library('rvest')
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.5 v dplyr 1.0.7
## v tidyr 1.1.4 v stringr 1.4.0
## v readr 2.0.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x readr::guess_encoding() masks rvest::guess_encoding()
## x dplyr::lag() masks stats::lag()
library(dplyr)
url <- ('https://www.imdb.com/search/title/?count=100&release_date=2016,2016&title_type=feature')
webpage <- read_html(url)
#Using CSS selectors to scrape the rankings section
rank_data_html <- html_nodes(webpage,'.text-primary')
#Converting the ranking data to text
rank_data <- html_text(rank_data_html)
#Let's have a look at the rankings
head(rank_data)
## [1] "1." "2." "3." "4." "5." "6."
#Data-Preprocessing: Converting rankings to numerical
rank_data<-as.numeric(rank_data)
#Let's have another look at the rankings
head(rank_data)
## [1] 1 2 3 4 5 6
#Using CSS selectors to scrape the title section
title_data_html <- html_nodes(webpage,'.lister-item-header a')
#Converting the title data to text
title_data <- html_text(title_data_html)
#Let's have a look at the title
head(title_data)
## [1] "Arrival" "Ghostbusters: Answer the Call"
## [3] "Train to Busan" "Suicide Squad"
## [5] "Hacksaw Ridge" "Hush"
#Using CSS selectors to scrape the description section
description_data_html <- html_nodes(webpage,'.ratings-bar+ .text-muted')
#Converting the description data to text
description_data <- html_text(description_data_html)
#Let's have a look at the description data
head(description_data)
## [1] "\nA linguist works with the military to communicate with alien lifeforms after twelve mysterious spacecraft appear around the world."
## [2] "\nFollowing a ghost invasion of Manhattan, paranormal enthusiasts Erin Gilbert and Abby Yates, nuclear engineer Jillian Holtzmann, and subway worker Patty Tolan band together to stop the otherworldly threat."
## [3] "\nWhile a zombie virus breaks out in South Korea, passengers struggle to survive on the train from Seoul to Busan."
## [4] "\nA secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."
## [5] "\nWorld War II American Army Medic Desmond T. Doss, who served during the Battle of Okinawa, refuses to kill people and becomes the first man in American history to receive the Medal of Honor without firing a shot."
## [6] "\nA deaf and mute writer who retreated into the woods to live a solitary life must fight for her life in silence when a masked killer appears at her window."
#Data-Preprocessing: removing '\n'
description_data<-gsub("\n","",description_data)
#Let's have another look at the description data
head(description_data)
## [1] "A linguist works with the military to communicate with alien lifeforms after twelve mysterious spacecraft appear around the world."
## [2] "Following a ghost invasion of Manhattan, paranormal enthusiasts Erin Gilbert and Abby Yates, nuclear engineer Jillian Holtzmann, and subway worker Patty Tolan band together to stop the otherworldly threat."
## [3] "While a zombie virus breaks out in South Korea, passengers struggle to survive on the train from Seoul to Busan."
## [4] "A secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."
## [5] "World War II American Army Medic Desmond T. Doss, who served during the Battle of Okinawa, refuses to kill people and becomes the first man in American history to receive the Medal of Honor without firing a shot."
## [6] "A deaf and mute writer who retreated into the woods to live a solitary life must fight for her life in silence when a masked killer appears at her window."
