Extraído de: https://dialnet.unirioja.es/servlet/articulo?codigo=5833456

Se evaluó la prevalencia del Aspergillus spp. (ufc/g) y su principal metabolito la aflatoxina (ppb/g), en maíz (Zea mays, L) almacenado en los dos silos de la Unidad Nacional de Almacenamiento en Quevedo - Ecuador, durante el primer semestre del 2014. Se muestreó los lados lateral oeste, lateral este y medio de cada silo con tres repeticiones cada muestra, las extracciones se realizaron a los 30, 60 y 90 días. El crecimiento del hongo fue de 2.06 105 a 4.60 105 ufc/g. La determinación de aflatoxinas se efectuó por la técnica de micro Elisa, reportando a a 90 días el nivel más alto de 55,71 ppb. Se realizó el análisis de varianza (ANOVA) y se comparó las medias con la prueba de Duncan (P<0.05).

Ojetivos del trabajo fueron: Evaluar la prevalencia de Aspergillus spp.en el maíz almacenado en los silos; identificar y cuantificar la cantidad de aflatoxinas presentes, con fines de determinar si existe riesgos a la seguridad alimentaria relacionada directamente con la calidad del grano.

library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.4     v dplyr   1.0.7
## v tidyr   1.1.4     v stringr 1.4.0
## v readr   2.0.2     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(ggpubr)
library(rstatix)
## 
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
## 
##     filter
library(agricolae)
df1<-read.csv("https://raw.githubusercontent.com/A14Reyes/Diseno_Experimental/main/problema%20Ang%C3%A9lica.csv")
df1
##     T U S REP     Y1      Y2
## 1  30 1 1   1  17.10  316000
## 2  30 1 1   1  18.50  118000
## 3  30 1 1   2  61.30   13500
## 4  30 1 1   2  22.25  129000
## 5  30 1 1   3  24.61  131000
## 6  30 1 1   3  25.19  134000
## 7  60 1 1   1  19.05  316000
## 8  60 1 1   1  15.05   99800
## 9  60 1 1   2  39.65    2260
## 10 60 1 1   2  24.20  287000
## 11 60 1 1   3  25.39  141000
## 12 60 1 1   3  26.53  146000
## 13 90 1 1   1  15.20  319000
## 14 90 1 1   1  15.85   95100
## 15 90 1 1   2  67.25    8030
## 16 90 1 1   2  15.20  131000
## 17 90 1 1   3  27.60  155000
## 18 90 1 1   3  29.05  162000
## 19 30 2 1   1  14.75    7430
## 20 30 2 1   1  69.00  207000
## 21 30 2 1   2 137.35  214000
## 22 30 2 1   2  37.95   95200
## 23 30 2 1   3  45.43  134000
## 24 30 2 1   3  47.30  137000
## 25 60 2 1   1  19.65    8950
## 26 60 2 1   1  38.75  185000
## 27 60 2 1   2  94.85  273000
## 28 60 2 1   2  42.85   96700
## 29 60 2 2   3  48.80  144000
## 30 60 2 2   3  51.47  150000
## 31 90 2 2   1  12.65   69300
## 32 90 2 2   1  46.35  198000
## 33 90 2 2   2 116.20  378000
## 34 90 2 2   2  35.85  157000
## 35 90 2 2   3  54.09  159000
## 36 90 2 2   3  57.19  166000
## 37 30 3 2   1  50.05  245000
## 38 30 3 2   1  42.30   55800
## 39 30 3 2   2  59.25  453000
## 40 30 3 2   2  57.20 1780000
## 41 30 3 2   3  27.72  509000
## 42 30 3 2   3  34.58  536000
## 43 60 3 2   1  18.60  206000
## 44 60 3 2   1  40.90   96600
## 45 60 3 2   2  37.20  447000
## 46 60 3 2   2  25.75 1740000
## 47 60 3 2   3  35.35  568000
## 48 60 3 2   3  37.10  600000
## 49 90 3 2   1  27.90  330000
## 50 90 3 2   1  47.55   80800
## 51 90 3 2   2  40.45  447000
## 52 90 3 2   2  35.05 2050000
## 53 90 3 2   3  38.80  637000
## 54 90 3 2   3  40.90  673000

Las variables analizadas fueron: Cantidad de Aflatoxinas (ppb/g), cantidad de Aspergillus spp.(UFC/g) por silo (dos) por ubicación (lateral oeste, media y lateral este). Se analizó 3 repeticiones por muestra.

df<- df1 %>% gather(key="mycotoxins",value="score",Y1,Y2) %>% convert_as_factor(T,U,S,REP)
df
##      T U S REP mycotoxins      score
## 1   30 1 1   1         Y1      17.10
## 2   30 1 1   1         Y1      18.50
## 3   30 1 1   2         Y1      61.30
## 4   30 1 1   2         Y1      22.25
## 5   30 1 1   3         Y1      24.61
## 6   30 1 1   3         Y1      25.19
## 7   60 1 1   1         Y1      19.05
## 8   60 1 1   1         Y1      15.05
## 9   60 1 1   2         Y1      39.65
## 10  60 1 1   2         Y1      24.20
## 11  60 1 1   3         Y1      25.39
## 12  60 1 1   3         Y1      26.53
## 13  90 1 1   1         Y1      15.20
## 14  90 1 1   1         Y1      15.85
## 15  90 1 1   2         Y1      67.25
## 16  90 1 1   2         Y1      15.20
## 17  90 1 1   3         Y1      27.60
## 18  90 1 1   3         Y1      29.05
## 19  30 2 1   1         Y1      14.75
## 20  30 2 1   1         Y1      69.00
## 21  30 2 1   2         Y1     137.35
## 22  30 2 1   2         Y1      37.95
## 23  30 2 1   3         Y1      45.43
## 24  30 2 1   3         Y1      47.30
## 25  60 2 1   1         Y1      19.65
## 26  60 2 1   1         Y1      38.75
## 27  60 2 1   2         Y1      94.85
## 28  60 2 1   2         Y1      42.85
## 29  60 2 2   3         Y1      48.80
## 30  60 2 2   3         Y1      51.47
## 31  90 2 2   1         Y1      12.65
## 32  90 2 2   1         Y1      46.35
## 33  90 2 2   2         Y1     116.20
## 34  90 2 2   2         Y1      35.85
## 35  90 2 2   3         Y1      54.09
## 36  90 2 2   3         Y1      57.19
## 37  30 3 2   1         Y1      50.05
## 38  30 3 2   1         Y1      42.30
## 39  30 3 2   2         Y1      59.25
## 40  30 3 2   2         Y1      57.20
## 41  30 3 2   3         Y1      27.72
## 42  30 3 2   3         Y1      34.58
## 43  60 3 2   1         Y1      18.60
## 44  60 3 2   1         Y1      40.90
## 45  60 3 2   2         Y1      37.20
## 46  60 3 2   2         Y1      25.75
## 47  60 3 2   3         Y1      35.35
## 48  60 3 2   3         Y1      37.10
## 49  90 3 2   1         Y1      27.90
## 50  90 3 2   1         Y1      47.55
## 51  90 3 2   2         Y1      40.45
## 52  90 3 2   2         Y1      35.05
## 53  90 3 2   3         Y1      38.80
## 54  90 3 2   3         Y1      40.90
## 55  30 1 1   1         Y2  316000.00
## 56  30 1 1   1         Y2  118000.00
## 57  30 1 1   2         Y2   13500.00
## 58  30 1 1   2         Y2  129000.00
## 59  30 1 1   3         Y2  131000.00
## 60  30 1 1   3         Y2  134000.00
## 61  60 1 1   1         Y2  316000.00
## 62  60 1 1   1         Y2   99800.00
## 63  60 1 1   2         Y2    2260.00
## 64  60 1 1   2         Y2  287000.00
## 65  60 1 1   3         Y2  141000.00
## 66  60 1 1   3         Y2  146000.00
## 67  90 1 1   1         Y2  319000.00
## 68  90 1 1   1         Y2   95100.00
## 69  90 1 1   2         Y2    8030.00
## 70  90 1 1   2         Y2  131000.00
## 71  90 1 1   3         Y2  155000.00
## 72  90 1 1   3         Y2  162000.00
## 73  30 2 1   1         Y2    7430.00
## 74  30 2 1   1         Y2  207000.00
## 75  30 2 1   2         Y2  214000.00
## 76  30 2 1   2         Y2   95200.00
## 77  30 2 1   3         Y2  134000.00
## 78  30 2 1   3         Y2  137000.00
## 79  60 2 1   1         Y2    8950.00
## 80  60 2 1   1         Y2  185000.00
## 81  60 2 1   2         Y2  273000.00
## 82  60 2 1   2         Y2   96700.00
## 83  60 2 2   3         Y2  144000.00
## 84  60 2 2   3         Y2  150000.00
## 85  90 2 2   1         Y2   69300.00
## 86  90 2 2   1         Y2  198000.00
## 87  90 2 2   2         Y2  378000.00
## 88  90 2 2   2         Y2  157000.00
## 89  90 2 2   3         Y2  159000.00
## 90  90 2 2   3         Y2  166000.00
## 91  30 3 2   1         Y2  245000.00
## 92  30 3 2   1         Y2   55800.00
## 93  30 3 2   2         Y2  453000.00
## 94  30 3 2   2         Y2 1780000.00
## 95  30 3 2   3         Y2  509000.00
## 96  30 3 2   3         Y2  536000.00
## 97  60 3 2   1         Y2  206000.00
## 98  60 3 2   1         Y2   96600.00
## 99  60 3 2   2         Y2  447000.00
## 100 60 3 2   2         Y2 1740000.00
## 101 60 3 2   3         Y2  568000.00
## 102 60 3 2   3         Y2  600000.00
## 103 90 3 2   1         Y2  330000.00
## 104 90 3 2   1         Y2   80800.00
## 105 90 3 2   2         Y2  447000.00
## 106 90 3 2   2         Y2 2050000.00
## 107 90 3 2   3         Y2  637000.00
## 108 90 3 2   3         Y2  673000.00

NOTA:

Tiempo (T) = 30, 60, 90;

Ubicación (U) = 1 lateral Oeste, 2 media, 3 lateral este;

Silos (S) = 1 y 2

Repeticiones (REP) = 1, 2, 3.

