0MDkxNDU4NywgMS4yNDY2NjM0ODkwMzcxNywgDQogICAgMC45NTk4NTkyODc2NDM2OTYsIDMuNTc1NjkzNDg0MDk2NjQsIDIuNDMxOTQyNTQ0NDU5NjQsIDIuOTMwMjg2OTI4Nzk5MTUsIA0KICAgIDYuNjU1MTU3ODk0NzM2ODQsIDAuNzM5ODI5MDA5NDMzOTYyLCAxLjM4Mjk0MTY4ODQyNDcxLCAxLjcyNzQxNTQ4MTI0ODg0LCANCiAgICA1LjA5NTA4MzQ4Nzk0MDYzLCAyLjIyNTc5NzcyODUwMTg5LCAyLjczMzI2MTY3MDc2MTY3LCAyLjg1NTgwNDI2ODYxMDA5LCANCiAgICAwLjMzMDQ2ODIzMzQ1NTU1LCAxMC4wMTQyNzY0NDM4Njc2LCAwLjk0NTUwNTM1NjMxMTEzMSwgMC44MzU4NDIxOTQ5MDg2MjIsIA0KICAgIDQuMzQ2NDc5ODQ3Nzc3MiwgMS4yNzAzNDEyMDczNDkwOCwgMS41Nzg1NzU5NDI3MDA2NSwgMTc2LjAzNzY3NTYwNjY0MSwgDQogICAgMTIuOTIzNDgyODQ5NjA0MiwgNi43NTczNTg3OTA3NzE2NywgMi40ODc4MTY3NjQxMzI1NSwgMy43MTEwOTA4MjYxMDY4LCANCiAgICAwLjkzOTE4MDQ4Mjc3NjM5MywgNC4yMzI0ODA1MzM5MjY1OCwgMC4zNzIzMjAyNjUzMDg1MzksIDEuMzQyMDcwMDcyMjExODIsIA0KICAgIDMuNzA2OTk4ODEzNzYwMzgsIDYuOTA1MDY4NzI4NTIyMzMsIDIuNzM5NDMxMDU0OTE5LCA0LjAzMTgyNTc5NTY0NDg5LCANCiAgICAxLjAwODgzMDAyMjA3NTA1LCAxLjMxNjc5NjUxNjk1NjkyLCAxNS4yNzczODA5NTIzODA5LCA1Ljk5ODQ0MTE1MzU0NjM3LCANCiAgICA3LjgyNDIzMzM1ODI2NDc3LCAxLjUzMzE5NjA4ODUyMjksIDEuNDkwNTA4NzMxOTY2NTksIDMuNDk5Njg5NDQwOTkzNzgsIA0KICAgIDQuOTc3Nzk3MTI2Njg2OTgsIDMuMDc3NTMyNTQxMDI5OTksIDEyLjQyMDIzNDUyNDEzNDEsIDAuNTIzOTc3NDMzMDA0MjMxLCANCiAgICAxLjA3ODI3OTYzMzkwMTMzLCAwLjk3NzkwNDYwNjYwNDE1OCwgMi43Mzg1NTA3MjQ2Mzc2OCwgMjMuODc0NjQ2NTU5ODQ5MiwgDQogICAgMy44NTg4Njg4OTQ2MDE1NCwgNC44NTg4Njc5MjQ1MjgzLCAyLjE2MDY3MTAxNTg0MzQyLCAxLjIxMDA3MTc5MjczNzQ4LCANCiAgICAwLjc0OTgxMzg0OTU5MDQ2OSwgMS4xNTg2ODY0NDA2Nzc5NiwgMS41NzgxMTA4MDgzNTYwNCwgMS4zOTIyNDAwNzI3NDkzMSwgDQogICAgMi4wMzU1NzA0Njk3OTg2NSwgMy4zMTg2MTA5OTQ1NDQ2OSwgMTMuMjM5NDI1OTgxODczMSwgMC43NDMxNjcyMDI1NzIzNDcsIA0KICAgIDMuNDUyNDAyMDU2MzcyOTgsIDEuMjM4MDAzNTAyNjI2OTcsIDQuMTg1NDc0ODYwMzM1MTksIDEuMTMyNzA4NTI4NTg0ODEsIA0KICAgIDIuMjQ0ODU1MTAyODk3OTQsIDAuNzk5NzY3NzAyMzI3MTI0LCAwLjQ1NjkyNzk4NTQxNDc2NywgNC4wNzcxNjI4OTk0NTQ0LCANCiAgICAyLjE3OTY5MjQ4MjEwODY5LCAxLjExMjE5OTEwMjQwNzE4LCAxLjg0NjE2Mjc4Mzk0MjM2LCAxLjk4MTM4MDA2NTcxNzQxLCANCiAgICAyLjQ5MzcwNjI5MzcwNjI5LCA0LjgzODc3MDAyMjIxNDQyLCAyLjcxMDg2NDYzMzIyNDA5LCAwLjc5NTU2MDc0NzY2MzU1MSwgDQogICAgMS44NzkxODMxMTMwOTQyMSwgMS43NzU5ODgyODY5NjkyNSwgMi41NDY5NTQxMzEwOTUzNSwgOS41MjM3NTczMDk5NDE1MiwgDQogICAgMC43MzM4NjY4NzcwNzgyODQsIDE0LjcyMjgyNjA4Njk1NjUsIDEuOTA5NjI5NjI5NjI5NjMsIDAuNzg0MTc1MjAzMTA4NDQyLCANCiAgICAzLjUwNzE3NzAzMzQ5MjgyLCA5LjAwNTMzODA3ODI5MTgxLCAxLjA2OTU1MzgwNTc3NDI3LCAyLjU3MjY2NDM1OTg2MTU5LCANCiAgICA3Ljk4NDQ3ODkzNTY5ODQ0LCAzLjc4NjAzMDA2MTg5MjEzLCAwLjcwNjg4NDk4MTg4MTYyNiwgMTIuMDQwNjk3Njc0NDE4NiwgDQogICAgMC4yNzkyNDIzMDQ2NTY2NjksIDQwLjE0NTc2MDYyNDEwMTgsIDIuNDIwNTMzODgwOTAzNDksIDAuMzM5MzQ5NTM1MzgyNDE2LCANCiAgICAyLjIzMDI4NTcxNDI4NTcxLCAwLjUyMjkwMDc2MzM1ODc3OCwgMS4xNjM3MzA3MzI5MzQ4OCwgMS42MjYzODA0MjIyOTg3OSwgDQogICAgMS4xNDI5ODc1MjY2MjAwMSwgMC42MzEyMDM1NDgzMDk3NTcsIDEuMzMwNDg3ODk0NjIwNjQsIDAuOTExODIzNjQ3Mjk0NTg5LCANCiAgICAyOC40OTg0ODc5MDMyMjU4LCA3LjIwMTUxNTk3MTg0NjIzLCAxLjE3NjExNDgwMDc1OTAxLCA3LjIzMzU4ODU3NDM3ODM4LCANCiAgICAxLjkyMTQ2ODg3NDI5NDcsIDQuMTYyNzk5MjYzMzUxNzUsIDAuODE5MTEzNDQxMzcyNzM1LCAxLjY4MDI2NjQ0NDYyOTQ3LCANCiAgICAwLjgyMzc0ODA4NjU5NTIzMiwgMS42MjQ4NjcxNjI1OTI5OCwgMjg0LjU4MjIwNzIwNzIwNywgMy40MzIyNjAyMjgwMzQ4NywgDQogICAgMi45NTI1NDUxNzg2NDUzMywgNC40MjQ1OTYwNTAyNjkzLCAxLjQ5MzEwODcyODk0MzMzLCAwLjU3MTcwMTIyMzIxNTA2LCANCiAgICAxLjI3MjI5ODI1Mzg5MzM0KSwgRE9SQyA9IGMoMTMzOC44MjI5NDcxMTMsIDE3MjIuMTM3NTY4NjI3NTYsIA0KICAgIDEyNTQuNDczNzMwMTc3MzgsIDIyMjcuNTk4MzQ2Nzc2MTEsIDE4MjguNDM5OTUyMjQ5NCwgMTUzOC42MTY4MDkyOTYzOSwgDQogICAgOTI4LjE3MTU2MzAwMDMyOCwgMzE4MC4zOTc0MDA2MDYxMSwgMTYyOS41MTAxODU3NzkyNiwgMTk5NC4wNTQ0MTE5NTU0MiwgDQogICAgMzk4OS43MzUyNjY5MzQwMiwgMTM0NS43NzAxNzgxNTY2NywgMTAwMi4wNzE5MDE3MzUxMSwgMTUyOS44OTI1NDE1ODMxNSwgDQogICAgMTE1Ni4yNDgxNTYyNjAyOCwgMTMyOC40ODA4MDc4MTI4OSwgMTM3Mi43MDQ0MTA2NzMyMiwgMTU3My41MDM1ODE1MTc1LCANCiAgICAxODQxLjAxMTU4NTE3NjE1LCA4MzguMTAzOTEzNDc0OTQ1LCAxNTIxLjczODc1MTIzNDksIDIzMTcuNDAwMTcwMjM1MzEsIA0KICAgIDE2NTEuODExNzgyMzkwODUsIDM4NjguNjYwNTA2OTY3MzMsIDE3NzEuNjY2OTQ1Mjc2MTksIDE1NDkuNDQ1NzE1MDYyNDUsIA0KICAgIDExNzYuMTYxMDU0NTU5MjEsIDEyODYuNzc3NDkyODcyMTgsIDE0NTcuMzY5Mjg1Nzc4NjIsIDE2NDEuMDg2OTUzNDA4MiwgDQogICAgMTk5MC4yNDY3NzUwNTg3MywgMTE0NC42NzE4MDM5MzY3MSwgMTE0Ny4yODk5NTU3MTkwNywgMTQ0MS45NzIzODYyODIxNiwgDQogICAgMTM5NS4zMzE0MDcyODY1NSwgMjQ0My4wNTE1MTQ3MzAyNSwgMTIyNy4xODM1MzQ0OTcyNiwgMTU3My4zOTc1NDYxMTY5OCwgDQogICAgMTQ0NS43OTQ5Nzc0MTU2NywgMTQwNy4xNTY2ODEzOTY1NSwgMTcwMi42NzU4OTkzMTIsIDE0MzAuMTA2NTIyMTgzOTUsIA0KICAgIDE4MDQuNzg3MDQ0MTgzMTcsIDE0NDkuNjUyNTQ3NDMxNjUsIDE4ODMuNDQ4OTA0ODEyMTMsIDIwMTAuOTc0NzU0MDg4NzMsIA0KICAgIDIwMjMuMTQ4NDQ4NDQ1MDIsIDEyMDEuODI5NjAyNzE1MTIsIDEwODAuNjMwMDA2NzQ5ODEsIDMxODMuODQyOTE2ODY1MDcsIA0KICAgIDIyNzAuNTQ1MzIyNzY0OTksIDI3NjYuNjgwODkxMTQ0MywgMTMyMC44NDY3MzE0MjAzLCAxMDMzLjg4MTAzODQ4NTQ1LCANCiAgICAxNDE3LjQzMDU2MjUzNDI4LCAxMzUwLjIzNjY2MjM1NjA4LCAxMTQyLjkyNzY0NjA2NjY0LCAxNDQ2LjgzNDEzNjM4NDA3LCANCiAgICAxMTM3Ljc4Mzk1MjE5NjMxLCAxNjgxLjU5NzczMDExMjE2LCAxOTA4Ljk3MDUzMTY2Njg1LCAyOTk0LjcwMDc0NTEzNTM4LCANCiAgICAxNjQ3LjU0ODk0NzU2NTg1LCAxNTUwLjAxNzE1NDUxNDAxLCAxNzA2LjAyMTEyNTkwMjA1LCA5NzEuOTI0OTMzNzA0NTA3LCANCiAgICAxNDI5LjEwNDM0NDgzNTQyLCAxNTQzLjYzMTI0NDUyMTY2LCAxMjE5LjkxMTQ2MDY1MzE0LCAxNTgxLjE0MTc3MDM2MzM3LCANCiAgICAzMzgyLjcyNDI1NTY1OTg4LCAyMjYxLjY1MDc4MjEzNDgxLCAyMDI3LjkxNzA2MjMxNDYsIDE4NDEuODg4MjYxODczMjksIA0KICAgIDEyMjcuNzkyOTQzMzQ3MzEsIDIyNDAuMTQzMzQ0NjI1OTUsIDE4MjcuNjQzNzM2MjY4NTQsIDIzNjQuODY3NDU3OTMyMzYsIA0KICAgIDE1NTMuNDIzODA0MzY1MzEsIDE2MTUuMDg0MjUyMzAxMzMsIDI1MzEuMjEzNjIzMjE4MTgsIDIxMzkuOTkyMzY5NjYzODYsIA0KICAgIDE0NjAuOTk5NTg1MTc1ODIsIDE0MjcuNzgzODAyMDkxMjgsIDQxNzguMzk2MjMxNjA3NzEsIDE0ODIuMTEyMTA4NTMwMDcsIA0KICAgIDExNjAuMjAzNTI2NjYzNDYsIDIxNzkuMTI2MTQ2MTI2NTMsIDkzOC43NjI3ODEyOTQwMDgsIDE1NjMuOTI4MDY0MjYxMjQsIA0KICAgIDI2MTQuMTI4NTQ4OTQ3MywgODY2LjM5MTYyNTQ0NzIyMiwgMTAzOS4wMzczMzQ5MjcwNywgMTgzOC41NDI0NDUwOTMxNCwgDQogICAgMTM0Ny4zNjg0MTk4MTQ1MywgMTc3NS44NDE4MTA4MzQwNywgMTA2OC40MzcwOTE5MjYzNCwgMTc0Ny4wNTkzMDM4NDQ5MiwgDQogICAgMTYxNi40NTUwMjMxMzM5NSwgMTA4Mi40NjMyMjcxMTY2MiwgMjU2Ni4xMDY0NjE1MzYxMiwgMTA5NS4wNjg4Mzg5MjMyNywgDQogICAgMzM3OC4wMjI4MTQwNzAwMiwgMTgyOC4zODE2ODExMDI5MiwgMjUxOS41MDU4NjgyMzY1MywgMjExOS40NzIyODAxNTg3OCwgDQogICAgMTc1MS4yMTU2MjAzNDg1MSwgMTM3OS42Mzc4MTk4OTAwMywgMjA2MC4zMTU1Mzg2OTc0OCwgMTc1NS4yODcwMjgwMjQ2NCwgDQogICAgMTk4NS45NTE5MDY1Mjk0MywgMTUzMy4yODE4MTUxNjMzLCAxMDgxLjg1NzgzODY3ODUzLCA0NDY3LjU3NzI3NDk0MzIxLCANCiAgICAxODk4LjI4ODExNTYyMDU4LCAzNDUzLjA5ODg2NDgzODU4LCAxMzc4LjQ4NjU0OTc1MDc0LCA1MzIuNDI2MjEyMjg2MjkxLCANCiAgICA0NTA3Ljg1MjIxMDAxMTA1LCAxNzUwLjI0MDcwMjYzNTc3LCAyOTAzLjg0MTAyOTI5NDQ5LCA0MTU2Ljk5MDQ1MzI1NzQ5LCANCiAgICAxNDIyLjY0MjkzMDMyMDkxLCAxNzMwLjY5NTY1ODM2NjY5LCAxMzUxLjEyOTk0NzYxLCAxMjg1LjMxMTg4MjY3NjAzLCANCiAgICAxODU3LjE0OTE0NDQ0MDc5LCAxMzg5LjExMzYzNTM1MjIsIDIwNDMuNzIyNjEwOTg0MDksIDE2MDYuODc5MDAwNDk5NSwgDQogICAgMjE1OC42NjM1MzI2Njk1NiwgMjE5MC42MjA1MDY4NjgwNSwgOTg4LjgzMDE4NjIwNzI0OSwgMTU5Mi4wMDIzMjc4MDExMSwgDQogICAgMTIyMC45MzQ2MzQxODAwMiwgMjAzMy42NjkzNzQzNjc1NSwgMjQ4Ni41NDI4NDMzNTg1OCwgMjAzNC45NTQ1OTY5Nzg3LCANCiAgICAxMzkyLjUyOTE5MzgwOTI2KSwgQ1JFRCA9IGMoMCwgNTk5OC4yNzI3NDU0ODA5MiwgMTc0My43MzQ2MDAzNTc0NSwgDQogICAgMjYzOS44MDM2NzQ0NTkxNiwgMCwgNTkyOS4wMTM1Njg1NTY4NiwgMzUwLjUyNjQ0MzkwMzUxOCwgDQogICAgMjYxNy44NTA0MTA5MzkwMiwgMCwgMCwgMCwgMjg1Mi4zMzUxMTkzODM3NSwgNTAwNS40MjU2OTM3NDAyLCANCiAgICAyODg4LjE3ODk0Mzc5OTUyLCAwLCAyMjQ3LjM2OTc3NTE2NTYyLCAzMDM3LjQxNTIyNTY0MTI2LCANCiAgICAwLCAxMjIxLjA5MTQzMzUwNDY4LCAyNDM1Ljk1ODg4MjQ2MTUsIDI3MDEuNTA4NjQ1ODU2NzIsIDUzODMuMzkzNjYxMzU2NzcsIA0KICAgIDQyOTMuNjk5MzE3ODU1NDMsIDE2ODguNTQyNDMzMTYxNjMsIDAsIDY1MjAuMDU5NjMwNzEwNjYsIA0KICAgIDAsIDAsIDkzMi44MDEwMzg0NzA2MTYsIDcyOC42NzYzMDk3Nzk1MzYsIDAsIDQwMDUuMzcwODI4MjQwMDMsIA0KICAgIDAsIDU2NTQuODExMDU1MjgwNjcsIDEzODEuNDg4OTU5NDEzNTUsIDAsIDAsIDY4MjIuOTk1MjU4NTM0MTksIA0KICAgIDAsIDE1MzMuMDI1ODQyMjQ2MzEsIDIxNDcuNjEzODkyNjM2MjQsIDMxMzMuMjE5ODAyMzE0OTMsIA0KICAgIDAsIDAsIDAsIDAsIDAsIDI4ODQuNjQ4MzEyMTU0MDIsIDI1NDguMTE0NTU0NzQyMjksIDAsIDY4MC4wODMzMzMzMzMzMzMsIA0KICAgIDQyNzQuMDgwMzcxNDI3NjMsIDIzMTguMzIyMjMyMjA1MjUsIDE0Ny40MjI5MDIxODAyMDEsIDE3My4xNDEyNDI0NTAzODgsIA0KICAgIDE3MzUuMDE0MTQyOTUwNjcsIDk4MS4xODIzMzY0MDI3OTYsIDYyMS4xMjk4NzM1MDcxNjYsIDk4NC42MjQ1NjA5NTgwNjMsIA0KICAgIDAsIDYzNDIuNTY1MzczODQ0NDQsIDAsIDE4NzAuNTc4NTk3ODg5NDcsIDg5My4zNTkyODU2NjEyNDYsIA0KICAgIDI0MTMuNDk5MTk5NTE1OCwgMTkzNS4wODEwMDIxNDg2NSwgMTg3Ni42NTgwNTI0NDc4MiwgNjk1Ljk3MDg1OTkzMjQwNywgDQogICAgMCwgMCwgMCwgMCwgMCwgMCwgMTA0NC41MjUxODU2NTY2OSwgNzAxMC42NjY4NjE2MTExLCA2NzguNDg3ODE5MDk2NzEsIA0KICAgIDE5MDAuMzcyOTA1ODUzNzUsIDM0MzAuMTkxMzI0NjM1ODQsIDAsIDAsIDYxNy42NTY4Njk2Mjc1MTMsIA0KICAgIDEzOS45Mzc2OTYzNjAzODQsIDI1NTYuODE4MTQ0MjMyMzgsIDAsIDE5NzAuMDMwNTIzNzk1MDYsIA0KICAgIDE3OC41NTIwNjE5MTYwMzgsIDAsIDc1Ny42NDE5ODExNTcwMDMsIDAsIDAsIDIxMTMuODkyNzkwNjE1NzEsIA0KICAgIDM5OC4yNjU1ODU4MjMxODcsIDIzMjUuMzIwNjY0MjM5NDEsIDAsIDAsIDE4NDguNjgwODA5ODY3OCwgDQogICAgMzMyOC43MDU0ODIyNTU4OCwgNDQ1OS4xMTk2OTgzNTI0NiwgMTY5Mi4yNjUwNzgyODYzNywgMCwgDQogICAgMzE2LjUyMTc3NjkxNTk3NywgMCwgNjI3NC40OTI5ODY4MTgxOCwgMjQ3Ljk3NDAzNDI3OTg2NywgDQogICAgMCwgMCwgMjEyOS4yNzIzNjYyNzEwOSwgMCwgMCwgMCwgNzE3Ny4xNjE0NzcwNjc5MiwgMTI1OS4yODg5OTA5NTMzNywgDQogICAgMCwgMCwgMCwgMCwgMzMyLjg4MjM0NTk4OTA2NywgMjA4My4yNjU2OTM2ODczNSwgNTg4My4xMjU3MDE3NzgyNSwgDQogICAgMzgwMS40NTU3Mjk4OTc0MSwgMCwgNjYxNi4yNDAxMzM3MDc4MywgNzcxNS41ODg0MzkzMTc0MywgDQogICAgOTY1LjI4NTYxNTkzNTM3NywgMzI1MS41MDg2NTUxNzI0MSwgMTA2OS41MjM5NTc2NjYxNCwgMjAyMS40MTkwMzYzOTkwOSwgDQogICAgMCwgMzYzMy40MDcxMzg4MTAxOSwgMCwgMCwgMTc3OS41NDY5MDM3MzU2NywgOTE4LjY5NjIzNDY0OTM0NSwgDQogICAgMzA3Ni45MDM1MTg1NDgsIDAsIDAsIDExNzAuNzk1NjcxNDg2NjIsIDM0MjguNDc2ODgzNzMwMDgpLCANCiAgICBFWFBPUiA9IGMoMCwgMjM3Ny44ODY0ODMxOTk4NiwgODI2LjIzNjMzMDE3NjMwNiwgMjk0NTguNDU5NjI3Mzk4MywgDQogICAgMCwgOTU2My4zNDk4ODI1MzQ0NywgMCwgOTQyNS4yMzY0NDE4MzgxNSwgMCwgMCwgMCwgNTI3MC40NzU0NDk4OTY3MSwgDQogICAgMzMuNDM0MjY2MjUyNTk0OCwgMTgxOS4xNjM4Mjk0Mzc4MywgMCwgMTQ1LjAzMDQyMDQ5ODY3OCwgDQogICAgMjkxMi44MTIyMjI5NjEzLCAwLCA0MTEwLjkwNDYwNzk1NTc1LCAxNzMuNTU2NzkwOTE1NzYxLCAwLCANCiAgICAxNDkzMi41ODM0ODQzMjU3LCAyOTI2LjAzNjczODMzMzIxLCAzMjAxNS4xNjEzMDQyMzIsIDAsIDE4MDIuMjE2NzU0NDMxOTQsIA0KICAgIDAsIDAsIDQwLjkyNTgxOTAyMjc1MywgMzkwLjU3ODk1Mjg1NjU5LCAwLCAzNzYuOTUwNzAwMTk3Njg1LCANCiAgICA3NzUuNTkxMDU4Nzc0Nzk5LCAxNTI1Ljk0NjI5MDI3MDYsIDAsIDAsIDI1MTQuODAzNTc2NjE1NjIsIA0KICAgIDE4OTQuNzMwMTQ5OTg4OTgsIDAsIDAsIDc4NzIuNzIzNDMwNTMwNDEsIDAsIDEyMC41NTMwNzEwNTg4NjIsIA0KICAgIDAsIDU2OS43NzQ4MzMzMjEyOCwgODc2LjUwNDI4MTU1ODE2NCwgMCwgMC41MjQwOTI3Nzk2MDA2OTgsIA0KICAgIDAsIDAsIDQ4MC40MjQ2MDU0MTY3NzgsIDcyOTAuODk0MjI5ODAxMTUsIDExNi4yMTc2MDI2MzU5MzksIA0KICAgIDAsIDExLjI5NTU5MzQ4NzYzNzEsIDExNy4yOTEwNjkzMTE2MTgsIDcyMi41OTg2Njk5ODAzNTgsIA0KICAgIDEyMDUuNjQ4NDk0NTI0MzUsIDAsIDAsIDY4MjcuODU2MTg2Njk5NjEsIDAsIDIyNjAuNjUxNjQwNjc2MzYsIA0KICAgIDE3OC4zMzkxNTY2NDA4MjgsIDE3MDUuMjIyMjkyMjk3NDksIDQ3LjY4MTI3MjA1NDgwNjIsIDQ4LjY5NDQ0MjE4NDk5NzYsIA0KICAgIDM5LjIwNzAzMDM1Njc0MDUsIDAsIDAsIDAsIDU2MTkuMDA1OTkzMjAzNDgsIDAsIDAsIDAsIDE4ODI3LjQzOTM1NDc0MDQsIA0KICAgIDQwMzguNjQ2NDI0MDc0OCwgMTk3NS44NTE2MTk2ODQwMywgNjUzLjMyOTgzMjM4NTczNywgMCwgMjQuMjY4Mjk5Njk4NDc5MiwgDQogICAgMCwgNTAxLjEzMDIxOTk3MDA5MSwgMzgwLjQ5NzgzMDA2MDI4NywgMCwgMzUxNy44OTA5NjAzNzkwNSwgDQogICAgMTEwLjI3NTExNDk4Nzg0MywgMCwgMC40NTMyNDYzNTc2ODk4NTMsIDAsIDAsIDYxOS44OTcyMjkzMzk3NTMsIA0KICAgIDAsIDY4NS4zODAwMTgzOTU4MjksIDMzNzguNDA3OTc3MzcwNDMsIDAsIDAsIDgxMDkuMTg0NTU1NDA0NDgsIA0KICAgIDg3NTcuODEwMzMzMTE4NzgsIDE2MDcuMDk1NzQ3Mzk2MzIsIDAsIDAsIDAsIDUuNjA4Mzk2OTY2NDQ3MjIsIA0KICAgIDM0Ni45Njg5MDk3ODUxMTEsIDAsIDAsIDE4NTUuNjQwMjk3MjE1OTYsIDAsIDAsIDE3ODkuNzExMTg2MjgxMSwgDQogICAgMTAwNDEuNDc0MDg3ODc5LCAyNTcuMzc1MDY3NzI3MjA5LCAwLCAwLCAxNTQ0NS4xMDg4MTIwNTc0LCANCiAgICAwLCAxMDY3LjQyMDAxODcwMjkxLCAwLCAxNjA0LjgzODExMDY4NTk4LCAzNzU1NS41NzUxNjU4OTUyLCANCiAgICAwLCAxNjQ2LjMwODI4MDI2NTUzLCA2NDU4LjM5MDQ0OTc3MTk0LCAwLCA4MDguNTU2OTUzMjAwMTQ1LCANCiAgICA5MTIuOTIwODgzNDM1NTA4LCAwLCAwLCAwLCAzMS44NDY1MzE1NjkzNjQxLCAwLCAxMjQuNzA0MTE3NDc2MTA3LCANCiAgICA1OS4zMjY1NjAyNjc2ODUxLCAwLCAwLCAwLCAxMjk5LjUwNTk1NjI0Mzk2LCAwKSwgSU1QT1IgPSBjKDY3OC4zOTQ4MDAwMTc1OCwgDQogICAgMCwgNS43NzE3NzE5NDAwOTM2OCwgMTExMjIuNDQ4ODE5ODgxLCAwLCAzLjk1OTc2OTAzMjA0OTczLCANCiAgICAwLCAxMy43Njc1NzAyNzk2ODc3LCAwLCAwLCAwLCAwLjA1ODU2NzQ0ODE2OTAxNDgsIDAsIDY2OS4wMDg1ODUwMDgwNTUsIA0KICAgIDAsIDUuMjU3OTQ4MjI1NjQ4NDQsIDMxLjY5ODE4OTEwNTQ1NjUsIDAsIDAsIDQuNDI2Nzk5NTY5MDkyNTYsIA0KICAgIDAsIDY1MDAuOTkxMjY5MjgyMiwgMy44MjE4Mjk0MDQ0ODIyOCwgMTczLjM1MzQ5Nzc0MzQzNSwgMCwgDQogICAgMjEuNTQ0MTkwMTA2MTU5NCwgMCwgMCwgNzkuMjgxOTUzMTMwOTkxNSwgMCwgMCwgNTYuNjQ3MjQ0OTU0MDEwMiwgDQogICAgMC4wNDY3MjEwOTkxOTU2NzksIDAsIDAsIDAsIDEuMDA1Mzk4Njk2NzU2ODUsIDQ0OS42NjM4NDY5MzkzNDMsIA0KICAgIDAsIDAsIDIyLjcxMTI2MTgyNzA2OTMsIDAsIDAsIDAsIDAsIDAsIDAsIDAsIDAsIDAsIDAsIDIxLjQyOTYwOTQ0OTA2NjQsIA0KICAgIDc1LjU2NzQ5ODE3NTEwMjMsIDkyLjU4MTQ3MzUxOTYyNzQsIDAsIDAsIDAuMDExMzUxMjA4NDM5ODA1MywgDQogICAgMy4yMzE0MzA3MDM1ODgzMywgMCwgMCwgMzQ0Ljk2NjE0ODMwNzg5OSwgMCwgMzkuMTU0NjQwOTQ5MDkxMSwgDQogICAgMCwgMCwgMS40NjkzMzYxMDYxMzE3OSwgMjE1LjkwMjc0NjIyMTMzMSwgMCwgMCwgMCwgMCwgNC4wOTc2