#Using CSS selectors to scrape the Movie runtime section
runtime_data_html <- html_nodes(webpage,'.text-muted .runtime')
#Converting the runtime data to text
runtime_data <- html_text(runtime_data_html)
#Let's have a look at the runtime
head(runtime_data)
## [1] "116 min" "117 min" "118 min" "123 min" "139 min" "82 min"
#Data-Preprocessing: removing mins and converting it to numerical
runtime_data<-gsub(" min","",runtime_data)
runtime_data<-as.numeric(runtime_data)
#Let's have another look at the runtime data
head(runtime_data)
## [1] 116 117 118 123 139 82
#Using CSS selectors to scrape the Movie genre section
genre_data_html <- html_nodes(webpage,'.genre')
#Converting the genre data to text
genre_data <- html_text(genre_data_html)
#Let's have a look at the runtime
head(genre_data)
## [1] "\nDrama, Sci-Fi "
## [2] "\nAction, Comedy, Fantasy "
## [3] "\nAction, Horror, Thriller "
## [4] "\nAction, Adventure, Fantasy "
## [5] "\nBiography, Drama, History "
## [6] "\nHorror, Thriller "
#Data-Preprocessing: removing \n
genre_data<-gsub("\n","",genre_data)
#Data-Preprocessing: removing excess spaces
genre_data<-gsub(" ","",genre_data)
#taking only the first genre of each movie
genre_data<-gsub(",.*","",genre_data)
#Convering each genre from text to factor
genre_data<-as.factor(genre_data)
#Let's have another look at the genre data
head(genre_data)
## [1] Drama Action Action Action Biography Horror
## 9 Levels: Action Adventure Animation Biography Comedy Crime Drama ... Mystery
#Using CSS selectors to scrape the IMDB rating section
rating_data_html <- html_nodes(webpage,'.ratings-imdb-rating strong')
#Converting the ratings data to text
rating_data <- html_text(rating_data_html)
#Let's have a look at the ratings
head(rating_data)
## [1] "7.9" "6.5" "7.6" "5.9" "8.1" "6.6"
#Data-Preprocessing: converting ratings to numerical
rating_data<-as.numeric(rating_data)
#Let's have another look at the ratings data
head(rating_data)
## [1] 7.9 6.5 7.6 5.9 8.1 6.6
#Using CSS selectors to scrape the votes section
votes_data_html <- html_nodes(webpage,'.sort-num_votes-visible span:nth-child(2)')
#Converting the votes data to text
votes_data <- html_text(votes_data_html)
#Let's have a look at the votes data
head(votes_data)
## [1] "642,216" "214,391" "193,077" "654,847" "472,240" "119,243"
#Data-Preprocessing: removing commas
votes_data<-gsub(",","",votes_data)
#Data-Preprocessing: converting votes to numerical
votes_data<-as.numeric(votes_data)
#Let's have another look at the votes data
head(votes_data)
## [1] 642216 214391 193077 654847 472240 119243
#Using CSS selectors to scrape the directors section
directors_data_html <- html_nodes(webpage,'.text-muted+ p a:nth-child(1)')
#Converting the directors data to text
directors_data <- html_text(directors_data_html)
#Let's have a look at the directors data
head(directors_data)
## [1] "Denis Villeneuve" "Paul Feig" "Sang-ho Yeon" "David Ayer"
## [5] "Mel Gibson" "Mike Flanagan"
#Data-Preprocessing: converting directors data into factors
directors_data<-as.factor(directors_data)
#Using CSS selectors to scrape the actors section
actors_data_html <- html_nodes(webpage,'.lister-item-content .ghost+ a')
#Converting the gross actors data to text
actors_data <- html_text(actors_data_html)
#Let's have a look at the actors data
head(actors_data)
## [1] "Amy Adams" "Melissa McCarthy" "Gong Yoo"
## [4] "Will Smith" "Andrew Garfield" "John Gallagher Jr."
#Data-Preprocessing: converting directors data into factors
directors_data<-as.factor(directors_data)
#Using CSS selectors to scrape the actors section
actors_data_html <- html_nodes(webpage,'.lister-item-content .ghost+ a')
#Converting the gross actors data to text
actors_data <- html_text(actors_data_html)
#Let's have a look at the actors data
head(actors_data)