Mycotoxins ( Y1 y Y2) Y1 = Aflatoxinas (ppb/g) Y2 = Aspergillus (ufc/g)

Resumen de datos del Tiempo con respecto a las Micotoxinas

df %>% group_by(T,mycotoxins) %>% get_summary_stats(score,type="mean_sd")
## # A tibble: 6 x 6
##   T     mycotoxins variable     n     mean       sd
##   <fct> <chr>      <chr>    <dbl>    <dbl>    <dbl>
## 1 30    Y1         score       18     44.0     28.6
## 2 30    Y2         score       18 289718.  403840. 
## 3 60    Y1         score       18     35.6     18.3
## 4 60    Y2         score       18 305962.  396424. 
## 5 90    Y1         score       18     40.2     24.5
## 6 90    Y2         score       18 345291.  464825.
df
##      T U S REP mycotoxins      score
## 1   30 1 1   1         Y1      17.10
## 2   30 1 1   1         Y1      18.50
## 3   30 1 1   2         Y1      61.30
## 4   30 1 1   2         Y1      22.25
## 5   30 1 1   3         Y1      24.61
## 6   30 1 1   3         Y1      25.19
## 7   60 1 1   1         Y1      19.05
## 8   60 1 1   1         Y1      15.05
## 9   60 1 1   2         Y1      39.65
## 10  60 1 1   2         Y1      24.20
## 11  60 1 1   3         Y1      25.39
## 12  60 1 1   3         Y1      26.53
## 13  90 1 1   1         Y1      15.20
## 14  90 1 1   1         Y1      15.85
## 15  90 1 1   2         Y1      67.25
## 16  90 1 1   2         Y1      15.20
## 17  90 1 1   3         Y1      27.60
## 18  90 1 1   3         Y1      29.05
## 19  30 2 1   1         Y1      14.75
## 20  30 2 1   1         Y1      69.00
## 21  30 2 1   2         Y1     137.35
## 22  30 2 1   2         Y1      37.95
## 23  30 2 1   3         Y1      45.43
## 24  30 2 1   3         Y1      47.30
## 25  60 2 1   1         Y1      19.65
## 26  60 2 1   1         Y1      38.75
## 27  60 2 1   2         Y1      94.85
## 28  60 2 1   2         Y1      42.85
## 29  60 2 2   3         Y1      48.80
## 30  60 2 2   3         Y1      51.47
## 31  90 2 2   1         Y1      12.65
## 32  90 2 2   1         Y1      46.35
## 33  90 2 2   2         Y1     116.20
## 34  90 2 2   2         Y1      35.85
## 35  90 2 2   3         Y1      54.09
## 36  90 2 2   3         Y1      57.19
## 37  30 3 2   1         Y1      50.05
## 38  30 3 2   1         Y1      42.30
## 39  30 3 2   2         Y1      59.25
## 40  30 3 2   2         Y1      57.20
## 41  30 3 2   3         Y1      27.72
## 42  30 3 2   3         Y1      34.58
## 43  60 3 2   1         Y1      18.60
## 44  60 3 2   1         Y1      40.90
## 45  60 3 2   2         Y1      37.20
## 46  60 3 2   2         Y1      25.75
## 47  60 3 2   3         Y1      35.35
## 48  60 3 2   3         Y1      37.10
## 49  90 3 2   1         Y1      27.90
## 50  90 3 2   1         Y1      47.55
## 51  90 3 2   2         Y1      40.45
## 52  90 3 2   2         Y1      35.05
## 53  90 3 2   3         Y1      38.80
## 54  90 3 2   3         Y1      40.90
## 55  30 1 1   1         Y2  316000.00
## 56  30 1 1   1         Y2  118000.00
## 57  30 1 1   2         Y2   13500.00
## 58  30 1 1   2         Y2  129000.00
## 59  30 1 1   3         Y2  131000.00
## 60  30 1 1   3         Y2  134000.00
## 61  60 1 1   1         Y2  316000.00
## 62  60 1 1   1         Y2   99800.00
## 63  60 1 1   2         Y2    2260.00
## 64  60 1 1   2         Y2  287000.00
## 65  60 1 1   3         Y2  141000.00
## 66  60 1 1   3         Y2  146000.00
## 67  90 1 1   1         Y2  319000.00
## 68  90 1 1   1         Y2   95100.00
## 69  90 1 1   2         Y2    8030.00
## 70  90 1 1   2         Y2  131000.00
## 71  90 1 1   3         Y2  155000.00
## 72  90 1 1   3         Y2  162000.00
## 73  30 2 1   1         Y2    7430.00
## 74  30 2 1   1         Y2  207000.00
## 75  30 2 1   2         Y2  214000.00
## 76  30 2 1   2         Y2   95200.00
## 77  30 2 1   3         Y2  134000.00
## 78  30 2 1   3         Y2  137000.00
## 79  60 2 1   1         Y2    8950.00
## 80  60 2 1   1         Y2  185000.00
## 81  60 2 1   2         Y2  273000.00
## 82  60 2 1   2         Y2   96700.00
## 83  60 2 2   3         Y2  144000.00
## 84  60 2 2   3         Y2  150000.00
## 85  90 2 2   1         Y2   69300.00
## 86  90 2 2   1         Y2  198000.00
## 87  90 2 2   2         Y2  378000.00
## 88  90 2 2   2         Y2  157000.00
## 89  90 2 2   3         Y2  159000.00
## 90  90 2 2   3         Y2  166000.00
## 91  30 3 2   1         Y2  245000.00
## 92  30 3 2   1         Y2   55800.00
## 93  30 3 2   2         Y2  453000.00
## 94  30 3 2   2         Y2 1780000.00
## 95  30 3 2   3         Y2  509000.00
## 96  30 3 2   3         Y2  536000.00
## 97  60 3 2   1         Y2  206000.00
## 98  60 3 2   1         Y2   96600.00
## 99  60 3 2   2         Y2  447000.00
## 100 60 3 2   2         Y2 1740000.00
## 101 60 3 2   3         Y2  568000.00
## 102 60 3 2   3         Y2  600000.00
## 103 90 3 2   1         Y2  330000.00
## 104 90 3 2   1         Y2   80800.00
## 105 90 3 2   2         Y2  447000.00
## 106 90 3 2   2         Y2 2050000.00
## 107 90 3 2   3         Y2  637000.00
## 108 90 3 2   3         Y2  673000.00
bxp<-ggboxplot(df,x="mycotoxins",y="score",color="T",palette="reds")
bxp

En la gráfica se observa que para el hongo Aspergillus, hay valores fuera del conjunto de datos para los diversos tiempos de almacenaje.

df %>% group_by(T,mycotoxins) %>% identify_outliers(score)
## # A tibble: 6 x 8
##   T     mycotoxins U     S     REP       score is.outlier is.extreme
##   <fct> <chr>      <fct> <fct> <fct>     <dbl> <lgl>      <lgl>     
## 1 30    Y1         2     1     2         137.  TRUE       FALSE     
## 2 30    Y2         3     2     2     1780000   TRUE       TRUE      
## 3 60    Y1         2     1     2          94.8 TRUE       TRUE      
## 4 60    Y2         3     2     2     1740000   TRUE       TRUE      
## 5 90    Y1         2     2     2         116.  TRUE       TRUE      
## 6 90    Y2         3     2     2     2050000   TRUE       TRUE

La prueba nos muestra valores atipicos extremos 2 para Aflatoxina y 3 para Aspergillus.