Mzk5MDg4Mjc2NiwgDQogICAgMCwgNi4xNDkwMzU3NzUzMTE3OSwgMCwgNjQ1LjUwMzQzMzg1MjI3OCwgMTE4LjE1ODIwNjQxMjYxLCANCiAgICAwLCAyMi4xNzg0NDYxODg1Njk3LCAwLCAwLCAzMS43OTgwMDY1MzEwMjY3LCAwLCA1Ny4zNzg0NTc4OTk0NDMyLCANCiAgICAwLCA4Mi43MDUwNjc0Mjg5MTg0LCAwLCAwLCAwLCAwLCAwLCA4Ljc5MTg0MDE5NTMzODE4LCAwLCANCiAgICAwLCAxMDEuNDQ2OTg2MzIzMDQ5LCAwLCAwLjU4MzE5NTY2MTc3NDYwNiwgMTM1OS44NDc5ODQzNTYyOSwgDQogICAgMC4xMDE0NjMwODY2MDQ3ODEsIDAsIDAsIDAuNTkzMTk0MDE4NDYxNTM4LCAwLCAxMDYuMDM1MDcxNzcxNDcyLCANCiAgICAwLCAwLCAwLCA0NS43MDQwNzU2ODE3NzIxLCAwLCAwLCAwLCAyOTY3LjgxNDYxMTYwODk4LCAwLCANCiAgICAwLCAwLCAwLCAwLjE0MzkxNjc0MjkwMzM1OSwgMCwgNTYuNjM5NjA0Njk5MTkyNSwgMCwgMjAwMC44MTIyMDE0OTczOCwgDQogICAgMCwgMTYuMTY5ODk5MjU3OTkxOCwgMjUyLjI2MzM2NDQzNDU2NSwgMCwgMzguMzg1NjI3ODEwMTIxNSwgDQogICAgMCwgMCwgMCwgMCwgMCwgMCwgNTcuMTM2MjAzMDQ3NzYzNiwgMCwgMCwgMCwgMCwgMCwgMCksIENDT00gPSBjKDY3OC4zOTQ4MDAwMTc1OCwgDQogICAgMjM3Ny44ODY0ODMxOTk4NiwgODMyLjAwODEwMjExNjQsIDQwNTgwLjkwODQ0NzI3OTMsIDAsIDk1NjcuMzA5NjUxNTY2NTIsIA0KICAgIDAsIDk0MzkuMDA0MDEyMTE3ODMsIDAsIDAsIDAsIDUyNzAuNTM0MDE3MzQ0ODgsIDMzLjQzNDI2NjI1MjU5NDgsIA0KICAgIDI0ODguMTcyNDE0NDQ1ODksIDAsIDE1MC4yODgzNjg3MjQzMjYsIDI5NDQuNTEwNDEyMDY2NzUsIA0KICAgIDAsIDQxMTAuOTA0NjA3OTU1NzUsIDE3Ny45ODM1OTA0ODQ4NTQsIDAsIDIxNDMzLjU3NDc1MzYwNzksIA0KICAgIDI5MjkuODU4NTY3NzM3NjksIDMyMTg4LjUxNDgwMTk3NTUsIDAsIDE4MjMuNzYwOTQ0NTM4MSwgMCwgDQogICAgMCwgMTIwLjIwNzc3MjE1Mzc0NCwgMzkwLjU3ODk1Mjg1NjU5LCAwLCA0MzMuNTk3OTQ1MTUxNjk2LCANCiAgICA3NzUuNjM3Nzc5ODczOTk0LCAxNTI1Ljk0NjI5MDI3MDYsIDAsIDAsIDI1MTUuODA4OTc1MzEyMzcsIA0KICAgIDIzNDQuMzkzOTk2OTI4MzMsIDAsIDAsIDc4OTUuNDM0NjkyMzU3NDgsIDAsIDEyMC41NTMwNzEwNTg4NjIsIA0KICAgIDAsIDU2OS43NzQ4MzMzMjEyOCwgODc2LjUwNDI4MTU1ODE2NCwgMCwgMC41MjQwOTI3Nzk2MDA2OTgsIA0KICAgIDAsIDAsIDQ4MC40MjQ2MDU0MTY3NzgsIDczMTIuMzIzODM5MjUwMjIsIDE5MS43ODUxMDA4MTEwNDEsIA0KICAgIDkyLjU4MTQ3MzUxOTYyNzQsIDExLjI5NTU5MzQ4NzYzNzEsIDExNy4yOTEwNjkzMTE2MTgsIDcyMi42MTAwMjExODg3OTcsIA0KICAgIDEyMDguODc5OTI1MjI3OTMsIDAsIDAsIDcxNzIuODIyMzM1MDA3NTEsIDAsIDIyOTkuODA2MjgxNjI1NDUsIA0KICAgIDE3OC4zMzkxNTY2NDA4MjgsIDE3MDUuMjIyMjkyMjk3NDksIDQ5LjE1MDYwODE2MDkzOCwgMjY0LjU5NzE4ODQwNjMyOSwgDQogICAgMzkuMjA3MDMwMzU2NzQwNSwgMCwgMCwgMCwgNTYyMy4xMDM2MzMxMTIzLCAwLCA2LjE0OTAzNTc3NTMxMTc5LCANCiAgICAwLCAxOTQ3Mi45NDI3ODg1OTI2LCA0MTU2LjgwNDYzMDQ4NzQxLCAxOTc1Ljg1MTYxOTY4NDAzLCANCiAgICA2NzUuNTA4Mjc4NTc0MzA3LCAwLCAyNC4yNjgyOTk2OTg0NzkyLCAzMS43OTgwMDY1MzEwMjY3LCANCiAgICA1MDEuMTMwMjE5OTcwMDkxLCA0MzcuODc2Mjg3OTU5NzMxLCAwLCAzNjAwLjU5NjAyNzgwNzk3LCANCiAgICAxMTAuMjc1MTE0OTg3ODQzLCAwLCAwLjQ1MzI0NjM1NzY4OTg1MywgMCwgMCwgNjI4LjY4OTA2OTUzNTA5MSwgDQogICAgMCwgNjg1LjM4MDAxODM5NTgyOSwgMzQ3OS44NTQ5NjM2OTM0OCwgMCwgMC41ODMxOTU2NjE3NzQ2MDYsIA0KICAgIDk0NjkuMDMyNTM5NzYwNzcsIDg3NTcuOTExNzk2MjA1MzksIDE2MDcuMDk1NzQ3Mzk2MzIsIDAsIA0KICAgIDAuNTkzMTk0MDE4NDYxNTM4LCAwLCAxMTEuNjQzNDY4NzM3OTE5LCAzNDYuOTY4OTA5Nzg1MTExLCANCiAgICAwLCAwLCAxOTAxLjM0NDM3Mjg5NzczLCAwLCAwLCAxNzg5LjcxMTE4NjI4MTEsIDEzMDA5LjI4ODY5OTQ4OCwgDQogICAgMjU3LjM3NTA2NzcyNzIwOSwgMCwgMCwgMTU0NDUuMTA4ODEyMDU3NCwgMC4xNDM5MTY3NDI5MDMzNTksIA0KICAgIDEwNjcuNDIwMDE4NzAyOTEsIDU2LjYzOTYwNDY5OTE5MjUsIDE2MDQuODM4MTEwNjg1OTgsIDM5NTU2LjM4NzM2NzM5MjUsIA0KICAgIDAsIDE2NjIuNDc4MTc5NTIzNTIsIDY3MTAuNjUzODE0MjA2NTEsIDAsIDg0Ni45NDI1ODEwMTAyNjcsIA0KICAgIDkxMi45MjA4ODM0MzU1MDgsIDAsIDAsIDAsIDMxLjg0NjUzMTU2OTM2NDEsIDAsIDE4MS44NDAzMjA1MjM4NywgDQogICAgNTkuMzI2NTYwMjY3Njg1MSwgMCwgMCwgMCwgMTI5OS41MDU5NTYyNDM5NiwgMCksIE1SRUcgPSBjKDExNjgyLjI2NjU0NDM3OSwgDQogICAgMTEyMDAuMzk2NjAzMTM4MiwgMTEyMjguNjEwMTY4ODY2NCwgNDMxNDcuNjE5Njc4MTk4NSwgMTMwODguMTk3MjYzMzA1MSwgDQogICAgMjIzODMuMzg3NTEwOTE5NSwgMTY5NjkuODQ1MTQ2MDIyMiwgNDMwMzcuNzc2MTExNTUwMSwgMTExODIuOTc0Njc5ODU4NiwgDQogICAgMTI4NTQuNzI4OTExODAyNCwgMjMxODcuODI5NDkyOTU4MSwgMTE0NjYuMTkxNjkyMjkxNiwgMTIxMjMuNTU5NDAxMzcxNSwgDQogICAgMTAzNjcuOTI2ODczNDk4NiwgMzU4MjQuOTI0Njg2NTQ1NSwgMTE0NTUuMDcyNDY1ODk2LCAxMzIxNC45NTg0MzQ3MDA5LCANCiAgICAxMTc2Ni40OTYzNjcxNzc3LCAyNzcxOS40ODY2NTA2MTYyLCA5MzQwLjY5NDExNjAxNDA4LCAxNTk2OC44NTY1MjA2MjQ3LCANCiAgICAyODU5Ni43ODkxMTY5NDUzLCAyNzIyOS43NTg4NDYzMTE1LCAzMTA0OC43ODYxMDgzMTk0LCAxMDg5MC40MzQ1ODY0Nzk3LCANCiAgICAxMzg5MC4xODk1Njk5MjMxLCAxMTQ5MC43NjE0NDcwMTg2LCAxMzQ1Mi4zODU3NDk3NjM5LCAyNzU4Mi42NjEzNDgwMTk3LCANCiAgICAxNTI1Ni43MTU1Mjk3ODY5LCAxMTQzNi4zMTQ3Mzg5ODY5LCAxMDMyOC41NTY1NDk5ODM2LCA5MDk4LjQwMDY1OTAwODgyLCANCiAgICAzMTMzNi41ODgxNjk2MzExLCAxMTU1My44OTA1MTQwMDk2LCAyMzg5MS40NDQ0MTc0NDY4LCA3MTEzLjc4ODgyMTA2OTIxLCANCiAgICAyNDY4Ny45MDU0MzY1MDczLCAxMjcxOC4xNjQ4NjM2OTg1LCAxMTI5MC4zNjI4OTI4NDM5LCAxOTgyMC42ODM0NDU5NTMyLCANCiAgICAxOTY4Ny42ODUxNDQ4Mjk2LCAxNjU2MC41MzAwOTc0Mzk0LCAxMjA5MS4zOTU5Nzg3NjAyLCAxNDgxNi43NjYwMzc0MTE4LCANCiAgICAxNDY2OS4zNjkzMDM3NjYzLCAxMDY3MS40NDI3MTExOTgsIDE0MTM3LjQ0MzI2NTQ1OCwgMTQxOTguNzA5NTU2MzU0NywgDQogICAgMTI0NjkuNjgwMTI3NDM5MiwgMTIyOTEuODM2NDA2MDc0OSwgMzEyODUuMzkwNTIwNjA5MiwgMzAwMDUuOTI4Nzc1NTI1OSwgDQogICAgODgzMi45NjIyMjM3OTUxNiwgMTIyMjQuOTU5NDgxMTMwMiwgMTM1NTIuOTg2MzQ0MDYwNiwgMTM3NTguMDA2NzI5MjkwNCwgDQogICAgMTE1MzQuOTk4MjA4MzQyMiwgMjY3MzguNDMzNDIwMzg2NCwgMTAwMDMuNjU4ODM3MzA4LCA0MDc1Mi4wOTkxNzk1OTI4LCANCiAgICA5OTg4LjU1OTQyMDI4MjA3LCAxMTA3OS40MjM4MzAyNzQ2LCAxMjU4Ny41Nzc4NDc2MjYyLCA5MzE4LjM3NTIwMjA3MDksIA0KICAgIDExMDEwLjg1MTE3NjYzNDcsIDMyNjgwLjY0NjEzNzE5MzYsIDE1MzA3LjM1NTE2MDUxMTcsIDE4MDU4LjYyMjQ1MzUzNywgDQogICAgMTE2MzkuODEyNjg1MjAwOCwgMTQ3NzUuOTEzOTk5NzczNSwgMjkzMjIuMzE3OTQ0NDc2NSwgMTI3MzUuNjU0OTU3ODkzNCwgDQogICAgMTkwNTkuNTc1MjA3MDMzMiwgMTAxOTQuOTIyNjE5MDcxNiwgMzk1MzYuNzUxMjg1NzUxNCwgMTI1MjkuNTU3MDU1MTYwNywgDQogICAgMzA2NTIuMTY4OTc1MDE5MSwgMTIzMjQuNjE3NjU5MjM5LCA5OTk2LjY1MjcxMDE1MjM2LCAxNjU1MC4yODQ2MDQxNTEsIA0KICAgIDE0NzAzLjc5NTEwMzE2NDQsIDEyMjU5LjM5MjU5NTY2ODIsIDIzNjQyLjAzMzUwNjA4MDIsIDkyNzMuMDUyODE4Nzg3NTMsIA0KICAgIDIzNDE5LjEyNTU1NTI5MzMsIDExODkwLjE5MzQ4OTQxMjEsIDE1Nzk0Ljk0ODEwOTQ1MDIsIDU4NjMuMDM2NjM0MjE1NiwgDQogICAgMTM3NjMuOTk5MTc3MzI5NCwgNjYzMy42NDQ2Mzg2MjI1OCwgOTg5MS43NTQwMzk5Mjk4MiwgMTA5MTkuNDE1NTQzMjI4MywgDQogICAgMTY4NDguNTY1MzUzMDk4NSwgMTA0MTMuMjkzMDI5MzQ0MywgOTUzNC4yMzk0ODcwNzU1MSwgMTgwMDAuOTM4NTkzNDk0NywgDQogICAgMTU0MTcuMTQ4ODg4ODU4MSwgMTIyMzcuODU5MjQ4Mjk4NCwgMTMxMDkuMTA0NjkxMDA1MiwgMTIyMjYuNDMzMDc0MDQ5OCwgDQogICAgMTQwNDkuMjUxOTY0MzA3MSwgMTA3NjEuNzI4Nzk2Mzg0OCwgMTI2ODMuOTYzODI0MjQzMiwgMTQ3NzcuMjIyMjQxNDcxMSwgDQogICAgMTM5NTguMzAwMjkzODAzMywgMTY3OTEuMjYzMTk0MjA0NywgMzAyNDguMDQzNDYxNDc0NiwgOTc4OC4yMjkzNzQwNzY5NywgDQogICAgMTM3NTUuNTAyMTk1MzA5MiwgMTA1MjYuMzQyNjgxODg2OCwgMzAwNjAuMDE3NDA5MTg1MiwgMTU5NTIuMTc5MjIyNzM4NSwgDQogICAgMTA5MTIuOTQ0NDA2MDI0MSwgMTE5MDYuODUwMTcxNjUzOSwgMjI1ODUuNjg1MzQ1NjgyNCwgNzA3OS44OTAwMjk2MTEsIA0KICAgIDE5NTk3LjU0MzE4NTQ5NTQsIDE3OTYxLjk3NDMwODM2NTIsIDEwNjMyLjUzNTQ5MDY0MTQsIDMzOTQ0LjkwMTE2MzM4NzMsIA0KICAgIDk1MjQuOTUxODAxNTA4MjcsIDIxMTI1LjMwMTY3NTQ4NzksIDIzNzcyLjgyMTQ4MjA2MzIsIDE2NDYxLjQ2NzA0NDYxNzEsIA0KICAgIDI0NjA4LjkyNTA1MTU4NDgsIDMwOTM5LjM3MTAzNjc5NCwgOTk0MC42NTIwMjQ3OTQ1NCwgMTI5MDQuOTE4NzI4Mzk3MiwgDQogICAgMTUwMTAuOTQ1MjcwNjk3MywgMTMzMzcuNzIyMDg3ODg5OCwgMTE4MjYuNDE2Nzg3MDQ5MywgMjQ2MjAuMjg3NDE4ODQ3OSwgDQogICAgMjE3MjEuMjAzNzEzNjkwNCwgNzg3NS44OTUzMjgyNzQ3MywgMTE3MzYuMTExMTE1NzM0NywgMTQzNzcuMjIzMDA3MjgxMSwgDQogICAgMjM2MzQuMzU0MDUwMjY5MiwgMTI2MDguODE5NDQ3ODU4NyksIFQgPSBjKDAuMDQzMTI2NzM4Njk1MzY0LCANCiAgICAwLjExNTcyNTE2ODc2NDQzMiwgMC4wOTUwNjI2MTE5NDAxNjY0LCAwLjEwMzg3MTE2MzE1NDcwMywgDQogICAgMC4wNDYyMzI1NjgyMDIwMSwgMC4wOTI5MTIyNTMyNTkyMjMyLCAwLjA0MTg0OTQ1MjE5NjIzMzIsIA0KICAgIDAuMTQ2OTA3NDAyMTYzMDY1LCAwLjA1MDkzNTg2NjMzNTI3NCwgMC4wNDMwNDY0NTQ3MDMxNjI0LCANCiAgICAwLjA0MTI0ODQxNjI3OTcxNjUsIDAuMDg2MTY2Mzc3MzkwODU4NiwgMC4wNTkxMDg2ODI2MjIwNzg2LCANCiAgICAwLjA3NjA2NzU0Mzc1ODU3ODEsIDAuMDM3OTQzMjI3ODg4MjkzOSwgMC4wOTYzMzQ1MzMwNjMyNDg1LCANCiAgICAwLjExNTk2NTAwODg1NzA3NywgMC4wNTc2NDg1NjE3ODI0NDA4LCAwLjA4MTU5NjIwOTkwMzUyNywgDQogICAgMC4wNzc1NjA0MDc0NTU4OTUzLCAwLjA0MjEwMTc0NTE0MjMyMDQsIDAuMTA5OTIwMjI4NzM0NTI5LCANCiAgICAwLjA5MzY3NjA2NTI1NzE1ODcsIDAuMTE1MjI2NDY0NDg3MDYyLCAwLjA0MjMyMTcxNjA3MjQxNjEsIA0KICAgIDAuMTAyNDE0NDg4MzQxNTU1LCAwLjA0OTUwMjkyMzMyOTM3MDcsIDAuMDUyMTEzMTA4NTM1NzU3LCANCiAgICAwLjA1NjUzOTUwNjE3NjkxMDIsIDAuMDc0NTQ2Mzk1ODg2MTI4NSwgMC4wNTE4ODg1MzU0MzkzNzg0LCANCiAgICAwLjEwMDkyNTgzMjAzMDg5MiwgMC4wNTg4MjExNTQ1ODcxOTI4LCAwLjA4NTE1NjAyMzgxOTIwMjIsIA0KICAgIDAuMDQ3NzkxNjM5MzYwMjQ4NSwgMC4wNjgzMzM2NzE5MjMxOTUyLCAwLjA2MTU3NjE3NTYxOTE5NzEsIA0KICAgIDAuMTYwMTkwNTEwNzEyMDQxLCAwLjA0NjcwMTI3NjcyMjU1NjUsIDAuMDQxOTA2NjMyMzc0OTQ5NSwgDQogICAgMC4wODE4MjM5OTAzNTk2ODcxLCAwLjA0ODk0ODAyMzgyNzExMjUsIDAuMDc5NzQ0OTAzNTUzMzM0NywgDQogICAgMC4wNTY3MjE2MTMzMTIwNzY3LCAwLjA1ODA4OTA0NTk2MzQyMTEsIDAuMDUxMDU5NzAzODk5MTMzNCwgDQogICAgMC4wNTY0MDQ3MzU0OTY1OTUyLCAwLjA2MzQ0NzMzODM5ODY1MDksIDAuMDQ2Mzk0MjM5NjgzNjI4NSwgDQogICAgMC4wNTI0MzQxNTcwODM4MzE4LCAwLjA3NTc3MDQyMTkwNTQxNzMsIDAuMTAwOTMzMjYwMTg4MzQ4LCANCiAgICAwLjA5MTkyNTgwMTg3NzA3MTIsIDAuMDU5MDY3Mjk1ODQ0NDc3OSwgMC4wNDM1OTA3NzY4MjU1NjUzLCANCiAgICAwLjA2NzIyNzYwNTQ2NTk5ODQsIDAuMDkxNTUxNjI1MDc0MzM3MiwgMC4wNjg0NTk4ODg2NTg4OTUxLCANCiAgICAwLjA1NDc5NDQ0MzMyMDg0OTgsIDAuMTEzMDIxNzMxMTU2MTkzLCAwLjEyMzk2OTkxNTk0MzY1NiwgDQogICAgMC4wNDkxNjE3MDE0MzMzMDMsIDAuMDQ5MTU3NDcwNTg2NDE3MiwgMC4wNjY4NjgxMzc5MDEzNzg1LCANCiAgICAwLjA4MDc4MjY1Njg3NTgwNCwgMC4wODY1Njk1MTUxMDM3MzAzLCAwLjEwMzQ2MjkwMjA4MDUzNiwgDQogICAgMC4wNTE1MzMyNjM4NjIxNjQ0LCAwLjA0NTgzNDQxMjUzMDkxMjEsIDAuMDU0NjQzODYwMTA2MzY3MSwgDQogICAgMC4wNDE0NzcwNjAyNzY5MzYzLCAwLjA1NjcwMjUzODkzNDEyMzQsIDAuMDUwMTk0OTc2NTc2MjYwMSwgDQogICAgMC4wNDc3NjE1NTg1ODQ3MDksIDAuMDUwNDk3MTY0NTQ4Mjg2MywgMC4xMTE0NTI2MzAzNzA4NTIsIA0KICAgIDAuMDk0Mjg0ODQ0MTk0MDA5OSwgMC4wODA3MDY4NDIwMDIxMzI1LCAwLjA3MzAwMDI1MTAwOTIxMjEsIA0KICAgIDAuMDQxMTAzMzE0NTQ5Mjk0MSwgMC4wNDUzODI2MTk4NjQ2NzQ3LCAwLjA0ODU0NzUwNjcyMzgwNzEsIA0KICAgIDAuMDU2NzkxMzE0NzM0NzkzMywgMC4wNjcyMTU4MjgxMTg2MTM0LCAwLjAzNTA4MjYxMDUwMjAxNjUsIA0KICAgIDAuMDU0Mzk0NTk3ODkyMzA2NSwgMC4wNTMzMzc1MjA2NjczMzI1LCAwLjAzNzA1MDA3MjI5ODgwODQsIA0KICAgIDAuMDYxODE1MjQ3NDQyMjgyNSwgMC4wNDAzMzk2NDE4MjA4MDE1LCAwLjA0NjI1MjQ5NzI0NTI0MjksIA0KICAgIDAuMDg3MzU4NjU4NzU4MzI0NCwgMC4wNjQ1NDQzODg2MzA1OSwgMC4wNTUzOTY2MDE0NjU0ODc1LCANCiAgICAwLjA1NzU5NDQ5MTI3OTY2MjcsIDAuMDM5NTMyODU1NTU3ODYyOSwgMC4wNDE1MTE3Njk4NDI3NjQyLCANCiAgICAwLjEzNzkyNjEyNTE4NTMyLCAwLjExNDQwMDU0MzQ0OTI1MSwgMC4wODkwOTc1OTc5MjE5NzcyLCANCiAgICAwLjA0NDk4MTg5MjQ1MjgyMDQsIDAuMDYwNDk3NzQ0OTEyODI4MiwgMC4wNTUwNzM2ODk1NzAyODgsIA0KICAgIDAuMDc4OTM2MjcxOTEzNjI3OSwgMC4wNjM5NTUxMzA0NTk5NDAyLCAwLjAzODIxOTMyMTY5MDU2OTMsIA0KICAgIDAuMDM5MTgwNjgwMDk3MTg1MywgMC4wODkyODMxMjQ5NTczMTExLCAwLjA1MjU1ODQ2MjgxNTU4MzksIA0KICAgIDAuMDQ2MTQ2ODMxOTcyODU4MywgMC4wNTAwNTE5NjYwODIxMTIyLCAwLjExOTM2NDYyNDY5NzAxNSwgDQogICAgMC4wNDg1MzgzNzI5OTEzMTk5LCAwLjA1NjYxOTM2NDMxODg2MywgMC4wNDI2NjgzMjIwNTA1MDg5LCANCiAgICAwLjA3NjMwODQyMDQ4MDEwOTQsIDAuMDQ1MjM5MDU0OTM2MTkzNywgMC4wNDI0OTc5NzcwNTc4MzA3LCANCiAgICAwLjA2NTIyMDY0MDc1MzkwMTUsIDAuMDU4NzY2MTA0MzM1OTk4OSwgMC4xMzEzOTc1ODcyMzIzNzQsIA0KICAgIDAuMDM2NTc3NTUyNTQ1ODY1LCAwLjE0NDUyMzkzNDE2NzM2MywgMC4xMjI3NzcyODMyNzA5MDgsIA0KICAgIDAuMDUwNjUzOTYwMjc3ODI3NywgMC4xMDgyMzA4MTUzMzUwNzksIDAuMDcyNjA4Nzk5Mjk1ODM2MSwgDQogICAgMC4wNjE5Mjc5ODkyNjU2MDI3LCAwLjAzODg2MTEzNDEwNDE1NywgMC4wNDc5NDYwMTY3NTUyMSwgDQogICAgMC4wNjkzNzA2MjIyNjc2OTY2LCAwLjA0MjQ0MjExNzUwMTk2LCAwLjE0NDg0MDQxMjgzMzEzMSwgDQogICAgMC4wNzQ3ODYzMTg5NzQ0MTI2LCAwLjA2NTM5NTgwODQwMDQwMTIsIDAuMDQ2NDkwNjUwMDM0MTMzNywgDQogICAgMC4wNjM0MTM3MzkzMzY4OTg0LCAwLjA2NjgwMzUwMjE4NDg2NTEsIDAuMDU0MTg4MTEwNjQ4NTA0Ng0KICAgICksIFRGUE0gPSBjKDU4My4yNjc5MzAwMDE2MTIsIDEwMzkuOTc0NzE3ODYxMDUsIDI0NS42NjMwMjM5MjUxNDgsIA0KICAgIDExMS41MTY2OTM0NDQ1NzgsIDc2My41NTA3NDQ3MjkzODMsIDc2My41NTA3NDQ3MjkzODMsIDQxNi4zODM5MTk3NjcxNDEsIA0KICAgIDM2Ny4wNzU0NTc2MDY2NzksIDUzOS42NDAxODg1Mjk1ODIsIDQzOS42NjM1NTI2Mzg5NjIsIDI3MjguMzEyNDg4MzYyOCwgDQogICAgNDU0NC4xNzEyMTgyMTExNSwgMzg2LjkyMjUwMDMxOTA3OCwgNTY4Ljc2OTY4MTMwNTg4NiwgNDIxLjM5NjU3NDkyODU0NywgDQogICAgMTE2NC4wNjI3NjE2NTAxNiwgMTI4Ljg0Mjk5NTU2NDkwMywgNjAuNjc2MjkyNTQ5MDIyMywgMzc5LjcyNDg1MTg4MjE5OSwgDQogICAgMTIxNC4zODkwMjYwNTU2NiwgNDAxLjgyMjI0NDMyOTY2LCA1NDQuNjI4NjEwMjY1NjgyLCAyODAuNjg0OTE2MjIwMDQ2LCANCiAgICAxMzIuNzY5MDE4MTA0NzIxLCA2NjIuMjIxNjEwMzExMTAxLCAxMjc5LjE3NDA2MDc5ODk5LCAzODAuNjE2MTMxOTI3NDM0LCANCiAgICAyOTEuODc5NzI1NTU1NjYzLCAyMjYuNzMwMzA2ODIwODYzLCAyMjIuNzIwODI3MTk3MDExLCA3NTEuNTU1MDI0NDA3MzYsIA0KICAgIDE1ODQuNzQwOTE3Mjg0NDIsIDM3NC41NDQ0NjAzNzU1NywgMzEyLjEwMzk1MDY1OTkxMywgMTcxLjc2MDQ3MDIzMDY0NSwgDQogICAgMTQ4LjA2MTA0MTk2OTI2NiwgMzc0LjE1NzI4MjAwNjg1OSwgNzAyMS45NDEwMDgyOTYxOCwgNjk5LjQ0NzQwODI1MjQ4MSwgDQogICAgODg0LjcxODg1NjgxMDY2MSwgMzE3LjkwNzM5MjU2MTE0NCwgMTg2LjQ3MTM2MTk2ODk3MiwgNDM4LjQ3MDgwNDYyMTE2NywgDQogICAgMzY1LjY1NzY1MzU5NDQwOSwgNTk2Ljg5NjI3MTk3MzYwNywgNTk5LjgyNDMyOTk1NjMyMSwgMTA0NC40Mjg3NjkzNTI4LCANCiAgICAyNjM4LjYxNzgzMjg4LCA0NDIuMTA5MzE0MzU4MDMxLCAyNTMuMTAwMzU4NzIyMjY2LCA2MzYuODY0NDc0OTA0MTY1LCANCiAgICA4MzkuMTEzMDAyODk4NDc3LCAzMDMuMjQyNjUzNTAwMTgsIDEzMi40Nzk5MDM1OTc4NSwgNDE3LjM3NTgzOTA0MzMyOSwgDQogICAgNzQ0LjUxOTYyNjI1Mzc0MiwgMjQ2LjIwNjkzNjMwNDM0MywgODUuODQ4MzI3NzQ0NzE4LCA0MzYuNTY3ODgzMjMyNjg3LCANCiAgICAyNjMuMDU5OTQxMDQxOTg2LCAyMzEuMTUzNDAwOTY2Njg3LCAxMTQuNzA0ODEzMzU5MjAyLCA1NDIuMTkzMTc1MTU4ODcxLCANCiAgICA0MTAuNTg3MzU4ODk2MDY4LCAzOTguNDUxOTUwMzM1MzUzLCAzMDguNTA3Nzg3NDMxMjI4LCAyMDYuMjc0ODgyODY3Mjg4LCANCiAgICAyODguNTkzNzA3MDk3MjU4LCA2NjYuNTY3MjgxNDEyNiwgNDgxLjQ2ODIzMDExNzE3OCwgMTQyLjc3MDYzNTUxNzc0NiwgDQogICAgNjg3LjQ0ODkxOTU3MDkwMSwgMTk4LjY1MTE1NzY5ODE1NywgNTE4LjMzMTQwMzEzODM4NywgNDAxLjA2MjE1NTMyOTE5MiwgDQogICAgMjk3LjQ4NzMyNDYxNjg4NSwgMzc4LjYwOTI5OTQ4ODc4MywgNDM1LjkyNzcyOTU2NDMwOCwgODcxLjg1NTQ3Mzk1NTYyMSwgDQogICAgOTIzLjE5Njc3NzcyMDEyLCAxMDU0LjUwMjYwNzIzODMzLCAyMTg5Ljk1NTI1MTUxNTk1LCA0ODguMjgyMzI1MzUzMzY5LCANCiAgICA2MDYuOTYwNDM0MTI1OTY3LCAyMDgwLjY5MTEyMDAwNTc1LCAzOTEuMTU2OTIwNDQzODU2LCA1MzUuOTQyOTU3NjY0NjQsIA0KICAgIDExNzguNzI5OTE1NjQxODcsIDI3NzAuNjY2NTM0MzYwNDUsIDQxMy4yMjk5Mzk3Nzg0NywgNzEyLjkzNTYyMTkxNjU4MSwgDQogICAgMjM4LjgyMjA2ODUwNTcwNCwgODkuOTI0Njk2NzI0MDQ5OSwgNTg5LjIyNjE3MTA5OTUwMywgNjMzLjI0OTQ3MDU3OTc2LCANCiAgICA4MDcuODk2NzQ1NjEwNDE1LCAxNzc4LjgwMTYyMDgyMDUxLCAyMTIuMzI4MDYxOTM4NDU1LCA4My4wOTA2Njc1ODcxODEyLCANCiAgICAxMzk2LjgzMTQzMjg2ODI0LCAxMzYxLjA3Nzg4MDQwMDc5LCAxMzU3LjcwOTI1ODYwMzc3LCAxNTMyLjYwMzcxNTY4NTkyLCANCiAgICAxNzUxLjQ2MTM4NjgwNjM2LCA4MjguMTQ1MTE3ODk0Mzg5LCAxMTE1LjM1NjUyNTc1MTk0LCA5OTUuNjcxNDM3ODE3NDgzLCANCiAgICAxNzUyLjkwODQwODQ4NTcyLCA2MzEuOTg5MzI5NjIxNzEsIDg0MC4wODIwNjk0NjY4MDksIDk2NS45MDQ1MDQyMTM3ODcsIA0KICAgIDk5MTAuODUwOTc4NDYyNjEsIDM4Mi41NjkwMDI5OTkyODksIDgyOC4xNDUwMTk0MDM3MjcsIDE5NC4zOTg1MzI5NzM4MTcsIA0KICAgIDEwMjIuNzkwODQ5MDgxNzEsIDE4MjMuNDk2MTA2MTMyMDcsIDExMTUuMzU2NTI1NzUxOTQsIDcyOC41OTY5MTc1NzMyNzMsIA0KICAgIDE2NDQuNzg0NDM5MDkwODYsIDExOTguNjEwNDgyMDcwODIsIDI3MjguNTMzNzcwMzQ1OTYsIDEzNDA4LjIyNzY0NDA5MTEsIA0KICAgIDIwNi4zNDY5ODU4NjY2MzgsIDc5Ljg3NTIzNTMwNDk1NiwgMjAxLjI2Nzc3Nzk2NTMyNiwgODguMzM2MjE1Mzc5MzEwMywgDQogICAgNDcxLjEzODkwMDczMDg1NCwgMjc2LjgwODMwMDE4MjM1MSwgNDE3LjIwMTkyNjM0NTYwOSwgNzU0Ljc4MTAzOTI4NTkzLCANCiAgICAxMDM3LjgzNjAyMTgwNzY3LCA5MzE1LjA1ODY3MzIxMzk2LCAzNzAuNjgxNDYwMzE0ODY4LCAzNDAuMTQyMzE0NDczOTg4LCANCiAgICAyODIuNDc3MzE1MTU4MDAzLCA2ODcuNDQ4ODE1OTY1NDMxLCA2MjcuMDkxNTc2NTcxMDU1LCA2MjcuMDk0NzU3NDA5MzgNCiAgICApLCBUSUNNUyA9IGMoMTc0LjA2MjQwMDgzOTA0MywgNDAxLjI2ODIwMDkyNjkyOCwgMjAyLjY0NDMyNzY4MDA4MiwgDQogICAgMTA0Mi43OTU2MzQzNTUxMSwgNTM3LjMxOTAwMjY4MTAwNiwgNjExLjk3MjE1NjMxNzk3NSwgMTYwLjE4ODY3NTMwNDkyNiwgDQogICAgMTY3NS40ODg3NjMyODE3OCwgNDYzLjk0NjIxOTgxMTA2MSwgNTE5Ljc4NjM3MTI1NTI4NiwgNjkwLjE2NDQyNzM2MzU4MSwgDQogICAgNDYxLjQ5ODgwMDg2NDI2MSwgMTQ2LjI2NTU5MjI0NDQyMSwgMzc5Ljc1NTUzMjY0NjQ0MiwgMTg1LjY2MjI2OTY3MDQ5MiwgDQogICAgNDE3Ljc2MTA0Njk1NjkyNiwgMTMyLjQ0Mzk4NjgzMTg3NywgMzMxLjUyNzAzMjU3MTE5NiwgNjM5Ljc2ODk4NzAyMzg5NCwgDQogICAgMTQzLjc2NzAxMjM4MDAzOSwgMjEwLjUzNTM5NTU3NjI0NSwgMTA4NS4wNzYyNDU0OTMyNywgNjQyLjEwNDA5NTg1OTU5OSwgDQogICAgMTg4My40OTIxNjUzODc0NywgMzAxLjk3OTcyMjQ4MzA0NCwgMzYxLjg0MTE5MzQyMjAwNCwgMTYzLjQ1NzAyMzQxMDM0NywgDQogICAgMjU2Ljk3OTcyNzEzNTgxNSwgMTQyLjgxMDAxOTc2NjM0NCwgMzI5LjkxNjUzNTY4OTk3NywgNTUwLjQ3MDgxMTk5NDg1LCANCiAgICAyMTguMDQxNjI0NjE1NDQ5LCAxNzUuNTIyNDUwMDU2NDAxLCAzMjEuNDE2MzI1MDU2NDU5LCA4Ny42ODQxNjQ1ODA3MjU5LCANCiAgICA3MDguODAxMDI2ODgzMDI4LCAyNTEuMDIyNTgzNTgwOTg2LCAyOTIuMzY5MTMzOTIwMTgxLCAyMTYuMDU4MDcxOTAwOTUyLCANCiAgICAzNzEuMDgxMTkwOTgwMTg2LCA2MDQuODc1NTg4MDE5MzM3LCA0MjAuNTMwODE0NjQwNjYyLCA2MTAuMTYxMzU0ODU2Nzg5LCANCiAgICA0NTguNjk2ODQxOTQxMDczLCA1ODYuMTMzNTY5MjEyNjQ0LCA3MjkuMzIwMDY0MTU2NDk5LCA0NTguNDY4Njk3MDg0OTUxLCANCiAgICAxNTMuNzYyOTIzNDk4MDk1LCAyNTAuODE0NjY1MjU5MTgxLCA1NzEuMDgzNjI3MzYyNTUxLCA0ODMuODkxODgyMTU1NjkzLCANCiAgICAxMzE5LjY0OTc1MzYzMjE1LCAyODkuMzM0Nzg1NDUzODIzLCAxOTcuNTA4NTU4MTM2NTc2LCAzMTMuMjkxNzI4OTgxNDE4LCANCiAgICAyNzYuMzQzODcyNDE2Njc5LCAyNTkuNjcxNzczNTI1MTIsIDI0MS4wODY3ODA5MzgyNTksIDIyMy44MTQ5Njc5Mjc3NzMsIA0KICAgIDU3Ny4zMzQxOTgyMDM1OTEsIDU3MC44NDg5MDk4NTUwODEsIDQ0NC4yMjIwMDI1NDMzNjUsIDQwOC41OTIzNzU0ODAwODksIA0KICAgIDM5MC4yNDk3NjU5ODMxNDEsIDMwOC40NzQ4MzQ1MDk4OTMsIDE2OC42ODA5MTk0MzMxNTQsIDYyMi41OTQwODgxNDA4MDUsIA0KICAgIDEyNS4zMTM3NzY5NDMyOTcsIDEyOS40MTI3MDg1NjY2MTMsIDI5MC41ODk2OTgzMzEwNDYsIDgxOS42NDIxNDY0ODUxODIsIA0KICAgIDQ3Ni4yOTIwNDg3Mjc5NjQsIDQwMC42MDY1Njc2OTg5MywgMjc2LjI2NDQ1NjI1ODY0OCwgMjUzLjQwMDU3OTQ1MzAwMywgDQogICAgODE1LjIzOTI5NTE0MTcxLCA3MTcuNjUzMzEzNDgxMjg5LCA3MzMuMjk2ODgwMDA1MDQsIDI0Mi45Nzg5OTU4NzEyNjgsIA0KICAgIDQyMS43MjQ5NTE3NjQyMSwgMzI0LjA0MzU4OTMxMzU4NSwgODM4LjA0MDM5NzU3ODc2NywgMzAxLjk1NTk2MTQxNTc1NCwgDQogICAgMzYzLjE5Nzc3OTUzODM0OSwgMTI0MC43Njk3NTkyMDQzLCA2NTguMjE4MzI0MTE1Njc5LCAxMjguOTQ0NzM0NTc4MjE1LCANCiAgICA0NzMuMDU5NDEyNzk2MTc0LCAxMjMuMzI3NDkyMjMyMTM3LCAxNjcuNzEwOTQyMDM2Nzc4LCAxNzEuNTcwMDA1NTA2MjI4LCANCiAgICAyMTEuMTM0MjU2NTc2ODE0LCAxODYuODc0NTA4ODM2MDk4LCA0NzkuNjk3ODkzMjYwNzA4LCAzODIuNTkzNDQ4ODI3NjI4LCANCiAgICAzODkuMTU5NjAwMjYyMDExLCAyNDMuNjQ2MDE3ODI4MTE5LCA1NjkuNjU3MzYyNDk3Njk1LCA2MjcuNDkwNzk1NzA0MjAxLCANCiAgICAyMDIuNzIzMjM5NTk5Nzk0LCA0MTcuMzk2OTMyNTMyNDc5LCAzMDIuOTE0Mjg1MTExNjk4LCA1NzIuOTU0NzgzODg4MDUsIA0KICAgIDM3NS45OTk4ODQwMDE2MDUsIDcwMi4yNDU2MTcxMDYxNDksIDQzMy4xMDUwMjU1ODMwMjIsIDM5MS4zODQ3NzM4NDY2MTUsIA0KICAgIDQxMi41ODMyNDEwMTIwNjIsIDU5Ny42MTY2NDY0MTUzMDYsIDM3My4zNjU4Nzg2ODUzOSwgNzIxLjYzMDc3NDE5OTAxMywgDQogICAgMzkxLjk5MzA5MzI4MDcxNiwgMTU2Ljk4MTQwNDQwMzc1OSwgMTExMy43Njc4MDA4NDE4OCwgNDE3LjAwMjk0ODI3ODEwMywgDQogICAgMTE2NC41MTc4NjUzMTgwNywgMjYxLjY1OTE1MTczNDE2MiwgMjU5LjY1NTQ0MjI1MTQ0MywgNDQwLjEwMDIzNjE4NDk3NSwgDQogICAgMzI3LjA1OTY5NTc4OTM1NywgMTU2Ni45OTI1MDQxMjY5NSwgNjg0LjQ1NjI2NTIwODY1NCwgMjgxLjYxOTM1NzA5MjcxOCwgDQogICAgNTQ4LjQ2Njc5NzYzNDQzNiwgMjY2LjMzMzgzODc3MjgyNCwgMzA1LjkxMTE5NzU2MTk4LCA0NTYuMjc3MjQ4NjA0NjI5LCANCiAgICAxOTIuMjA3MTQwOTkxMTMzLCAyNTEuOTMyODk2MzYyMDM2LCAxOTAuNTg2NzQyMjA5NjMxLCA2NDEuODI1MzAzNDM1ODczLCANCiAgICA0NTkuNzQxOTY1MTI4Mzk0LCAxODUuMjYyMzc3MjIxNDE0LCAzOTguMjIwNjQ0ODkzNjI4LCAxOTEuMzQ3MDk0MzQ0NDU2LCANCiAgICAyNDIuODE5MzIyMzUyMzgsIDUwMC4wNTIyOTk0Mzc5MjQsIDY5MC43ODcxNzQ3NjE3MjgsIDM1NS4zMDU0OTYwNjc0OQ0KICAgICksIFRNUkVHID0gYygwLjA1MDg0ODk0NTY2MzEwMDIsIDAuMDQ5NjEwNjU1OTk0MTU4MiwgMC4wODY1Nzg0NjMyNTE3Mjg5LCANCiAgICAwLjAyNjQxOTE5OTk2ODAwMzIsIDAuMDk5ODYwMDIxNjI4NTMyLCAwLjA2NDE5NjM2NDYxMDc2NDUsIA0KICAgIDAuMDI3OTMwNTA1NjI5OTE3LCAwLjIwMTY0NTg3NTc5OTA3NywgMC4wODY2MjQ3MDY0ODg0ODA2LCANCiAgICAwLjAzODE5NjU2Mjg1MzAyMTgsIDAuMDc4NTQzODM1OTcyNDY5LCAwLjA1NTE0OTgzOTE4OTY5NDcsIA0KICAgIDAuMDQwNjQ2MjIyOTQwOTM4MiwgMC4wNjA0MjQ3MDg0MTc5NzQ1LCAwLjAxNjI5NDIwMjExNDkwNTEsIA0KICAgIDAuMDQ5NTY3NzIzNDExNTczNywgMC4wMzQ4MzIwMDUwOTc1NDI2LCAwLjA3NjM5MzQwMzM1MDU5NTgsIA0KICAgIDAuMDQ2Mzc0Mjk5NDgxNjU1NywgMC4wNjA1NjM2NjI4NDkxNDczLCAwLjA0MzUzMjMxMzg4ODI0MzYsIA0KICAgIDAuMDI5MDI2NzAwNjEyMjI2LCAwLjAyMjQ5MTM2