## [1] "Amy Adams" "Melissa McCarthy" "Gong Yoo"
## [4] "Will Smith" "Andrew Garfield" "John Gallagher Jr."
#Data-Preprocessing: converting actors data into factors
actors_data<-as.factor(actors_data)
#Using CSS selectors to scrape the metascore section
metascore_data_html <- html_nodes(webpage,'.metascore')
#Converting the runtime data to text
metascore_data <- html_text(metascore_data_html)
#Let's have a look at the metascore
head(metascore_data)
## [1] "81 " "60 " "72 " "40 " "71 "
## [6] "67 "
#Data-Preprocessing: removing extra space in metascore
metascore_data<-gsub(" ","",metascore_data)
#Lets check the length of metascore data
length(metascore_data)
## [1] 96
for (i in c(39,73,80,89)){
a<-metascore_data[1:(i-1)]
b<-metascore_data[i:length(metascore_data)]
metascore_data<-append(a,list("NA"))
metascore_data<-append(metascore_data,b)
}
#Data-Preprocessing: converting metascore to numerical
metascore_data<-as.numeric(metascore_data)
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
#Let's have another look at length of the metascore data
length(metascore_data)
## [1] 100
#Let's look at summary statistics
summary(metascore_data)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 18.00 48.75 63.50 61.02 74.25 99.00 4
#Using CSS selectors to scrape the gross revenue section
gross_data_html <- html_nodes(webpage,'.ghost~ .text-muted+ span')
#Converting the gross revenue data to text
gross_data <- html_text(gross_data_html)
#Let's have a look at the votes data
head(gross_data)
## [1] "$100.55M" "$128.34M" "$2.13M" "$325.10M" "$67.21M" "$89.22M"
Reformatting gross revenue
#Data-Preprocessing: removing '$' and 'M' signs
gross_data<-gsub("M","",gross_data)
gross_data<-substring(gross_data,2,6)
#Let's check the length of gross data
length(gross_data)
## [1] 89
#Filling missing entries with NA
for (i in c(17,39,49,52,57,64,66,73,76,77,80,87,88,89)){
a<-gross_data[1:(i-1)]
b<-gross_data[i:length(gross_data)]
gross_data<-append(a,list("NA"))
gross_data<-append(gross_data,b)
}
#Data-Preprocessing: converting gross to numerical
gross_data<-as.numeric(gross_data)
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
#Let's have another look at the length of gross data
length(gross_data)
## [1] 103
summary(gross_data)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.15 14.43 52.85 87.35 102.40 532.10 14
## Find metascore data with missing values and replace with NAs (this is an automated method)
ratings_bar_data <- html_nodes(webpage,'.ratings-bar') %>%
# scrape the ratings bar and convert to text
html_text2()
head(ratings_bar_data)
## [1] "7.9\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.9/10 X \n81 Metascore"
## [2] "6.5\nRate this\n 1 2 3 4 5 6 7 8 9 10 6.5/10 X \n60 Metascore"
## [3] "7.6\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.6/10 X \n72 Metascore"
## [4] "5.9\nRate this\n 1 2 3 4 5 6 7 8 9 10 5.9/10 X \n40 Metascore"
## [5] "8.1\nRate this\n 1 2 3 4 5 6 7 8 9 10 8.1/10 X \n71 Metascore"
## [6] "6.6\nRate this\n 1 2 3 4 5 6 7 8 9 10 6.6/10 X \n67 Metascore"
metascore_data <- str_match(ratings_bar_data, "\\d{2} Metascore") %>%
# extract Metascore
str_match("\\d{2}") %>%
as.numeric() # convert to number
length(metascore_data)
## [1] 100
metascore_data
## [1] 81 60 72 40 71 67 71 67 62 65 81 65 72 81 57 75 94 48 84 65 52 44 54 51 79
## [26] 66 70 72 51 81 78 65 82 NA 59 76 41 99 25 74 32 48 96 58 NA 57 51 88 68 68
## [51] 62 65 49 35 NA 58 45 42 74 35 23 69 44 79 18 42 42 60 78 23 81 59 77 46 68
## [76] 58 66 66 78 52 42 36 49 45 55 77 62 70 76 28 79 77 55 90 32 NA 72 58 51 47
# scrape the votes bar and convert to text
votes_bar_data <- html_nodes(webpage,'.sort-num_votes-visible') %>%
html_text2()
head(votes_bar_data)
## [1] "Votes: 642,216 | Gross: $100.55M" "Votes: 214,391 | Gross: $128.34M"
## [3] "Votes: 193,077 | Gross: $2.13M" "Votes: 654,847 | Gross: $325.10M"
## [5] "Votes: 472,240 | Gross: $67.21M" "Votes: 119,243"
gross_data <- str_match(votes_bar_data, "\\$.+$") # extract the gross earnings
gross_data <- gsub("M","",gross_data) # clean data: remove 'M' sign
gross_data <- substring(gross_data,2,6) %>% # clean data: remove '$' sign
as.numeric()
length(gross_data)
## [1] 100
#Combining all the lists to form a data frame
movies_df<-data.frame(Rank = rank_data, Title = title_data,
Description = description_data, Runtime = runtime_data,
Genre = genre_data, Rating = rating_data,
Metascore = metascore_data, Votes = votes_data,
Gross_Earning_in_Mil = gross_data,
Director = directors_data, Actor = actors_data)
#Structure of the data frame
str(movies_df)