Resumen de datos de la Ubicación con respecto a las Micotoxinas

df %>% group_by(U,mycotoxins) %>% get_summary_stats(score,type="mean_sd")
## # A tibble: 6 x 6
##   U     mycotoxins variable     n     mean       sd
##   <fct> <chr>      <chr>    <dbl>    <dbl>    <dbl>
## 1 1     Y1         score       18     27.2     14.9
## 2 1     Y2         score       18 150205   100381. 
## 3 2     Y1         score       18     53.9     32.8
## 4 2     Y2         score       18 154421.   87803. 
## 5 3     Y1         score       18     38.7     10.4
## 6 3     Y2         score       18 636344.  595698.
df
##      T U S REP mycotoxins      score
## 1   30 1 1   1         Y1      17.10
## 2   30 1 1   1         Y1      18.50
## 3   30 1 1   2         Y1      61.30
## 4   30 1 1   2         Y1      22.25
## 5   30 1 1   3         Y1      24.61
## 6   30 1 1   3         Y1      25.19
## 7   60 1 1   1         Y1      19.05
## 8   60 1 1   1         Y1      15.05
## 9   60 1 1   2         Y1      39.65
## 10  60 1 1   2         Y1      24.20
## 11  60 1 1   3         Y1      25.39
## 12  60 1 1   3         Y1      26.53
## 13  90 1 1   1         Y1      15.20
## 14  90 1 1   1         Y1      15.85
## 15  90 1 1   2         Y1      67.25
## 16  90 1 1   2         Y1      15.20
## 17  90 1 1   3         Y1      27.60
## 18  90 1 1   3         Y1      29.05
## 19  30 2 1   1         Y1      14.75
## 20  30 2 1   1         Y1      69.00
## 21  30 2 1   2         Y1     137.35
## 22  30 2 1   2         Y1      37.95
## 23  30 2 1   3         Y1      45.43
## 24  30 2 1   3         Y1      47.30
## 25  60 2 1   1         Y1      19.65
## 26  60 2 1   1         Y1      38.75
## 27  60 2 1   2         Y1      94.85
## 28  60 2 1   2         Y1      42.85
## 29  60 2 2   3         Y1      48.80
## 30  60 2 2   3         Y1      51.47
## 31  90 2 2   1         Y1      12.65
## 32  90 2 2   1         Y1      46.35
## 33  90 2 2   2         Y1     116.20
## 34  90 2 2   2         Y1      35.85
## 35  90 2 2   3         Y1      54.09
## 36  90 2 2   3         Y1      57.19
## 37  30 3 2   1         Y1      50.05
## 38  30 3 2   1         Y1      42.30
## 39  30 3 2   2         Y1      59.25
## 40  30 3 2   2         Y1      57.20
## 41  30 3 2   3         Y1      27.72
## 42  30 3 2   3         Y1      34.58
## 43  60 3 2   1         Y1      18.60
## 44  60 3 2   1         Y1      40.90
## 45  60 3 2   2         Y1      37.20
## 46  60 3 2   2         Y1      25.75
## 47  60 3 2   3         Y1      35.35
## 48  60 3 2   3         Y1      37.10
## 49  90 3 2   1         Y1      27.90
## 50  90 3 2   1         Y1      47.55
## 51  90 3 2   2         Y1      40.45
## 52  90 3 2   2         Y1      35.05
## 53  90 3 2   3         Y1      38.80
## 54  90 3 2   3         Y1      40.90
## 55  30 1 1   1         Y2  316000.00
## 56  30 1 1   1         Y2  118000.00
## 57  30 1 1   2         Y2   13500.00
## 58  30 1 1   2         Y2  129000.00
## 59  30 1 1   3         Y2  131000.00
## 60  30 1 1   3         Y2  134000.00
## 61  60 1 1   1         Y2  316000.00
## 62  60 1 1   1         Y2   99800.00
## 63  60 1 1   2         Y2    2260.00
## 64  60 1 1   2         Y2  287000.00
## 65  60 1 1   3         Y2  141000.00
## 66  60 1 1   3         Y2  146000.00
## 67  90 1 1   1         Y2  319000.00
## 68  90 1 1   1         Y2   95100.00
## 69  90 1 1   2         Y2    8030.00
## 70  90 1 1   2         Y2  131000.00
## 71  90 1 1   3         Y2  155000.00
## 72  90 1 1   3         Y2  162000.00
## 73  30 2 1   1         Y2    7430.00
## 74  30 2 1   1         Y2  207000.00
## 75  30 2 1   2         Y2  214000.00
## 76  30 2 1   2         Y2   95200.00
## 77  30 2 1   3         Y2  134000.00
## 78  30 2 1   3         Y2  137000.00
## 79  60 2 1   1         Y2    8950.00
## 80  60 2 1   1         Y2  185000.00
## 81  60 2 1   2         Y2  273000.00
## 82  60 2 1   2         Y2   96700.00
## 83  60 2 2   3         Y2  144000.00
## 84  60 2 2   3         Y2  150000.00
## 85  90 2 2   1         Y2   69300.00
## 86  90 2 2   1         Y2  198000.00
## 87  90 2 2   2         Y2  378000.00
## 88  90 2 2   2         Y2  157000.00
## 89  90 2 2   3         Y2  159000.00
## 90  90 2 2   3         Y2  166000.00
## 91  30 3 2   1         Y2  245000.00
## 92  30 3 2   1         Y2   55800.00
## 93  30 3 2   2         Y2  453000.00
## 94  30 3 2   2         Y2 1780000.00
## 95  30 3 2   3         Y2  509000.00
## 96  30 3 2   3         Y2  536000.00
## 97  60 3 2   1         Y2  206000.00
## 98  60 3 2   1         Y2   96600.00
## 99  60 3 2   2         Y2  447000.00
## 100 60 3 2   2         Y2 1740000.00
## 101 60 3 2   3         Y2  568000.00
## 102 60 3 2   3         Y2  600000.00
## 103 90 3 2   1         Y2  330000.00
## 104 90 3 2   1         Y2   80800.00
## 105 90 3 2   2         Y2  447000.00
## 106 90 3 2   2         Y2 2050000.00
## 107 90 3 2   3         Y2  637000.00
## 108 90 3 2   3         Y2  673000.00
bxp<-ggboxplot(df,x="mycotoxins",y="score",color="U",palette="Blues")
bxp

En cuanto al análisis gráfico observamos que en la ubicación lateral este los valores atipicos se alejan bastante del conjunto de datos para el Aspergillus.

df %>% group_by(U,mycotoxins) %>% identify_outliers(score)
## # A tibble: 19 x 8
##    U     mycotoxins T     S     REP       score is.outlier is.extreme
##    <fct> <chr>      <fct> <fct> <fct>     <dbl> <lgl>      <lgl>     
##  1 1     Y1         30    1     2          61.3 TRUE       TRUE      
##  2 1     Y1         90    1     2          67.2 TRUE       TRUE      
##  3 1     Y2         30    1     1      316000   TRUE       FALSE     
##  4 1     Y2         30    1     2       13500   TRUE       FALSE     
##  5 1     Y2         60    1     1      316000   TRUE       FALSE     
##  6 1     Y2         60    1     2        2260   TRUE       FALSE     
##  7 1     Y2         60    1     2      287000   TRUE       FALSE     
##  8 1     Y2         90    1     1      319000   TRUE       FALSE     
##  9 1     Y2         90    1     2        8030   TRUE       FALSE     
## 10 2     Y1         30    1     2         137.  TRUE       TRUE      
## 11 2     Y1         60    1     2          94.8 TRUE       FALSE     
## 12 2     Y1         90    2     2         116.  TRUE       TRUE      
## 13 2     Y2         90    2     2      378000   TRUE       FALSE     
## 14 3     Y1         30    2     2          59.2 TRUE       FALSE     
## 15 3     Y1         30    2     2          57.2 TRUE       FALSE     
## 16 3     Y1         60    2     1          18.6 TRUE       FALSE     
## 17 3     Y2         30    2     2     1780000   TRUE       TRUE      
## 18 3     Y2         60    2     2     1740000   TRUE       TRUE      
## 19 3     Y2         90    2     2     2050000   TRUE       TRUE

El estadístico de valores atipicos nos muestra que los valores observados en el gráfico qq no son extremos, sin embargo, para las aflatoxinas si representan ser extremos, en el gráfico no fue posible verlos por las disparidad de los valores.