OTk2MzE2NywgMC4wNDg5MzE4NDMzOTA1MDI2LCANCiAgICAwLjA1MzUyNDY5MDU0NzUzNjYsIDAuMDY0NDY4NDkyMjg1NDk4NSwgMC4wNTcwNTE2NTcyNTA5NTA5LCANCiAgICAwLjA0MTY0NTM3Mjg3NTQwNDEsIDAuMDE3MzEzMjg0ODMwMjEzLCAwLjA1MzE5ODU4NjE3MjQ1MDYsIA0KICAgIDAuMDU5OTQ3Mzc4NDQ2MjUzMywgMC4wNjIyNTgwOTgxOTUxODgxLCAwLjA1MzcwMDU3MTExNDkxMjYsIA0KICAgIDAuMDM2NTAyNTgzMjQ4MTk5NSwgMC4wNjE0MDA2NDIxOTE2NzYzLCAwLjA1NzI2NTM0OTg1MDM2MDYsIA0KICAgIDAuMDQ4Mjk4OTcxOTQwNzY2LCAwLjAyNjE4OTY5NjYxODIwNzUsIDAuMDU3Mzg2MTkzMjI0OTQ5MSwgDQogICAgMC4wMjI3NjQ0ODU2MjcxMTYsIDAuMDI2NTAyODM2Nzg2NjM2MywgMC4wMzA5MzAxMzQ2Mjc2NDcyLCANCiAgICAwLjA1NzQ1NjIwMDQ0OTk4MDYsIDAuMDYzMTI3Nzk3MzExNzg5NSwgMC4wNTMzNzczNTY1NDQ4ODExLCANCiAgICAwLjAzNzk3OTM4ODY0Mjk0MjgsIDAuMDQyNTI5NDI5ODI2NDcxNiwgMC4wNjc5Nzg1NDI5NzU0ODczLCANCiAgICAwLjAzNjc3MDM5NjQyMzMyOTUsIDAuMDQxNjA0MTQ3ODcxMzYwOSwgMC4wNjU2NzU0NDEzMDMwODc3LCANCiAgICAwLjA0NDE5MzA0NTA3MzgwMTUsIDAuMDA4NDkwNDQ4OTQzNDQwNzMsIDAuMDU2MjgxODM4NDYxMjY2NSwgDQogICAgMC4wNjM3MDc0OTk0OTM5NjI2LCAwLjA2MjA4MzMyNjc2NjEyNDIsIDAuMDM5NzEyODc0MTM0Mjk2MiwgDQogICAgMC4wNzA5MDc1MTg5MDQwNjcyLCAwLjAxNzQwODMwNDM2NjMwMTIsIDAuMDQ4NjUxNTIzOTY5MTA4OSwgDQogICAgMC4wMjA2NzcyOTM4MTUyMzAyLCAwLjA2Mjk1Mjc3NjA2MTEwNzksIDAuMDY0NDc1NzQ0NDA4MjE3OSwgDQogICAgMC4wNjY2NzM0MTUwOTA0NDI4LCAwLjA1NTIwNjAxODk0NDM0MjUsIDAuMDUxODMwNDE5NTYxOTgyOSwgDQogICAgMC4wMzcwNjUzNTgyMDg2NjczLCAwLjAzNjM2OTc3NDQ1ODcxMjUsIDAuMDQyNTcwMzc2MDkxNTI1MywgDQogICAgMC4wNzE0NTY0NzU4MTAwNiwgMC4wNDIyNTE3OTcxNTkzNjU0LCAwLjA1MjE5NzIwNjQ4NzY1MzMsIA0KICAgIDAuMDU0NTIxNTI2MzU1MDI1OCwgMC4wMzc5OTgxMDc5OTkwNTk1LCAwLjA0MzAwNTIyNDEzNTUzMzYsIA0KICAgIDAuMDE1MzA5MjM4OTg1NTQ3NCwgMC4wMzQ5ODk1Nzc3OTkwNTcyLCAwLjAyODI2NzkwMjQ2NDk5MjIsIA0KICAgIDAuMDM2Mzk2OTU1MDE3ODEyLCAwLjA1MTk3MTQxNTczOTkxNjIsIDAuMDk3ODE5OTc0NzAyNzgxNSwgDQogICAgMC4wMjgwNDYyNjAzMTU3NDEzLCAwLjA4NDgyMjM0OTc2OTE5NDgsIDAuMDQ0NzIxNjMzNDU5Njc4MSwgDQogICAgMC4wNjkyMjg3ODQ1ODY3ODc5LCAwLjAyODE3NTEyMzQ5MzAxMTEsIDAuMDU5MTMwNzI3NzQ4OTM5NCwgDQogICAgMC4wNTc4MTkwOTg4NTQ0MTM4LCAwLjAzMjAxMDQ0MTAyMDQ0NTYsIDAuMDI2MDEyODA5NTY2Nzg3NiwgDQogICAgMC4wMzYxMTIxMzU4MTIwODI2LCAwLjA4ODUyMDQzODI2NzY3OTgsIDAuMDUxNDMyMTEyNzczMDMyOSwgDQogICAgMC4wNjgxMzIyMTIwNTExODc1LCAwLjA2MjIwMjExNzg0MzUxOTMsIDAuMDUyOTY1MDUwNjM5OTMyNywgDQogICAgMC4wMjkwMzcxODU0NTQ0ODM0LCAwLjAyOTU0NzUwNzYwNDQ0NDEsIDAuMDYxMTk0MzE5NjQ3MTY2NywgDQogICAgMC4wNjA0NDU1Nzk5MTY2Mjg3LCAwLjAzNDIxMzUwNjY4ODg2NSwgMC4wODUzMzQ2NTg2NTM4Njg3LCANCiAgICAwLjA1Mjc1Njk0MjYyOTc2NiwgMC4wNDQ4Njk3NjY4ODQ4OTI3LCAwLjA1MjEwNzkwNzkwNjE4MTUsIA0KICAgIDAuMDI0NzE5MDg3NTUwNTcxMywgMC4wNDU3NDk2MTI5NTU1ODc3LCAwLjA0NTg3MDQzMDYxODEwNDgsIA0KICAgIDAuMDYwODM0Mjg2MDE4MTUzMSwgMC4wNDU4Nzk4MDk2ODA5NTU2LCAwLjA2Mjc5Nzk4MzgxODIxMjIsIA0KICAgIDAuMDE5ODc3NzEwMDAzMTY1NCwgMC4wMzc2NTI0MDc2NTU0ODg3LCAwLjA0NzY0ODM1MDIxNjM1NDIsIA0KICAgIDAuMDQ5MTExMTk2NDI5NjM2NCwgMC4wMzQ2OTExNjk4ODAyNjUyLCAwLjAyOTkyOTk2NTE5NjczOTIsIA0KICAgIDAuMDQ3MDA2Mzg0NjI5MzEzNSwgMC4wMzE3NzYxMzM5MTIwODk1LCAwLjA2MTI4OTkxNDE5MDk2MTUsIA0KICAgIDAuMDEzODQxMTE2ODE5MTI4NiwgMC4wODczNzY1Njk4NTM0ODQ3LCAwLjAzMjUxMDM1NjExOTIzNzQsIA0KICAgIDAuMDI5MTk5OTMwNzg3MDgyOSwgMC4wNzE0NDI5MDUzNzcyNDcxLCAwLjAzMDMwMjg4MzE2NDM3NywgDQogICAgMC4wMzE2MjQ4Nzg2NDkwNDI3LCAwLjA1NjAyOTE4OTQ3NTk2NDEsIDAuMDM1MzYyNjUwMDI5MjUyNiwgDQogICAgMC4wMzQxODMwNjUxNTY2MzY0LCAwLjA2MjA4MDY4MTA0NjY5NiwgMC4wMzk4NDE4ODAxMjg0OTM2LCANCiAgICAwLjAyNzM2Mzk0OTg3Nzk3MTQsIDAuMDMzNjc5ODcxNTc3OTU1MiwgMC4wNDg3NTI3NzY0NDcxOTU2LCANCiAgICAwLjA1NzA1MTAyMTA3MzkxNDgsIDAuMDM0MTk1Mjc2MjcwMjQ3MywgMC4wNDM4MTk5NjEwMTgxOTYyLCANCiAgICAwLjA4NjU4OTEyMjk0MjQ2NzgpLCBHSU5JID0gYygwLjU3LCAwLjY3LCAwLjU5LCAwLjU3LCAwLjU1LCANCiAgICAwLjcsIDAuNTMsIDAuNzEsIDAuNTMsIDAuNTIsIDAuMzYsIDAuNTksIDAuNTksIDAuNTIsIDAuNTYsIA0KICAgIDAuNTUsIDAuNTksIDAuNTUsIDAuNTksIDAuNjEsIDAuNiwgMC42OCwgMC42MywgMC44NywgMC41MiwgDQogICAgMC42MSwgMC41MiwgMC41MywgMC42MiwgMC42MywgMC41NywgMC42MywgMC41NywgMC42NCwgMC42MiwgDQogICAgMC41NywgMC42MiwgMC42MywgMC41MywgMC41NSwgMC42NSwgMC41MiwgMC42MSwgMC41OSwgMC41NywgDQogICAgMC42MSwgMC42OCwgMC42MywgMC42MSwgMC40MywgMC43NSwgMC42LCAwLjU0LCAwLjU1LCAwLjU2LCANCiAgICAwLjYxLCAwLjYsIDAuNDksIDAuNiwgMC41MSwgMC41MywgMC41NiwgMC43LCAwLjU3LCAwLjYyLCANCiAgICAwLjU5LCAwLjUzLCAwLjQ3LCAwLjU5LCAwLjY2LCAwLjUsIDAuNiwgMC41LCAwLjU1LCAwLjU2LCANCiAgICAwLjU2LCAwLjQ5LCAwLjU1LCAwLjU4LCAwLjYyLCAwLjQ0LCAwLjY1LCAwLjYsIDAuNjEsIDAuNDYsIA0KICAgIDAuNDgsIDAuNjQsIDAuNTgsIDAuNTcsIDAuNTMsIDAuNCwgMC41OSwgMC42NiwgMC40OCwgMC42MywgDQogICAgMC40NCwgMC42MSwgMC41NSwgMC42NSwgMC40OCwgMC40NywgMC42MywgMC42LCAwLjU1LCAwLjY2LCANCiAgICAwLjU4LCAwLjQ0LCAwLjU4LCAwLjU2LCAwLjQ4LCAwLjQ0LCAwLjU4LCAwLjU3LCAwLjU4LCAwLjUzLCANCiAgICAwLjg1LCAwLjYxLCAwLjYxLCAwLjYyLCAwLjYzLCAwLjQ3LCAwLjc0LCAwLjU1LCAwLjYyLCAwLjc1LCANCiAgICAwLjU5LCAwLjY2LCAwLjU2LCAwLjYsIDAuNTUsIDAuNDcsIDAuNDYsIDAuNTQsIDAuNDUsIDAuNTcsIA0KICAgIDAuNTcsIDAuNDcsIDAuNTUsIDAuNTgpLCBUSEVJTCA9IGMoMC41MiwgMC44MywgMC42LCAwLjU3LCANCiAgICAwLjU1LCAwLjkzLCAwLjUxLCAwLjk2LCAwLjQ5LCAwLjQ2LCAwLjE5LCAwLjYsIDAuNjIsIDAuNDQsIA0KICAgIDAuNTMsIDAuNTEsIDAuNjEsIDAuNDgsIDAuNTcsIDAuNjYsIDAuNTMsIDAuODQsIDAuNzIsIDEuNzcsIA0KICAgIDAuNDMsIDAuNjQsIDAuNDMsIDAuNDcsIDAuNjQsIDAuNzEsIDAuNTcsIDAuNzEsIDAuNDgsIDAuNzEsIA0KICAgIDAuNTgsIDAuNDYsIDAuNjMsIDAuNzUsIDAuNDgsIDAuNTIsIDAuNzQsIDAuNDgsIDAuNjMsIDAuNjEsIA0KICAgIDAuNTUsIDAuNTksIDAuODIsIDAuNywgMC42OCwgMC4zNSwgMS4xLCAwLjYzLCAwLjUxLCAwLjQ2LCANCiAgICAwLjQ5LCAwLjY0LCAwLjY0LCAwLjQsIDAuNTcsIDAuNDIsIDAuNDgsIDAuNTQsIDAuODYsIDAuNTYsIA0KICAgIDAuNjUsIDAuNjEsIDAuNSwgMC40LCAwLjU0LCAwLjY0LCAwLjM5LCAwLjU2LCAwLjQyLCAwLjQ5LCANCiAgICAwLjU4LCAwLjU0LCAwLjQsIDAuNTEsIDAuNTcsIDAuNjMsIDAuMzUsIDAuNzcsIDAuNjMsIDAuNjYsIA0KICAgIDAuMjMsIDAuNDEsIDAuNzEsIDAuNDksIDAuNTMsIDAuNDksIDAuMjUsIDAuNjIsIDAuNzcsIDAuMzksIA0KICAgIDAuNjcsIDAuMzMsIDAuNjcsIDAuNTQsIDAuNjQsIDAuNDEsIDAuMzcsIDAuNjMsIDAuNTksIDAuNTUsIA0KICAgIDAuNzksIDAuNDcsIDAuMzIsIDAuNTgsIDAuNDMsIDAuMzgsIDAuMzksIDAuNiwgMC41MywgMC4zOSwgDQogICAgMC40NywgMS43OCwgMC40OCwgMC42NCwgMC42NSwgMC42MywgMC4zNywgMC45OSwgMC41MiwgMC42OCwgDQogICAgMS4xMywgMC42MiwgMC43OSwgMC41MSwgMC42NSwgMC41NSwgMC4zNywgMC4zMywgMC41LCAwLjM1LCANCiAgICAwLjU0LCAwLjUyLCAwLjM3LCAwLjUzLCAwLjYxKSksIHJvdy5uYW1lcyA9IGMoTkEsIC0xMzlMKSwgY2xhc3MgPSBjKCJ0YmxfZGYiLCANCiJ0YmwiLCAiZGF0YS5mcmFtZSIpKSAgDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KGRhZG9zKQ0KYXR0YWNoKGRhZG9zKQ0KY2xhc3MoZGFkb3MpDQojIGFsZ3VtYXMgdmFyaWF2ZWlzIHZvdSBkaXZpZGlyIHBvciAxMDAwMDAwIHBhcmEgbml2ZWxhciBleHBvcl82IGltcG9yXzYgbXJlZ182IHRmcG1fNiB0aWNtc182IGNyZWRfNg0KYGBgDQoNCkVzdGltYW5kbyBvIG1vZGVsbyBsaW5lYXIgZGUgcmVncmVzc8OjbyBtw7psdGlwbGEgZmF6ZW5kbyBjb25mb3JtZSBhIGV4cHJlc3PDo28gZG8gZW51bmNpYWRvLg0KDQojIFJlc3VsdGFkb3MNCg0KIyMgRXN0aW1hw6fDo28NCg0KRmF6ZW5kbyBhcyByZWdyZXNzb2VzLiBBbGd1bWFzIHZhcmnDoXZlaXMgZm9yYW0gY29uc3RydcOtZGFzIGNvbSB1c28gZGUgbG9nYXJpdG1vcyBlIHBvcnRhbnRvLCBkZXZlLXNlIG9saGFyIGEgZXNwZWNpZmljYcOnw6NvIGRlc3Rhcy4NCg0KYGBge3IgZXN0aW1hY2FvfQ0KIyByZWdyZXNzYW8gbXVsdGlwbGEgZGUgQkFSUk9+TE5ZSV9UXzErU0lORCtTQUdSTytTU0VSVitTUFVCK0grREQrRE9SQw0KIyAgICArSShDUkVEKjEwXi02KStJKEVYUE9SKjEwXi02KStJKElNUE9SKjEwXi02KStJKE1SRUcqMTBeLTYpK0koVEZQTSoxMF4tNikNCiMgICAgK0koVElDTVMqMTBeLTYpK0dJTkkNCiMgdmFyaWF2ZWlzIHRyYW5zZm9ybWFkYXMNCmF0dGFjaChkYWRvcykNCkV4cG9ydGE8LUkoRVhQT1IqMTBeLTYpDQpJbXBvcnRhPC1JKElNUE9SKjEwXi02KQ0KTXJlZ2lvPC0oTVJFRyoxMF4tNikNCkZQTTwtSShURlBNKjEwXi02KQ0KVElDTVNtPC1JKFRJQ01TKjEwXi02KQ0KY3JlZGl0bzwtSShDUkVEKjEwXi02KQ0KbW9kMSA8LSBsbShCQVJST35MTllJX1RfMStTSU5EK1NBR1JPK1NTRVJWK1NQVUIrSCtERCtET1JDK1QNCiAgICAgICAgICAgICArRXhwb3J0YStJbXBvcnRhK01yZWdpbytGUE0rVElDTVNtK2NyZWRpdG8sIA0KICAgICAgICAgICBkYXRhPWRhZG9zKQ0KYGBgDQoNClZhbW9zIHV0aWxpemFyIG8gcGFjb3RlICpzdGFyZ2F6ZXIqIHBvc3Rlcmlvcm1lbnRlIHBhcmEgb3JnYW5pemFyIGFzIHNhw61kYXMgZGUgcmVzdWx0YWRvcy4gU2UgYSBzYcOtZGEgZm9zc2UgYXBlbmFzIHBlbG8gY29tYW5kbyAqc3VtbWFyeSosIHNhaXJpYSBkYSBmb3JtYToNCg0KYGBge3J9DQpzdW1tYXJ5KG1vZDEpDQpgYGANCg0KQWdvcmEsIGNvbSBhIGdlcmHDp8OjbyBkZSBBSUMgZSBCSUM6DQoNCmBgYHtyICwgZWNobz1UUlVFLCBldmFsPVRSVUUsIG1lc3NhZ2U9Riwgd2FybmluZz1GfQ0KKG1vZDEkQUlDIDwtIEFJQyhtb2QxKSkNCihtb2QxJEJJQyA8LSBCSUMobW9kMSkpDQoNCmBgYA0KDQojIyBDb3JyZWxhw6fDo28NCg0KYGBge3J9DQpsaWJyYXJ5KGNvcnJwbG90KQ0KY29yZWwgPC0gY29yKGRhZG9zWyw2OjI0XSkgIyBzb21lbnRlIHZhci4gZXhwbGljYXRpdmFzDQpjb3JycGxvdChjb3JlbCwgbWV0aG9kID0gIm51bWJlciIsDQogICAgICAgICB0eXBlID0gImxvd2VyIiwgbnVtYmVyLmRpZ2l0cyA9IDIpDQpgYGANCg0KIyMgU2VsZcOnw6NvIGRlIG1vZGVsb3MNCg0KIyMjICoqQmFja3dhcmQgU2VsZWN0aW9uKioNCg0KVm91IHNlcGFyYXIgbyBkYXRhc2V0IGNvbSBhcGVuYXMgYXMgdmFyacOhdmVpcyB1dGlsaXphZGFzIGVtIE1vZDEuDQoNCmBgYHtyfQ0KZGFkb3MyPC1jYmluZChkYWRvc1ssYyg0LDY6MTMsMTkpXSxFeHBvcnRhLCBJbXBvcnRhLCBNcmVnaW8sIEZQTSwgVElDTVNtLCANCiAgICBjcmVkaXRvKQ0KIyBNT0RFTE8gQ09NUExFVE8NCm1vZDIgPC0gbG0oQkFSUk8gfiAuLCBkYWRvczIpDQpzdW1tYXJ5KG1vZDIpDQpBSUMobW9kMikNCkJJQyhtb2QyKQ0KYGBgDQoNClZvdSByZXRpcmFyIGFzIHZhcmnDoXZlaXMgdW1hIGEgdW1hLg0KDQoqKlJldGlyYW5kbyBUKioNCg0KUmV0aXJvIG8gVCBlIG8gbW9kZWxvIG1lbGhvcmEuDQoNCmBgYHtyfQ0KbW9kMiA8LSB1cGRhdGUobW9kMiwgLiB+IC4gLSBUKQ0Kc3VtbWFyeShtb2QyKQ0KQUlDKG1vZDIpDQpCSUMobW9kMikNCmBgYA0KDQoqKlJldGlyYXJlaSBFeHBvcnRhLioqDQoNClZlamEgcXVlIGF0dWFsaXpvIHNvYnJlIG8gw7psdGltbyBtb2QyLiBNZWxob3JhIG1haXMgdW0gcG91Y28uDQoNCmBgYHtyfQ0KbW9kMiA8LSB1cGRhdGUobW9kMiwgLiB+IC4gLSBFeHBvcnRhKQ0Kc3VtbWFyeShtb2QyKQ0KQUlDKG1vZDIpDQpCSUMobW9kMikNCmBgYA0KDQoqKlJldGlyYXJlaSBERCoqDQoNClZlamEgcXVlIGF0dWFsaXpvIHNvYnJlIG8gw7psdGltbyBtb2QyLiBNZWxob3JhIG1haXMgdW0gcG91Y28uDQoNCmBgYHtyfQ0KbW9kMiA8LSB1cGRhdGUobW9kMiwgLiB+IC4gLSBERCkNCnN1bW1hcnkobW9kMikNCkFJQyhtb2QyKQ0KQklDKG1vZDIpDQpgYGANCg0KKipSZXRpcmFyZWkgTXJlZ2lvKioNCg0KVmVqYSBxdWUgYXR1YWxpem8gc29icmUgbyDDumx0aW1vIG1vZDIuIE1lbGhvcmEgbWFpcyB1bSBwb3Vjby4NCg0KYGBge3J9DQptb2QyIDwtIHVwZGF0ZShtb2QyLCAuIH4gLiAtIE1yZWdpbykNCnN1bW1hcnkobW9kMikNCkFJQyhtb2QyKQ0KQklDKG1vZDIpDQpgYGANCg0KKipSZXRpcmFyZWkgY3JlZGl0byoqDQoNClZlamEgcXVlIGF0dWFsaXpvIHNvYnJlIG8gw7psdGltbyBtb2QyLiBNZWxob3JhIG1haXMgdW0gcG91Y28uDQoNCmBgYHtyfQ0KbW9kMiA8LSB1cGRhdGUobW9kMiwgLiB+IC4gLSBjcmVkaXRvKQ0Kc3VtbWFyeShtb2QyKQ0KQUlDKG1vZDIpDQpCSUMobW9kMikNCmBgYA0KDQoqKlJldGlyYXJlaSBGUE0qKg0KDQpWZWphIHF1ZSBhdHVhbGl6byBzb2JyZSBvIMO6bHRpbW8gbW9kMi4gTWVsaG9yYSBtYWlzIHVtIHBvdWNvLg0KDQpgYGB7cn0NCm1vZDIgPC0gdXBkYXRlKG1vZDIsIC4gfiAuIC1GUE0pDQpzdW1tYXJ5KG1vZDIpDQpBSUMobW9kMikNCkJJQyhtb2QyKQ0KYGBgDQoNCioqUmV0aXJhcmVpIERPUkMqKg0KDQpWZWphIHF1ZSBhdHVhbGl6byBzb2JyZSBvIMO6bHRpbW8gbW9kMi4gTWVsaG9yYSBtYWlzIHVtIHBvdWNvIHBlbG8gQklDIG1hcyBuw6NvIHBlbG8gQUlDIG5lbSBwZWxvICRSXjIkIGFqdXN0YWRvLiBWb3Ugb3B0YXIgcG9yIG1hbnRlciBvIERPUkMgbm8gbW9kZWxvLg0KDQpgYGB7cn0NCm1vZDIgPC0gdXBkYXRlKG1vZDIsIC4gfiAuIC0gRE9SQykNCnN1bW1hcnkobW9kMikNCkFJQyhtb2QyKQ0KQklDKG1vZDIpDQpgYGANCg0KUG9ydGFudG8sIGEgZXN0aW1hw6fDo28gZmluYWwgZm9pOg0KDQpgYGB7cn0NCmZpbmFsPC1sbShmb3JtdWxhID0gQkFSUk8gfiBMTllJX1RfMSArIFNJTkQgKyBTQUdSTyArIFNTRVJWICsgU1BVQiArIA0KICAgIEggKyBET1JDICsgSW1wb3J0YSArIFRJQ01TbSwgZGF0YSA9IGRhZG9zMikNCnN1bW1hcnkoZmluYWwpDQpmaW5hbCRBSUM8LUFJQyhmaW5hbCkNCmZpbmFsJEJJQzwtQklDKGZpbmFsKQ0KYGBgDQoNCiMjIyBFc2NvbGhhIGRlIE1vZGVsb3MgYmFzZWFkb3MgZW0gY3JpdMOpcmlvcw0KDQpBIGZ1bsOnw6NvIGBsZWFwczo6cmVnc3Vic2V0c2AgZmF6IGEgc2VsZcOnw6NvIGRvcyBtb2RlbG9zIHBvciBidXNjYSBleGF1c3RpdmEgcGFyYSBmcmVudGUgZSBwYXJhIHRyw6FzLCAqc3RlcHdpc2UqLCBvdSByZXBvc2nDp8OjbyBzZXF1ZW5jaWFsLiBPYnNlcnZlIHF1ZSBub3MgcGxvdHMgZGUgQUlDIHBhcmEgY2FkYSBtb2RlbG8sIGRlc2VqYS1zZSB1bSBtb2RlbG8gZGUgbWVub3IgQUlDLiBPIHNsb3QgY29tIGFzIGluZm9ybWHDp8O1ZXMgZGUgcXVhaXMgdmFyacOhdmVpcyBlc3TDo28gZW0gY2FkYSBtb2RlbG8gdGVtIG5vbWUgYHdoaWNoYCBkZW50cm8gZG8gYHN1bW1hcnlgIGRvIG9iamV0byBkZSBgcmVnc3Vic2V0c2AsIG5lc3RlIGNhc28gY2hhbWFkbyBkZSAiYiIgKG8gb2JqZXRvIHJlc3VsdGFudGUgZG8gYHN1bW1hcnlgIGZvaSBjaGFtYWRvIGRlIGByc2AgZSBkZW50cm8gZGVsZSBlc3RhcsOhIHRhbWLDqW0gbyByZXN1bHRhZG8gZG8gQklDIGRlIGNhZGEgbW9kZWxvKS4NCg0KYGBge3J9DQpyZXF1aXJlKGxlYXBzKQ0KYiA8LSByZWdzdWJzZXRzKEJBUlJPfi4sZGF0YT1kYWRvczIsbWV0aG9kPWMoImV4aGF1c3RpdmUiKSkNCnJzIDwtIHN1bW1hcnkoYikNCnJzJHdoaWNoDQojIGEgZXNjb2xoYSDDqSBjb20gbyBCSUMNCg0KcnMkYmljDQojIHBsb3QgZG8gQklDDQpwbG90KHJzJGJpY35JKDE6OCksIHlsYWI9IkJJQyIsIHhsYWI9Ik7Dum1lcm8gZGUgUHJlZGl0b3JlcyIpDQoNCnBsb3QoMjo5LHJzJGFkanIyLHhsYWI9Ik5vLiBkZSBQYXLDom1ldHJvcyIseWxhYj0iUjIgYWp1c3RhZG8iKQ0Kd2hpY2gubWF4KHJzJGFkanIyKQ0KcGxvdCgyOjkscnMkY3AseGxhYj0iTm8uIGRlIFBhcsOibWV0cm9zIix5bGFiPSJFc3RhdMOtc3RpY2EgQ3AiKQ0KI2FibGluZSgwLDEpDQoNCmBgYA0KTyBtZWxob3IgcmVzdWx0YWRvIGluY2x1aTogTE5ZSV9UXzEsU0lORCxTQUdSTyxTU0VSVixTUFVCLEgsSW1wb3J0YSxUSUNNU20uDQpPdSBzZWphLCANCg0KYGBge3J9DQpmaW5hbDI8LWxtKGZvcm11bGEgPSBCQVJSTyB+IExOWUlfVF8xICsgU0lORCArIFNBR1JPICsgU1NFUlYgKyBTUFVCICsgDQogICAgSCArIEltcG9ydGEgKyBUSUNNU20sIGRhdGEgPSBkYWRvczIpDQpzdW1tYXJ5KGZpbmFsMikNCmZpbmFsMiRBSUM8LUFJQyhmaW5hbDIpDQpmaW5hbDIkQklDPC1CSUMoZmluYWwyKQ0KYGBgDQoNCiMjIyBTdGVwd2lzZQ0KDQpPIFN0ZXB3aXNlIFJlZ3Jlc3Npb24gw6kgdW1hIGNvbWJpbmHDp8OjbyBkZSBlbGltaW5hw6fDo28gYmFja3dhcmQgKHBhcmEgdHLDoXMpIGUgc2VsZcOnw6NvIGZvcndhcmQgKHBhcmEgZnJlbnRlIC0gaW5jbHVzw6NvKS4gw4kgYSBzaXR1YcOnw6NvIGVtIHF1ZSB2YXJpw6F2ZWlzIHPDo28gYWRpY2lvbmFkYXMgZSByZW1vdmlkYXMgbm8gcHJvY2Vzc28gZSBhIGNhZGEgZXN0w6FnaW8gZXhpc3RlbSB2YXJpYcOnw7VlcyBkaXZlcnNhcyBkZSBjb21vIHByb2NlZGVyLiBPIHVzdWFsIMOpIG1pbmltaXphciBBSUMgb3UgQklDLiBBIGZ1bsOnw6NvIHNlcsOhIGBzdGVwYCBkZSB1bSBtb2RlbG8gZGUgcmVncmVzc8OjbywgZGVudHJvIGRvIHBhY290ZSBgc3RhdHNgIHF1ZSBqw6EgdmVtIG5vIFIgYsOhc2ljby4gQSBmdW7Dp8OjbyBzdGVwIHJldG9ybmFyw6Egb3MgdsOhcmlvcyBtb2RlbG9zIGVzdGltYWRvcyBlIHJlc3BlY3Rpdm9zIEFJQyBhdMOpIG90aW1pemFyLg0KDQpgYGB7cn0NCmxtb2QgPC0gbG0oQkFSUk8gfiAuLCBkYXRhID0gZGFkb3MyKQ0Kc3RlcChsbW9kKQ0KYGBgDQoNCk8gbWVsaG9yIG1vZGVsbyBmb2kNCg0KYGBge3J9DQpmaW5hbDM8LWxtKEJBUlJPIH4gTE5ZSV9UXzEgKyBTSU5EICsgU0FHUk8gKyBTU0VSViArIFNQVUIgKyBIICsgRE9SQyArIEltcG9ydGEgKw0KICAgICAgICAgICAgIFRJQ01TbSwgZGF0YT1kYWRvczIpDQpzdW1tYXJ5KGZpbmFsMykNCmZpbmFsMyRBSUM8LUFJQyhmaW5hbDMpDQpmaW5hbDMkQklDPC1CSUMoZmluYWwzKQ0KYGBgDQoNClBlbG8gQUlDLCBlc3RlIGZvaSBtZWxob3IsIG1hcyBuw6NvIHBlbG8gQklDLg0KDQpDb2xvY2FyZWkgdG9kb3MgbGFkbyBhIGxhZG8gY29tIG8gc3RhcmdhemVyLg0KDQpgYGB7cn0NCmxpYnJhcnkoc3RhcmdhemVyKQ0Kc3RhcmdhemVyKGZpbmFsLGZpbmFsMixmaW5hbDMsIA0KICAgICAgICAgIHRpdGxlID0gIlTDrXR1bG86IFJlc3VsdGFkb3MgZGEgU2VsZcOnw6NvIiwgDQogICAgICAgICAgYWxpZ24gPSBUUlVFLCB0eXBlID0gInRleHQiLCANCiAgICAgICAgICBzdHlsZSA9ICJhbGwiLCANCiAgICAgICAgICBrZWVwLnN0YXQgPSBjKCJBSUMiLCAiQklDIiwgInJzcSIsICJhZGoucnNxIiwgIm4iKSkNCmBgYA0KDQpPbGhhbmRvIGEgdGFiZWxhLCBvIHJlc3VsdGFkbyBkbyBBSUMgaW5kaWNhIHBlbG9zIG1vZGVsb3MgZmluYWwgZSBmaW5hbDMuIFBlbG8gQklDLCBzZXJpYSBvIGZpbmFsMiwgbWFzIHF1ZSB0ZXZlIFIyIG1lbm9yIHF1ZSBvcyBkZW1haXMuICAgDQoNCiMjIFRlc3RlIGRlIE11bHRpY29saW5lYXJpZGFkZSAodmlmKQ0KDQpGYXJlaSBvIHRlc3RlIG5vIG1vZGVsbyBmaW5hbDMsIHNhw61kbyBkbyBzdGVwd2lzZS4gTsOjbyB0ZW1vcyBtdWx0aWNvbGluZWFyaWRhZGUgcHJlb2N1cGFudGUuDQoNCmBgYHtyfQ0KbGlicmFyeShjYXIpDQpyZWcxLnZpZjwtdmlmKGZpbmFsMykNCnJlZzEudmlmDQpgYGANCg0KDQoNCiMjIEhldGVyb2NlZGFzdGljaWRhZGUNCg0KIyMjIFRlc3RlIGRlIFdoaXRlIG5vIG1vZGVsbyAxDQoNCmBgYHtyfQ0KIyBmaW5hbDM6IEJBUlJPIH4gTE5ZSV9UXzEgKyBTSU5EICsgU0FHUk8gKyBTU0VSViArIFNQVUIgKyBIICsgRE9SQyArIA0KIyAgICAgICAgICAgICAgICBJbXBvcnRhICsgVElDTVNtLCBkYXRhPWRhZG9zMikNCiN0ZXN0ZSBkZSBXaGl0ZSBwYXJhIGhldGVyb2NlZGFzdGljaWRhZGUsIHNlbSB0ZXJtb3MgY3J1emFkb3MgcG9yIGNhdXNhIGRvIGdyYXUgZGUgbGliZXJkYWRlIGRvIG1vZGVsbyAobj03OG9icykNCg0KbSA8LSBmaW5hbDMNCmRhdGEgPC0gZGFkb3MNCiNyb3RpbmEgZG8gdGVzdGUgY29tIGJhc2UgZW0gbSBlIGRhdGENCnUyIDwtIG0kcmVzaWR1YWxzXjINCg0KcmVnLmF1eGlsaWFyPC1sbSh1MiB+IExOWUlfVF8xK1NJTkQrU0FHUk8rU1NFUlYrU1BVQitIK0RPUkMrSW1wb3J0YSArIFRJQ01TbSsNCiAgIEkoTE5ZSV9UXzFeMikrSShTSU5EXjIpK0koU0FHUk9eMikrDQogICBJKFNTRVJWXjIpK0koU1BVQl4yKStJKEheMikrSShET1JDXjIpKw0KICAgSW1wb3J0YV4yK1RJQ01TbV4yLCBkYXRhPWRhZG9zMikgIA0Kc3VtbWFyeShyZWcuYXV4aWxpYXIpDQpSdTI8LXN1bW1hcnkocmVnLmF1eGlsaWFyKSRyLnNxdWFyZWQNCkxNPC1ucm93KGRhdGEpKlJ1Mg0KI29idGVuZG8gbyBudW1lcm8gZGUgcmVncmVzc29yZXMgbWVub3MgbyBpbnRlcmNlcHRvDQprIDwtIGxlbmd0aChjb2VmZmljaWVudHMocmVnLmF1eGlsaWFyKSktMQ0Kaw0KcC52YWx1ZSA8LSAxLXBjaGlzcShMTSwgaykgIyBPIFRFU1RFIFRFTSBrIFRFUk1PUyBSRUdSRVNTT1JFUyBFTSByZWcuYXV4aWxpYXINCiNjKCJMTSIsInAudmFsdWUiKQ0KIydSZXN1bHRhZG8gZG8gdGVzdGUgZGUgV2hpdGUgc2VtIHRlcm1vcyBjcnV6YWRvcw0KYyhMTT1MTSwgcC52YWx1ZT1wLnZhbHVlKQ0KYGBgDQoNCk91IHBlbG8gYGJwdGVzdGA6DQoNCmBgYHtyfQ0KYnB0ZXN0KGZpbmFsMyx+IExOWUlfVF8xICsgU0lORCArIFNBR1JPICsgU1NFUlYgKyBTUFVCICsgSCArIA0KICAgIERPUkMgKyBJbXBvcnRhICsgVElDTVNtICsgSShMTllJX1RfMV4yKSArIEkoU0lORF4yKSArIEkoU0FHUk9eMikgKyANCiAgICBJKFNTRVJWXjIpICsgSShTUFVCXjIpICsgSShIXjIpICsgSShET1JDXjIpICsgSW1wb3J0YV4yICsgDQogICAgVElDTVNtXjIsIGRhdGEgPSBkYWRvczIpDQpgYGANCg0KUHJlY2lzYSBjb3JyaWdpciBwYXJhIHByZXNlbmNhIGRlIGhldGVyb3NjZWRhc3RpY2lkYWRlLg0KDQojIyMgQ29ycmXDp8OjbyBkZSBWYXItY292IGNvbmZvcm1lIFdoaXRlDQoNCmBgYHtyfQ0KI2xpYnJhcnkoY2FyKSANCiNwb3NzaWJpbGlkYWRlczogaGNjbShyZWdyZXNzYW8xLHR5cGU9YygiaGMwIiwiaGMxIiwiaGMyIiwiaGMzIiwiaGM0IikpDQp2Y292LndoaXRlMDwtaGNjbShmaW5hbDMsdHlwZT1jKCJoYzEiKSkNCiMNCmNvZWZ0ZXN0KGZpbmFsMyx2Y292LndoaXRlMCkNCmBgYA0KDQojIyBSZXN1bHRhZG8gZG8gc3RhcmdhemVyIChjb20gZSBzZW0gY29ycmXDp8OjbyBkZSBXaGl0ZSkNCg0KYGBge3J9DQpjb3YgPC0gdmNvdi53aGl0ZTANCnJvYnVzdC5zZSA8LSBzcXJ0KGRpYWcoY292KSkNCg0Kc3RhcmdhemVyKGZpbmFsMywgZmluYWwzICwNCiAgICAgICAgICBzZT1saXN0KE5VTEwscm9idXN0LnNlKSwNCiAgICAgICAgICBjb2x1bW4ubGFiZWxzPWMoIk1RTy1maW5hbDMiLCJyb2J1c3RvIiksIA0KICAgICAgICAgIHRpdGxlPSJUw610dWxvOiBSZXN1bHRhZG8gZGEgUmVncmVzc8OjbyIsDQogICAgICAgICAgYWxpZ249VFJVRSwNCiAgICAgICAgICB0eXBlID0gInRleHQiLCBzdHlsZSA9ICJhbGwiLA0KICAgICAgICAgIGtlZXAuc3RhdD1jKCJhaWMiLCJiaWMiLCJyc3EiLCAiYWRqLnJzcSIsIm4iKSkNCmBgYA0KDQojIyBBdXRvY29ycmVsYcOnw6NvIGRvcyByZXPDrWR1b3MNCg0KYGBge3J9DQpsaWJyYXJ5KGNhcik7IGxpYnJhcnkobG10ZXN0KTtsaWJyYXJ5KHNhbmR3aWNoKQ0KDQpkdy5tb2QyPC1kd3Rlc3QoZmluYWwzKQ0KZHcubW9kMg0KYGBgDQoNCkZpeiB1bWEgcm90aW5hIHBhcmEgcm9kYXIgdsOhcmlvcyBCR3Rlc3QgYXTDqSBvcmRlbSAxMi4NCg0KYGBge3J9DQojIHBhZHJhbyBkbyB0ZXN0ZSBkZSBCRywgY29tIGRpc3RyaWJ1acOnw6NvIHF1aS1xdWFkcmFkbw0KYmdvcmRlciA9IDE6MTIgICMgZGVmaW5pbmRvIGF0w6kgYSBtw6F4aW1hIG9yZGVtIGRvIGJndGVzdA0KZD1OVUxMDQpmb3IgKHAgaW4gYmdvcmRlcikgew0KICBiZ3Rlc3QuY2hpPC1iZ3Rlc3QoZmluYWwzLA0KICAgICAgICAgICAgICAgICAgICAgb3JkZXIgPSBwLHR5cGU9YygiQ2hpc3EiKSwgZGF0YSA9IGRhZG9zKQ0KICBwcmludChiZ3Rlc3QuY2hpKSANCiAgZCA9IHJiaW5kKGQsIA0KICAgICAgICAgICAgICAgICBkYXRhLmZyYW1lKGJndGVzdC5jaGkkc3RhdGlzdGljLGJndGVzdC5jaGkkcC52YWx1ZSkpDQogIH0NCmQNCmBgYA0KDQpOw6NvIGNvbmNsdWl1IHBvciBhdXRvY29ycmVsYcOnw6NvIHJlc2lkdWFsIQ0KDQojIyBUZXN0ZSBkZSBKYXJxdWUtQmVyYSBwYXJhIG5vcm1hbGlkYWRlIA0KDQpgYGB7cn0NCnUuaGF0PC1yZXNpZChmaW5hbDMpDQpsaWJyYXJ5KHRzZXJpZXMpDQpKQi5tb2QyPC1qYXJxdWUuYmVyYS50ZXN0KHUuaGF0KQ0KSkIubW9kMg0KYGBgDQoNCiMjIFRlc3RlIFJFU0VUIGRlIFJhbXNleSBjb20gcG90ZW5jaWFzIGRlIDIgZSAzDQoNCmBgYHtyfQ0KVGVzdGVSRVNFVC5wb3dlcjwtbG10ZXN0OjpyZXNldHRlc3QoZmluYWwzLCBwb3dlciA9IDI6MykNClRlc3RlUkVTRVQucG93ZXINCg0KYGBgDQoNCiMjIEludmVzdGlnYcOnw6NvIGRlIG91dGxpZXJzIC0gdGVzdGUgZGUgQm9uZmVycm9uaSBwYXJhIG91dGxpZXIgKG1vZGVsbyAyKQ0KDQpgYGB7cn0NCm91dGxpZXJUZXN0KGZpbmFsMykNCnFxUGxvdChmaW5hbDMpDQp2aWYoZmluYWwzKQ0KYGBgDQoNCk8gb3V0bGllciA1OCDDqSBvIG11bmljw61waW8gZGUgSnVydWVuYS4NCg0KIyBSZWZlcsOqbmNpYXMgeyNSZWZlcsOqbmNpYXMgLnVubnVtYmVyZWR9DQoNCk1BUlFVRVpJTiwgV2lsbGlhbSBSaWNhcmRvLiBPIEZ1bmRvIGRlIFBhcnRpY2lwYcOnw6NvIGRvcyBNdW5pY8OtcGlvcyBlIHN1YSBjb250cmlidWnDp8OjbyBwYXJhIGEgcmVkdcOnw6NvIGRhIGRlc2lndWFsZGFkZSBlY29uw7RtaWNhIGVtIE1hdG8gR3Jvc3NvLiBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBNYXRvIEdyb3NzbywgRmFjdWxkYWRlIGRlIEVjb25vbWlhLCBQcm9ncmFtYSBkZSBQw7NzLUdyYWR1YcOnw6NvIGVtIEFncm9uZWfDs2NpbyBlIERlc2Vudm9sdmltZW50byBSZWdpb25hbC4gVUZNVDogQ3VpYWLDoS1NVCwgMjAxNC4gRGlzc2VydGHDp8OjbyAoTWVzdHJhZG8pLiBEaXNwb27DrXZlbCBlbTogPGh0dHBzOi8vd3d3LnVmbXQuYnIvYWRyL2FycXVpdm9zLzZiOTNmOTgxNWNmYWQyNzVmYjA1ZjM1MDJkZWZmZGE2LnBkZj4uDQo=