## 'data.frame': 100 obs. of 11 variables:
## $ Rank : num 1 2 3 4 5 6 7 8 9 10 ...
## $ Title : chr "Arrival" "Ghostbusters: Answer the Call" "Train to Busan" "Suicide Squad" ...
## $ Description : chr "A linguist works with the military to communicate with alien lifeforms after twelve mysterious spacecraft appea"| __truncated__ "Following a ghost invasion of Manhattan, paranormal enthusiasts Erin Gilbert and Abby Yates, nuclear engineer J"| __truncated__ "While a zombie virus breaks out in South Korea, passengers struggle to survive on the train from Seoul to Busan." "A secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive "| __truncated__ ...
## $ Runtime : num 116 117 118 123 139 82 88 116 117 134 ...
## $ Genre : Factor w/ 9 levels "Action","Adventure",..: 7 1 1 1 4 8 6 7 8 8 ...
## $ Rating : num 7.9 6.5 7.6 5.9 8.1 6.6 7.1 7.5 7.3 7.3 ...
## $ Metascore : num 81 60 72 40 71 67 71 67 62 65 ...
## $ Votes : num 642216 214391 193077 654847 472240 ...
## $ Gross_Earning_in_Mil: num 100.5 128.3 2.13 325.1 67.21 ...
## $ Director : Factor w/ 97 levels "Alex Proyas",..: 26 72 84 21 59 61 31 94 54 41 ...
## $ Actor : Factor w/ 91 levels "Aamir Khan","Aaron Poole",..: 5 68 39 91 6 48 82 5 42 89 ...
library('ggplot2')
p1<-qplot(data = movies_df,Runtime,fill=Genre,bins=20)
p1
q1 <-movies_df %>% select(Title, Rank, Title, Runtime, Genre) %>%
filter(Runtime == max(Runtime))
q1
## Title Rank Runtime Genre
## 1 Silence 64 161 Drama
## 2 Dangal 96 161 Action
ggplot(movies_df,aes(x=Runtime,y=Rating))+
geom_point(aes(size=Votes,col=Genre))
q2 <- movies_df %>%
filter(Runtime >= 130 & Runtime <= 160) %>%
select(Votes, Genre) %>%
group_by(Genre) %>%
summarise(Votes = sum(Votes)) %>%
arrange(desc(Votes))
q2[1,1]
## # A tibble: 1 x 1
## Genre
## <fct>
## 1 Action
ggplot(movies_df,aes(x=Runtime,y=Gross_Earning_in_Mil))+
geom_point(aes(size=Rating,col=Genre))
## Warning: Removed 11 rows containing missing values (geom_point).
q3 <- movies_df %>%
filter(Runtime >= 100 & Runtime <= 120) %>%
select(Gross_Earning_in_Mil, Genre) %>%
group_by(Genre) %>%
summarise(Gross_Earning_in_Mil = mean(Gross_Earning_in_Mil)) %>%
arrange(desc(Gross_Earning_in_Mil))
q3[1,1]
## # A tibble: 1 x 1
## Genre
## <fct>
## 1 Animation