Resumen de datos de los Silos con respecto a las Micotoxinas

df %>% group_by(S,mycotoxins) %>% get_summary_stats(score,type="mean_sd")
## # A tibble: 4 x 6
##   S     mycotoxins variable     n     mean       sd
##   <fct> <chr>      <chr>    <dbl>    <dbl>    <dbl>
## 1 1     Y1         score       28     37.0     27.9
## 2 1     Y2         score       28 145070.   94440. 
## 3 2     Y1         score       26     43.0     18.9
## 4 2     Y2         score       26 495212.  538623.
df
##      T U S REP mycotoxins      score
## 1   30 1 1   1         Y1      17.10
## 2   30 1 1   1         Y1      18.50
## 3   30 1 1   2         Y1      61.30
## 4   30 1 1   2         Y1      22.25
## 5   30 1 1   3         Y1      24.61
## 6   30 1 1   3         Y1      25.19
## 7   60 1 1   1         Y1      19.05
## 8   60 1 1   1         Y1      15.05
## 9   60 1 1   2         Y1      39.65
## 10  60 1 1   2         Y1      24.20
## 11  60 1 1   3         Y1      25.39
## 12  60 1 1   3         Y1      26.53
## 13  90 1 1   1         Y1      15.20
## 14  90 1 1   1         Y1      15.85
## 15  90 1 1   2         Y1      67.25
## 16  90 1 1   2         Y1      15.20
## 17  90 1 1   3         Y1      27.60
## 18  90 1 1   3         Y1      29.05
## 19  30 2 1   1         Y1      14.75
## 20  30 2 1   1         Y1      69.00
## 21  30 2 1   2         Y1     137.35
## 22  30 2 1   2         Y1      37.95
## 23  30 2 1   3         Y1      45.43
## 24  30 2 1   3         Y1      47.30
## 25  60 2 1   1         Y1      19.65
## 26  60 2 1   1         Y1      38.75
## 27  60 2 1   2         Y1      94.85
## 28  60 2 1   2         Y1      42.85
## 29  60 2 2   3         Y1      48.80
## 30  60 2 2   3         Y1      51.47
## 31  90 2 2   1         Y1      12.65
## 32  90 2 2   1         Y1      46.35
## 33  90 2 2   2         Y1     116.20
## 34  90 2 2   2         Y1      35.85
## 35  90 2 2   3         Y1      54.09
## 36  90 2 2   3         Y1      57.19
## 37  30 3 2   1         Y1      50.05
## 38  30 3 2   1         Y1      42.30
## 39  30 3 2   2         Y1      59.25
## 40  30 3 2   2         Y1      57.20
## 41  30 3 2   3         Y1      27.72
## 42  30 3 2   3         Y1      34.58
## 43  60 3 2   1         Y1      18.60
## 44  60 3 2   1         Y1      40.90
## 45  60 3 2   2         Y1      37.20
## 46  60 3 2   2         Y1      25.75
## 47  60 3 2   3         Y1      35.35
## 48  60 3 2   3         Y1      37.10
## 49  90 3 2   1         Y1      27.90
## 50  90 3 2   1         Y1      47.55
## 51  90 3 2   2         Y1      40.45
## 52  90 3 2   2         Y1      35.05
## 53  90 3 2   3         Y1      38.80
## 54  90 3 2   3         Y1      40.90
## 55  30 1 1   1         Y2  316000.00
## 56  30 1 1   1         Y2  118000.00
## 57  30 1 1   2         Y2   13500.00
## 58  30 1 1   2         Y2  129000.00
## 59  30 1 1   3         Y2  131000.00
## 60  30 1 1   3         Y2  134000.00
## 61  60 1 1   1         Y2  316000.00
## 62  60 1 1   1         Y2   99800.00
## 63  60 1 1   2         Y2    2260.00
## 64  60 1 1   2         Y2  287000.00
## 65  60 1 1   3         Y2  141000.00
## 66  60 1 1   3         Y2  146000.00
## 67  90 1 1   1         Y2  319000.00
## 68  90 1 1   1         Y2   95100.00
## 69  90 1 1   2         Y2    8030.00
## 70  90 1 1   2         Y2  131000.00
## 71  90 1 1   3         Y2  155000.00
## 72  90 1 1   3         Y2  162000.00
## 73  30 2 1   1         Y2    7430.00
## 74  30 2 1   1         Y2  207000.00
## 75  30 2 1   2         Y2  214000.00
## 76  30 2 1   2         Y2   95200.00
## 77  30 2 1   3         Y2  134000.00
## 78  30 2 1   3         Y2  137000.00
## 79  60 2 1   1         Y2    8950.00
## 80  60 2 1   1         Y2  185000.00
## 81  60 2 1   2         Y2  273000.00
## 82  60 2 1   2         Y2   96700.00
## 83  60 2 2   3         Y2  144000.00
## 84  60 2 2   3         Y2  150000.00
## 85  90 2 2   1         Y2   69300.00
## 86  90 2 2   1         Y2  198000.00
## 87  90 2 2   2         Y2  378000.00
## 88  90 2 2   2         Y2  157000.00
## 89  90 2 2   3         Y2  159000.00
## 90  90 2 2   3         Y2  166000.00
## 91  30 3 2   1         Y2  245000.00
## 92  30 3 2   1         Y2   55800.00
## 93  30 3 2   2         Y2  453000.00
## 94  30 3 2   2         Y2 1780000.00
## 95  30 3 2   3         Y2  509000.00
## 96  30 3 2   3         Y2  536000.00
## 97  60 3 2   1         Y2  206000.00
## 98  60 3 2   1         Y2   96600.00
## 99  60 3 2   2         Y2  447000.00
## 100 60 3 2   2         Y2 1740000.00
## 101 60 3 2   3         Y2  568000.00
## 102 60 3 2   3         Y2  600000.00
## 103 90 3 2   1         Y2  330000.00
## 104 90 3 2   1         Y2   80800.00
## 105 90 3 2   2         Y2  447000.00
## 106 90 3 2   2         Y2 2050000.00
## 107 90 3 2   3         Y2  637000.00
## 108 90 3 2   3         Y2  673000.00
bxp<-ggboxplot(df,x="mycotoxins",y="score",color="S",palette="jco")
bxp

df %>% group_by(S,mycotoxins) %>% identify_outliers(score)
## # A tibble: 7 x 8
##   S     mycotoxins T     U     REP       score is.outlier is.extreme
##   <fct> <chr>      <fct> <fct> <fct>     <dbl> <lgl>      <lgl>     
## 1 1     Y1         30    2     2         137.  TRUE       TRUE      
## 2 1     Y1         60    2     2          94.8 TRUE       FALSE     
## 3 2     Y1         90    2     1          12.6 TRUE       FALSE     
## 4 2     Y1         90    2     2         116.  TRUE       TRUE      
## 5 2     Y2         30    3     2     1780000   TRUE       TRUE      
## 6 2     Y2         60    3     2     1740000   TRUE       FALSE     
## 7 2     Y2         90    3     2     2050000   TRUE       TRUE

Hay valores atipicos extremos tanto en las Aflatoxinas como para el Aspergillus mayoritariamente en el silo 2.

Resumen de datos de las Repeticiones con respecto a las Micotoxinas

df %>% group_by(REP,mycotoxins) %>% get_summary_stats(score,type="mean_sd")
## # A tibble: 6 x 6
##   REP   mycotoxins variable     n     mean       sd
##   <fct> <chr>      <chr>    <dbl>    <dbl>    <dbl>
## 1 1     Y1         score       18     29.4     16.6
## 2 1     Y2         score       18 164099.  108801. 
## 3 2     Y1         score       18     52.8     33.1
## 4 2     Y2         score       18 483427.  651667  
## 5 3     Y1         score       18     37.6     10.9
## 6 3     Y2         score       18 293444.  216538.
df
##      T U S REP mycotoxins      score
## 1   30 1 1   1         Y1      17.10
## 2   30 1 1   1         Y1      18.50
## 3   30 1 1   2         Y1      61.30
## 4   30 1 1   2         Y1      22.25
## 5   30 1 1   3         Y1      24.61
## 6   30 1 1   3         Y1      25.19
## 7   60 1 1   1         Y1      19.05
## 8   60 1 1   1         Y1      15.05
## 9   60 1 1   2         Y1      39.65
## 10  60 1 1   2         Y1      24.20
## 11  60 1 1   3         Y1      25.39
## 12  60 1 1   3         Y1      26.53
## 13  90 1 1   1         Y1      15.20
## 14  90 1 1   1         Y1      15.85
## 15  90 1 1   2         Y1      67.25
## 16  90 1 1   2         Y1      15.20
## 17  90 1 1   3         Y1      27.60
## 18  90 1 1   3         Y1      29.05
## 19  30 2 1   1         Y1      14.75
## 20  30 2 1   1         Y1      69.00
## 21  30 2 1   2         Y1     137.35
## 22  30 2 1   2         Y1      37.95
## 23  30 2 1   3         Y1      45.43
## 24  30 2 1   3         Y1      47.30
## 25  60 2 1   1         Y1      19.65
## 26  60 2 1   1         Y1      38.75
## 27  60 2 1   2         Y1      94.85
## 28  60 2 1   2         Y1      42.85
## 29  60 2 2   3         Y1      48.80
## 30  60 2 2   3         Y1      51.47
## 31  90 2 2   1         Y1      12.65
## 32  90 2 2   1         Y1      46.35
## 33  90 2 2   2         Y1     116.20
## 34  90 2 2   2         Y1      35.85
## 35  90 2 2   3         Y1      54.09
## 36  90 2 2   3         Y1      57.19
## 37  30 3 2   1         Y1      50.05
## 38  30 3 2   1         Y1      42.30
## 39  30 3 2   2         Y1      59.25
## 40  30 3 2   2         Y1      57.20
## 41  30 3 2   3         Y1      27.72
## 42  30 3 2   3         Y1      34.58
## 43  60 3 2   1         Y1      18.60
## 44  60 3 2   1         Y1      40.90
## 45  60 3 2   2         Y1      37.20
## 46  60 3 2   2         Y1      25.75
## 47  60 3 2   3         Y1      35.35
## 48  60 3 2   3         Y1      37.10
## 49  90 3 2   1         Y1      27.90
## 50  90 3 2   1         Y1      47.55
## 51  90 3 2   2         Y1      40.45
## 52  90 3 2   2         Y1      35.05
## 53  90 3 2   3         Y1      38.80
## 54  90 3 2   3         Y1      40.90
## 55  30 1 1   1         Y2  316000.00
## 56  30 1 1   1         Y2  118000.00
## 57  30 1 1   2         Y2   13500.00
## 58  30 1 1   2         Y2  129000.00
## 59  30 1 1   3         Y2  131000.00
## 60  30 1 1   3         Y2  134000.00
## 61  60 1 1   1         Y2  316000.00
## 62  60 1 1   1         Y2   99800.00
## 63  60 1 1   2         Y2    2260.00
## 64  60 1 1   2         Y2  287000.00
## 65  60 1 1   3         Y2  141000.00
## 66  60 1 1   3         Y2  146000.00
## 67  90 1 1   1         Y2  319000.00
## 68  90 1 1   1         Y2   95100.00
## 69  90 1 1   2         Y2    8030.00
## 70  90 1 1   2         Y2  131000.00
## 71  90 1 1   3         Y2  155000.00
## 72  90 1 1   3         Y2  162000.00
## 73  30 2 1   1         Y2    7430.00
## 74  30 2 1   1         Y2  207000.00
## 75  30 2 1   2         Y2  214000.00
## 76  30 2 1   2         Y2   95200.00
## 77  30 2 1   3         Y2  134000.00
## 78  30 2 1   3         Y2  137000.00
## 79  60 2 1   1         Y2    8950.00
## 80  60 2 1   1         Y2  185000.00
## 81  60 2 1   2         Y2  273000.00
## 82  60 2 1   2         Y2   96700.00
## 83  60 2 2   3         Y2  144000.00
## 84  60 2 2   3         Y2  150000.00
## 85  90 2 2   1         Y2   69300.00
## 86  90 2 2   1         Y2  198000.00
## 87  90 2 2   2         Y2  378000.00
## 88  90 2 2   2         Y2  157000.00
## 89  90 2 2   3         Y2  159000.00
## 90  90 2 2   3         Y2  166000.00
## 91  30 3 2   1         Y2  245000.00
## 92  30 3 2   1         Y2   55800.00
## 93  30 3 2   2         Y2  453000.00
## 94  30 3 2   2         Y2 1780000.00
## 95  30 3 2   3         Y2  509000.00
## 96  30 3 2   3         Y2  536000.00
## 97  60 3 2   1         Y2  206000.00
## 98  60 3 2   1         Y2   96600.00
## 99  60 3 2   2         Y2  447000.00
## 100 60 3 2   2         Y2 1740000.00
## 101 60 3 2   3         Y2  568000.00
## 102 60 3 2   3         Y2  600000.00
## 103 90 3 2   1         Y2  330000.00
## 104 90 3 2   1         Y2   80800.00
## 105 90 3 2   2         Y2  447000.00
## 106 90 3 2   2         Y2 2050000.00
## 107 90 3 2   3         Y2  637000.00
## 108 90 3 2   3         Y2  673000.00
bxp<-ggboxplot(df,x="mycotoxins",y="score",color="REP",palette="Accent")
bxp

Graficamente la repetición 2 es la que muestra valores atipicos para ambos.

Identificación de Valores Atípicos a gran escala

df %>% group_by(T,U,S,REP) %>% identify_outliers(score)
## # A tibble: 5 x 8
##   T     U     S     REP   mycotoxins  score is.outlier is.extreme
##   <fct> <fct> <fct> <fct> <chr>       <dbl> <lgl>      <lgl>     
## 1 30    1     1     2     Y2         129000 TRUE       FALSE     
## 2 30    2     1     1     Y2         207000 TRUE       FALSE     
## 3 60    1     1     2     Y2         287000 TRUE       FALSE     
## 4 60    2     1     1     Y2         185000 TRUE       FALSE     
## 5 90    1     1     2     Y2         131000 TRUE       FALSE

En este modelo amplio que usa todos los factores se identifico que si habian valores atípicos sin embargo, la prueba no los considera extremos y como visualizamos en las pruebas y gráficas individuales, los outilers más marcados se encontraban en la micotoxina Aspergillus (Y2).

El que se demostrara que eran extremos en las pruebas individuales se debe a que se está tomando cada muestra con respecto a un solo factor, o sea que se reducen los límites del espectro de revisión entre valores lo que hace más evidente cualquier valor que salga de lo que considera la prueba.

df %>% group_by(mycotoxins) %>% shapiro_test(score)
## # A tibble: 2 x 4
##   mycotoxins variable statistic        p
##   <chr>      <chr>        <dbl>    <dbl>
## 1 Y1         score        0.817 1.09e- 6
## 2 Y2         score        0.604 7.88e-11
ggqqplot(df,"score",ggtheme = theme_bw()) + facet_grid(mycotoxins~T,labeller = "label_both")

df %>% group_by(mycotoxins) %>% levene_test(score~T)
## # A tibble: 2 x 5
##   mycotoxins   df1   df2 statistic     p
##   <chr>      <int> <int>     <dbl> <dbl>
## 1 Y1             2    51    0.693  0.505
## 2 Y2             2    51    0.0344 0.966

Análisis de Varianza ANOVA

anova<-aov(score~T*S*U*REP,data=df)
summary(anova)
##             Df    Sum Sq   Mean Sq F value  Pr(>F)   
## T            2 1.470e+10 7.348e+09   0.067 0.93511   
## S            1 8.304e+11 8.304e+11   7.588 0.00726 **
## U            2 5.754e+11 2.877e+11   2.629 0.07830 . 
## REP          2 4.648e+11 2.324e+11   2.124 0.12619   
## T:S          2 9.162e+09 4.581e+09   0.042 0.95903   
## T:U          2 3.223e+09 1.612e+09   0.015 0.98538   
## T:REP        4 2.565e+09 6.412e+08   0.006 0.99993   
## S:REP        2 7.984e+11 3.992e+11   3.648 0.03042 * 
## U:REP        4 2.332e+11 5.830e+10   0.533 0.71206   
## T:S:REP      4 5.508e+09 1.377e+09   0.013 0.99968   
## T:U:REP      1 2.204e+08 2.204e+08   0.002 0.96432   
## Residuals   81 8.864e+12 1.094e+11                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de Tukey HSD

tk<-TukeyHSD(anova)
tk
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = score ~ T * S * U * REP, data = df)
## 
## $T
##            diff       lwr      upr     p adj
## 60-30  8117.481 -178048.2 194283.2 0.9940431
## 90-30 27784.203 -158381.5 213949.9 0.9324660
## 90-60 19666.722 -166499.0 205832.4 0.9655537
## 
## $S
##         diff      lwr    upr     p adj
## 2-1 168605.3 41844.57 295366 0.0097694
## 
## $U
##          diff        lwr      upr     p adj
## 2-1 -79058.90 -265224.57 107106.8 0.5702714
## 3-1  60419.76 -125745.92 246585.4 0.7194496
## 3-2 139478.65  -46687.02 325644.3 0.1797806
## 
## $REP
##          diff        lwr       upr     p adj
## 2-1 159675.85  -26489.83 345841.53 0.1074596
## 3-1  64489.10 -121676.58 250654.77 0.6874001
## 3-2 -95186.75 -281352.43  90978.92 0.4444606
## 
## $`T:S`
##                 diff       lwr      upr     p adj
## 60:1-30:1 -12082.177 -304451.6 280287.3 0.9999963
## 90:1-30:1 -54607.835 -396021.8 286806.1 0.9971374
## 30:2-30:1 168932.179 -172481.8 510346.1 0.6999953
## 60:2-30:1 160066.187 -151600.7 471733.1 0.6657683
## 90:2-30:1 153446.311 -125317.0 432209.6 0.5965256
## 90:1-60:1 -42525.658 -395136.5 310085.2 0.9992631
## 30:2-60:1 181014.355 -171596.5 533625.2 0.6661864
## 60:2-60:1 172148.363 -151745.3 496042.1 0.6323695
## 90:2-60:1 165528.488 -126841.0 457897.9 0.5666459
## 30:2-90:1 223540.014 -170690.9 617770.9 0.5649974
## 60:2-90:1 214674.022 -154095.2 583443.2 0.5362799
## 90:2-90:1 208054.146 -133359.8 549468.1 0.4849986
## 60:2-30:2  -8865.992 -377635.2 359903.2 0.9999998
## 90:2-30:2 -15485.868 -356899.8 325928.1 0.9999941
## 90:2-60:2  -6619.876 -318286.7 305047.0 0.9999999
## 
## $`T:U`
##                  diff       lwr      upr     p adj
## 60:1-30:1   34087.794 -396358.1 464533.6 0.9999994
## 90:1-30:1   91037.593 -339408.3 521483.4 0.9989819
## 30:2-30:1    7233.298 -423212.6 437679.2 1.0000000
## 60:2-30:1  -24726.686 -455172.5 405719.2 1.0000000
## 90:2-30:1  -94557.911 -525003.8 335887.9 0.9986626
## 30:3-30:1   63351.267 -367094.6 493797.1 0.9999314
## 60:3-30:1   85575.900 -344870.0 516021.8 0.9993505
## 90:3-30:1  157457.491 -272988.4 587903.3 0.9613140
## 90:1-60:1   56949.799 -373496.1 487395.7 0.9999696
## 30:2-60:1  -26854.496 -457300.4 403591.4 0.9999999
## 60:2-60:1  -58814.480 -489260.3 371631.4 0.9999611
## 90:2-60:1 -128645.705 -559091.6 301800.1 0.9889396
## 30:3-60:1   29263.473 -401182.4 459709.3 0.9999998
## 60:3-60:1   51488.106 -378957.7 481934.0 0.9999861
## 90:3-60:1  123369.698 -307076.2 553815.6 0.9915970
## 30:2-90:1  -83804.295 -514250.1 346641.6 0.9994427
## 60:2-90:1 -115764.279 -546210.1 314681.6 0.9945118
## 90:2-90:1 -185595.504 -616041.4 244850.4 0.9041954
## 30:3-90:1  -27686.326 -458132.2 402759.5 0.9999999
## 60:3-90:1   -5461.693 -435907.5 424984.2 1.0000000
## 90:3-90:1   66419.899 -364026.0 496865.8 0.9999017
## 60:2-30:2  -31959.984 -462405.8 398485.9 0.9999997
## 90:2-30:2 -101791.209 -532237.1 328654.6 0.9977430
## 30:3-30:2   56117.969 -374327.9 486563.8 0.9999729
## 60:3-30:2   78342.602 -352103.3 508788.5 0.9996610
## 90:3-30:2  150224.194 -280221.7 580670.0 0.9707393
## 90:2-60:2  -69831.225 -500277.1 360614.6 0.9998565
## 30:3-60:2   88077.953 -342367.9 518523.8 0.9991987
## 60:3-60:2  110302.586 -320143.3 540748.4 0.9960537
## 90:3-60:2  182184.178 -248261.7 612630.0 0.9130009
## 30:3-90:2  157909.178 -272536.7 588355.0 0.9606607
## 60:3-90:2  180133.811 -250312.0 610579.7 0.9180349
## 90:3-90:2  252015.403 -178430.5 682461.3 0.6385093
## 60:3-30:3   22224.633 -408221.2 452670.5 1.0000000
## 90:3-30:3   94106.224 -336339.6 524552.1 0.9987077
## 90:3-60:3   71881.592 -358564.3 502327.4 0.9998217
## 
## $`T:REP`
##                  diff       lwr      upr     p adj
## 60:1-30:1   -1500.314 -431946.2 428945.5 1.0000000
## 90:1-30:1   11910.317 -418535.5 442356.2 1.0000000
## 30:2-30:1  144636.133 -285809.7 575082.0 0.9767693
## 60:2-30:1  159643.227 -270802.6 590089.1 0.9580792
## 90:2-30:1  185158.192 -245287.7 615604.0 0.9053543
## 30:3-30:1   54037.133 -376408.7 484483.0 0.9999797
## 60:3-30:1   64882.796 -365563.1 495328.7 0.9999177
## 90:3-30:1   84957.367 -345488.5 515403.2 0.9993840
## 90:1-60:1   13410.631 -417035.2 443856.5 1.0000000
## 30:2-60:1  146136.448 -284309.4 576582.3 0.9752511
## 60:2-60:1  161143.542 -269302.3 591589.4 0.9557500
## 90:2-60:1  186658.506 -243787.3 617104.4 0.9013413
## 30:3-60:1   55537.448 -374908.4 485983.3 0.9999750
## 60:3-60:1   66383.110 -364062.7 496829.0 0.9999021
## 90:3-60:1   86457.681 -343988.2 516903.5 0.9993000
## 30:2-90:1  132725.817 -297720.0 563171.7 0.9864669
## 60:2-90:1  147732.911 -282712.9 578178.8 0.9735555
## 90:2-90:1  173247.875 -257198.0 603693.7 0.9335382
## 30:3-90:1   42126.817 -388319.0 472572.7 0.9999971
## 60:3-90:1   52972.479 -377473.4 483418.3 0.9999826
## 90:3-90:1   73047.050 -357398.8 503492.9 0.9997988
## 60:2-30:2   15007.094 -415438.8 445452.9 1.0000000
## 90:2-30:2   40522.058 -389923.8 470967.9 0.9999978
## 30:3-30:2  -90599.000 -521044.9 339846.9 0.9990168
## 60:3-30:2  -79753.337 -510199.2 350692.5 0.9996131
## 90:3-30:2  -59678.767 -490124.6 370767.1 0.9999565
## 90:2-60:2   25514.964 -404930.9 455960.8 0.9999999
## 30:3-60:2 -105606.094 -536051.9 324839.8 0.9970799
## 60:3-60:2  -94760.431 -525206.3 335685.4 0.9986419
## 90:3-60:2  -74685.861 -505131.7 355760.0 0.9997625
## 30:3-90:2 -131121.058 -561566.9 299324.8 0.9874859
## 60:3-90:2 -120275.396 -550721.2 310170.5 0.9929027
## 90:3-90:2 -100200.825 -530646.7 330245.0 0.9979801
## 60:3-30:3   10845.663 -419600.2 441291.5 1.0000000
## 90:3-30:3   30920.233 -399525.6 461366.1 0.9999997
## 90:3-60:3   20074.571 -410371.3 450520.4 1.0000000
## 
## $`S:REP`
##                diff        lwr       upr     p adj
## 2:1-1:1  -22091.215 -345984.93 301802.50 0.9999552
## 1:2-1:1  -18400.098 -323770.02 286969.82 0.9999758
## 2:2-1:1  360179.569   36285.86 684073.28 0.0203911
## 1:3-1:1  -10291.764 -334185.48 313601.95 0.9999990
## 2:3-1:1  143171.963 -162197.96 448541.88 0.7454488
## 1:2-2:1    3691.117 -320202.60 327584.83 1.0000000
## 2:2-2:1  382270.784   40856.83 723684.74 0.0191178
## 1:3-2:1   11799.451 -329614.50 353213.40 0.9999985
## 2:3-2:1  165263.177 -158630.54 489156.89 0.6719263
## 2:2-1:2  378579.667   54685.95 702473.38 0.0125044
## 1:3-1:2    8108.333 -315785.38 332002.05 0.9999997
## 2:3-1:2  161572.060 -143797.86 466941.98 0.6368646
## 1:3-2:2 -370471.334 -711885.28 -29057.38 0.0255095
## 2:3-2:2 -217007.607 -540901.32 106886.11 0.3766790
## 2:3-1:3  153463.727 -170429.99 477357.44 0.7369553
## 
## $`U:REP`
##                diff       lwr      upr     p adj
## 2:1-1:1  -39930.944 -470376.8 390514.9 0.9999981
## 3:1-1:1    7814.518 -422631.3 438260.4 1.0000000
## 1:2-1:1  140113.756 -290332.1 570559.6 0.9809243
## 2:2-1:1   54408.255 -376037.6 484854.1 0.9999786
## 3:2-1:1  252389.114 -178056.7 682835.0 0.6366612
## 1:3-1:1   50466.611 -379979.2 480912.5 0.9999881
## 2:3-1:1  -61073.630 -491519.5 369372.2 0.9999481
## 3:3-1:1  111636.006 -318809.8 542081.9 0.9957144
## 3:1-2:1   47745.463 -382700.4 478191.3 0.9999922
## 1:2-2:1  180044.700 -250401.2 610490.6 0.9182493
## 2:2-2:1   94339.199 -336106.7 524785.1 0.9986846
## 3:2-2:1  292320.058 -138125.8 722765.9 0.4383785
## 1:3-2:1   90397.556 -340048.3 520843.4 0.9990325
## 2:3-2:1  -21142.685 -451588.5 409303.2 1.0000000
## 3:3-2:1  151566.951 -278878.9 582012.8 0.9691328
## 1:2-3:1  132299.237 -298146.6 562745.1 0.9867439
## 2:2-3:1   46593.736 -383852.1 477039.6 0.9999936
## 3:2-3:1  244574.595 -185871.3 675020.4 0.6748956
## 1:3-3:1   42652.093 -387793.8 473097.9 0.9999968
## 2:3-3:1  -68888.148 -499334.0 361557.7 0.9998705
## 3:3-3:1  103821.488 -326624.4 534267.3 0.9974075
## 2:2-1:2  -85705.501 -516151.4 344740.4 0.9993433
## 3:2-1:2  112275.358 -318170.5 542721.2 0.9955436
## 1:3-1:2  -89647.144 -520093.0 340798.7 0.9990892
## 2:3-1:2 -201187.385 -631633.2 229258.5 0.8571020
## 3:3-1:2  -28477.749 -458923.6 401968.1 0.9999999
## 3:2-2:2  197980.859 -232465.0 628426.7 0.8676960
## 1:3-2:2   -3941.644 -434387.5 426504.2 1.0000000
## 2:3-2:2 -115481.885 -545927.7 314964.0 0.9946019
## 3:3-2:2   57227.751 -373218.1 487673.6 0.9999685
## 1:3-3:2 -201922.502 -632368.4 228523.4 0.8546084
## 2:3-3:2 -313462.743 -743908.6 116983.1 0.3422151
## 3:3-3:2 -140753.107 -571199.0 289692.7 0.9803740
## 2:3-1:3 -111540.241 -541986.1 318905.6 0.9957395
## 3:3-1:3   61169.395 -369276.5 491615.2 0.9999475
## 3:3-2:3  172709.636 -257736.2 603155.5 0.9346602
## 
## $`T:S:REP`
##                        diff        lwr       upr     p adj
## 60:1:1-30:1:1  -24632.09495  -620739.3  571475.1 1.0000000
## 90:1:1-30:1:1    7586.61343  -722492.6  737665.8 1.0000000
## 30:2:1-30:1:1  -39787.77247  -769867.0  690291.4 1.0000000
## 60:2:1-30:1:1  -51681.25406  -781760.5  678397.9 1.0000000
## 90:2:1-30:1:1   -5821.71795  -601928.9  590285.5 1.0000000
## 30:1:2-30:1:1   -5794.38802  -601901.6  590312.8 1.0000000
## 60:1:2-30:1:1     312.21078  -595795.0  596419.4 1.0000000
## 90:1:2-30:1:1 -136285.73449  -866364.9  593793.5 0.9999997
## 30:2:2-30:1:1  405709.40357  -324369.8 1135788.6 0.8590892
## 60:2:2-30:1:1  381860.75948  -348218.4 1111940.0 0.9089710
## 90:2:2-30:1:1  325986.26851  -270120.9  922093.4 0.8739122
## 30:1:3-30:1:1   -4238.13894  -600345.3  591869.0 1.0000000
## 60:1:3-30:1:1  -19887.34730  -749966.5  710191.9 1.0000000
## 90:1:3-30:1:1  -47249.93283  -777329.1  682829.3 1.0000000
## 30:2:3-30:1:1  135028.42150  -595050.8  865107.6 0.9999998
## 60:2:3-30:1:1  146144.96820  -449962.2  742252.1 0.9999845
## 90:2:3-30:1:1  133281.38823  -462825.8  729388.6 0.9999959
## 90:1:1-60:1:1   32218.70838  -697860.5  762297.9 1.0000000
## 30:2:1-60:1:1  -15155.67752  -745234.9  714923.5 1.0000000
## 60:2:1-60:1:1  -27049.15911  -757128.4  703030.0 1.0000000
## 90:2:1-60:1:1   18810.37700  -577296.8  614917.5 1.0000000
## 30:1:2-60:1:1   18837.70693  -577269.5  614944.9 1.0000000
## 60:1:2-60:1:1   24944.30573  -571162.9  621051.5 1.0000000
## 90:1:2-60:1:1 -111653.63954  -841732.8  618425.6 1.0000000
## 30:2:2-60:1:1  430341.49852  -299737.7 1160420.7 0.7940994
## 60:2:2-60:1:1  406492.85443  -323586.3 1136572.1 0.8572262
## 90:2:2-60:1:1  350618.36346  -245488.8  946725.5 0.7967626
## 30:1:3-60:1:1   20393.95601  -575713.2  616501.1 1.0000000
## 60:1:3-60:1:1    4744.74765  -725334.5  734823.9 1.0000000
## 90:1:3-60:1:1  -22617.83788  -752697.0  707461.4 1.0000000
## 30:2:3-60:1:1  159660.51645  -570418.7  889739.7 0.9999971
## 60:2:3-60:1:1  170777.06315  -425330.1  766884.2 0.9998655
## 90:2:3-60:1:1  157913.48318  -438193.7  754020.7 0.9999538
## 30:2:1-90:1:1  -47374.38590  -890397.2  795648.5 1.0000000
## 60:2:1-90:1:1  -59267.86749  -902290.7  783755.0 1.0000000
## 90:2:1-90:1:1  -13408.33138  -743487.5  716670.9 1.0000000
## 30:1:2-90:1:1  -13381.00145  -743460.2  716698.2 1.0000000
## 60:1:2-90:1:1   -7274.40265  -737353.6  722804.8 1.0000000
## 90:1:2-90:1:1 -143872.34792  -986895.2  699150.5 0.9999999
## 30:2:2-90:1:1  398122.79014  -444900.1 1241145.6 0.9607431
## 60:2:2-90:1:1  374274.14605  -468748.7 1217297.0 0.9777787
## 90:2:2-90:1:1  318399.65508  -411679.5 1048478.9 0.9812977
## 30:1:3-90:1:1  -11824.75237  -741904.0  718254.4 1.0000000
## 60:1:3-90:1:1  -27473.96073  -870496.8  815548.9 1.0000000
## 90:1:3-90:1:1  -54836.54626  -897859.4  788186.3 1.0000000
## 30:2:3-90:1:1  127441.80807  -715581.0  970464.7 1.0000000
## 60:2:3-90:1:1  138558.35477  -591520.8  868637.6 0.9999997
## 90:2:3-90:1:1  125694.77480  -604384.4  855774.0 0.9999999
## 60:2:1-30:2:1  -11893.48159  -854916.3  831129.4 1.0000000
## 90:2:1-30:2:1   33966.05452  -696113.1  764045.3 1.0000000
## 30:1:2-30:2:1   33993.38445  -696085.8  764072.6 1.0000000
## 60:1:2-30:2:1   40099.98325  -689979.2  770179.2 1.0000000
## 90:1:2-30:2:1  -96497.96201  -939520.8  746524.9 1.0000000
## 30:2:2-30:2:1  445497.17604  -397525.7 1288520.0 0.9016291
## 60:2:2-30:2:1  421648.53195  -421374.3 1264671.4 0.9360135
## 90:2:2-30:2:1  365774.04098  -364305.2 1095853.2 0.9351290
## 30:1:3-30:2:1   35549.63354  -694529.6  765628.8 1.0000000
## 60:1:3-30:2:1   19900.42518  -823122.4  862923.3 1.0000000
## 90:1:3-30:2:1   -7462.16036  -850485.0  835560.7 1.0000000
## 30:2:3-30:2:1  174816.19398  -668206.7 1017839.0 0.9999987
## 60:2:3-30:2:1  185932.74067  -544146.5  916011.9 0.9999733
## 90:2:3-30:2:1  173069.16070  -557010.0  903148.4 0.9999904
## 90:2:1-60:2:1   45859.53611  -684219.7  775938.7 1.0000000
## 30:1:2-60:2:1   45886.86604  -684192.3  775966.1 1.0000000
## 60:1:2-60:2:1   51993.46484  -678085.7  782072.7 1.0000000
## 90:1:2-60:2:1  -84604.48042  -927627.3  758418.4 1.0000000
## 30:2:2-60:2:1  457390.65763  -385632.2 1300413.5 0.8807640
## 60:2:2-60:2:1  433542.01354  -409480.8 1276564.9 0.9200934
## 90:2:2-60:2:1  377667.52257  -352411.7 1107746.7 0.9163633
## 30:1:3-60:2:1   47443.11513  -682636.1  777522.3 1.0000000
## 60:1:3-60:2:1   31793.90677  -811228.9  874816.8 1.0000000
## 90:1:3-60:2:1    4431.32123  -838591.5  847454.2 1.0000000
## 30:2:3-60:2:1  186709.67557  -656313.2 1029732.5 0.9999964
## 60:2:3-60:2:1  197826.22226  -532253.0  927905.4 0.9999368
## 90:2:3-60:2:1  184962.64229  -545116.6  915041.8 0.9999752
## 30:1:2-90:2:1      27.32993  -596079.8  596134.5 1.0000000
## 60:1:2-90:2:1    6133.92873  -589973.2  602241.1 1.0000000
## 90:1:2-90:2:1 -130464.01654  -860543.2  599615.2 0.9999999
## 30:2:2-90:2:1  411531.12152  -318548.1 1141610.3 0.8449133
## 60:2:2-90:2:1  387682.47743  -342396.7 1117761.7 0.8980253
## 90:2:2-90:2:1  331807.98646  -264299.2  927915.2 0.8574951
## 30:1:3-90:2:1    1583.57901  -594523.6  597690.7 1.0000000
## 60:1:3-90:2:1  -14065.62935  -744144.8  716013.6 1.0000000
## 90:1:3-90:2:1  -41428.21488  -771507.4  688651.0 1.0000000
## 30:2:3-90:2:1  140850.13945  -589229.1  870929.3 0.9999996
## 60:2:3-90:2:1  151966.68615  -444140.5  748073.9 0.9999730
## 90:2:3-90:2:1  139103.10618  -457004.1  735210.3 0.9999924
## 60:1:2-30:1:2    6106.59880  -590000.6  602213.8 1.0000000
## 90:1:2-30:1:2 -130491.34647  -860570.5  599587.9 0.9999999
## 30:2:2-30:1:2  411503.79159  -318575.4 1141583.0 0.8449816
## 60:2:2-30:1:2  387655.14750  -342424.1 1117734.3 0.8980785
## 90:2:2-30:1:2  331780.65653  -264326.5  927887.8 0.8575749
## 30:1:3-30:1:2    1556.24908  -594550.9  597663.4 1.0000000
## 60:1:3-30:1:2  -14092.95928  -744172.2  715986.2 1.0000000
## 90:1:3-30:1:2  -41455.54481  -771534.7  688623.7 1.0000000
## 30:2:3-30:1:2  140822.80952  -589256.4  870902.0 0.9999996
## 60:2:3-30:1:2  151939.35622  -444167.8  748046.5 0.9999730
## 90:2:3-30:1:2  139075.77625  -457031.4  735182.9 0.9999924
## 90:1:2-60:1:2 -136597.94527  -866677.1  593481.3 0.9999997
## 30:2:2-60:1:2  405397.19279  -324682.0 1135476.4 0.8598278
## 60:2:2-60:1:2  381548.54870  -348530.7 1111627.7 0.9095355
## 90:2:2-60:1:2  325674.05773  -270433.1  921781.2 0.8747594
## 30:1:3-60:1:2   -4550.34972  -600657.5  591556.8 1.0000000
## 60:1:3-60:1:2  -20199.55808  -750278.8  709879.6 1.0000000
## 90:1:3-60:1:2  -47562.14361  -777641.3  682517.1 1.0000000
## 30:2:3-60:1:2  134716.21072  -595363.0  864795.4 0.9999998
## 60:2:3-60:1:2  145832.75742  -450274.4  741939.9 0.9999849
## 90:2:3-60:1:2  132969.17745  -463138.0  729076.3 0.9999961
## 30:2:2-90:1:2  541995.13806  -301027.7 1385018.0 0.6688787
## 60:2:2-90:1:2  518146.49397  -324876.4 1361169.3 0.7378909
## 90:2:2-90:1:2  462272.00300  -267807.2 1192351.2 0.6931953
## 30:1:3-90:1:2  132047.59555  -598031.6  862126.8 0.9999998
## 60:1:3-90:1:2  116398.38719  -726624.5  959421.2 1.0000000
## 90:1:3-90:1:2   89035.80166  -753987.0  932058.6 1.0000000
## 30:2:3-90:1:2  271314.15599  -571708.7 1114337.0 0.9993894
## 60:2:3-90:1:2  282430.70269  -447648.5 1012509.9 0.9946211
## 90:2:3-90:1:2  269567.12272  -460512.1  999646.3 0.9968121
## 60:2:2-30:2:2  -23848.64409  -866871.5  819174.2 1.0000000
## 90:2:2-30:2:2  -79723.13506  -809802.3  650356.1 1.0000000
## 30:1:3-30:2:2 -409947.54250 -1140026.7  320131.7 0.8488448
## 60:1:3-30:2:2 -425596.75087 -1268619.6  417426.1 0.9309943
## 90:1:3-30:2:2 -452959.33640 -1295982.2  390063.5 0.8888296
## 30:2:3-30:2:2 -270680.98207 -1113703.8  572341.9 0.9994071
## 60:2:3-30:2:2 -259564.43537  -989643.6  470514.8 0.9979448
## 90:2:3-30:2:2 -272428.01534 -1002507.2  457651.2 0.9964048
## 90:2:2-60:2:2  -55874.49097  -785953.7  674204.7 1.0000000
## 30:1:3-60:2:2 -386098.89841 -1116178.1  343980.3 0.9010815
## 60:1:3-60:2:2 -401748.10678 -1244771.0  441274.7 0.9574832
## 90:1:3-60:2:2 -429110.69231 -1272133.5  413912.2 0.9263062
## 30:2:3-60:2:2 -246832.33798 -1089855.2  596190.5 0.9998202
## 60:2:3-60:2:2 -235715.79128  -965795.0  494363.4 0.9993644
## 90:2:3-60:2:2 -248579.37125  -978658.6  481499.8 0.9987747
## 30:1:3-90:2:2 -330224.40744  -926331.6  265882.8 0.8620766
## 60:1:3-90:2:2 -345873.61580 -1075952.8  384205.6 0.9596337
## 90:1:3-90:2:2 -373236.20134 -1103315.4  356843.0 0.9237321
## 30:2:3-90:2:2 -190957.84701  -921037.0  539121.4 0.9999613
## 60:2:3-90:2:2 -179841.30031  -775948.5  416265.9 0.9997334
## 90:2:3-90:2:2 -192704.88028  -788812.1  403402.3 0.9993542
## 60:1:3-30:1:3  -15649.20836  -745728.4  714430.0 1.0000000
## 90:1:3-30:1:3  -43011.79390  -773091.0  687067.4 1.0000000
## 30:2:3-30:1:3  139266.56044  -590812.6  869345.8 0.9999996
## 60:2:3-30:1:3  150383.10714  -445724.1  746490.3 0.9999767
## 90:2:3-30:1:3  137519.52717  -458587.6  733626.7 0.9999935
## 90:1:3-60:1:3  -27362.58554  -870385.4  815660.3 1.0000000
## 30:2:3-60:1:3  154915.76880  -688107.1  997938.6 0.9999998
## 60:2:3-60:1:3  166032.31550  -564046.9  896111.5 0.9999948
## 90:2:3-60:1:3  153168.73553  -576910.5  883247.9 0.9999984
## 30:2:3-90:1:3  182278.35433  -660744.5 1025301.2 0.9999975
## 60:2:3-90:1:3  193394.90103  -536684.3  923474.1 0.9999538
## 90:2:3-90:1:3  180531.32106  -549547.9  910610.5 0.9999824
## 60:2:3-30:2:3   11116.54670  -718962.7  741195.7 1.0000000
## 90:2:3-30:2:3   -1747.03327  -731826.2  728332.2 1.0000000
## 90:2:3-60:2:3  -12863.57997  -608970.7  583243.6 1.0000000
## 
## $`T:U:REP`
##                       diff        lwr       upr     p adj
## 60:1:1-30:1:1   17488.9349  -878467.3  913445.2 1.0000000
## 90:1:1-30:1:1   -1125.5768  -897081.8  894830.7 1.0000000
## 30:2:1-30:1:1  -54431.3997  -950387.7  841524.9 1.0000000
## 60:2:1-30:1:1  -35372.6827  -931328.9  860583.6 1.0000000
## 90:2:1-30:1:1  -22142.1169  -918098.4  873814.1 1.0000000
## 30:3:1-30:1:1    8121.8393  -887834.4  904078.1 1.0000000
## 60:3:1-30:1:1   18995.9909  -876960.3  914952.3 1.0000000
## 90:3:1-30:1:1   12689.0832  -883267.2  908645.3 1.0000000
## 30:1:2-30:1:1   72485.7646  -823470.5  968442.0 1.0000000
## 60:1:2-30:1:1  116978.8640  -778977.4 1012935.1 1.0000000
## 90:1:2-30:1:1  247239.9961  -648716.3 1143196.3 0.9999982
## 30:2:2-30:1:1  124796.2534  -771160.0 1020752.5 1.0000000
## 60:2:2-30:1:1  149865.6225  -746090.6 1045821.9 1.0000000
## 90:2:2-30:1:1 -103590.4773  -999546.7  792365.8 1.0000000
## 30:3:2-30:1:1  190316.8216  -705639.4 1086273.1 1.0000000
## 60:3:2-30:1:1  217698.3815  -678257.9 1113654.6 0.9999999
## 90:3:2-30:1:1  365515.4957  -530440.8 1261471.8 0.9981736
## 30:1:3-30:1:1    9284.3615  -886671.9  905240.6 1.0000000
## 60:1:3-30:1:1   47472.6871  -848483.6  943428.9 1.0000000
## 90:1:3-30:1:1  102489.4194  -793466.8  998445.7 1.0000000
## 30:2:3-30:1:1   24733.0783  -871223.2  920689.3 1.0000000
## 60:2:3-30:1:1 -111088.9162 -1007045.2  784867.3 1.0000000
## 90:2:3-30:1:1  -71984.9693  -967941.2  823971.3 1.0000000
## 30:3:3-30:1:1   73385.2661  -822571.0  969341.5 1.0000000
## 60:3:3-30:1:1   99710.4304  -796245.8  995666.7 1.0000000
## 90:3:3-30:1:1  169658.9558  -726297.3 1065615.2 1.0000000
## 90:1:1-60:1:1  -18614.5117  -914570.8  877341.7 1.0000000
## 30:2:1-60:1:1  -71920.3346  -967876.6  824035.9 1.0000000
## 60:2:1-60:1:1  -52861.6176  -948817.9  843094.6 1.0000000
## 90:2:1-60:1:1  -39631.0517  -935587.3  856325.2 1.0000000
## 30:3:1-60:1:1   -9367.0956  -905323.4  886589.2 1.0000000
## 60:3:1-60:1:1    1507.0561  -894449.2  897463.3 1.0000000
## 90:3:1-60:1:1   -4799.8516  -900756.1  891156.4 1.0000000
## 30:1:2-60:1:1   54996.8297  -840959.4  950953.1 1.0000000
## 60:1:2-60:1:1   99489.9292  -796466.3  995446.2 1.0000000
## 90:1:2-60:1:1  229751.0612  -666205.2 1125707.3 0.9999996
## 30:2:2-60:1:1  107307.3185  -788648.9 1003263.6 1.0000000
## 60:2:2-60:1:1  132376.6876  -763579.6 1028332.9 1.0000000
## 90:2:2-60:1:1 -121079.4121 -1017035.7  774876.8 1.0000000
## 30:3:2-60:1:1  172827.8867  -723128.4 1068784.1 1.0000000
## 60:3:2-60:1:1  200209.4467  -695746.8 1096165.7 1.0000000
## 90:3:2-60:1:1  348026.5609  -547929.7 1243982.8 0.9991376
## 30:1:3-60:1:1   -8204.5734  -904160.8  887751.7 1.0000000
## 60:1:3-60:1:1   29983.7522  -865972.5  925940.0 1.0000000
## 90:1:3-60:1:1   85000.4845  -810955.8  980956.7 1.0000000
## 30:2:3-60:1:1    7244.1434  -888712.1  903200.4 1.0000000
## 60:2:3-60:1:1 -128577.8510 -1024534.1  767378.4 1.0000000
## 90:2:3-60:1:1  -89473.9042  -985430.2  806482.4 1.0000000
## 30:3:3-60:1:1   55896.3313  -840059.9  951852.6 1.0000000
## 60:3:3-60:1:1   82221.4955  -813734.8  978177.8 1.0000000
## 90:3:3-60:1:1  152170.0209  -743786.2 1048126.3 1.0000000
## 30:2:1-90:1:1  -53305.8229  -949262.1  842650.4 1.0000000
## 60:2:1-90:1:1  -34247.1059  -930203.4  861709.2 1.0000000
## 90:2:1-90:1:1  -21016.5400  -916972.8  874939.7 1.0000000
## 30:3:1-90:1:1    9247.4161  -886708.8  905203.7 1.0000000
## 60:3:1-90:1:1   20121.5678  -875834.7  916077.8 1.0000000
## 90:3:1-90:1:1   13814.6601  -882141.6  909770.9 1.0000000
## 30:1:2-90:1:1   73611.3414  -822344.9  969567.6 1.0000000
## 60:1:2-90:1:1  118104.4409  -777851.8 1014060.7 1.0000000
## 90:1:2-90:1:1  248365.5729  -647590.7 1144321.8 0.9999980
## 30:2:2-90:1:1  125921.8302  -770034.4 1021878.1 1.0000000
## 60:2:2-90:1:1  150991.1993  -744965.1 1046947.5 1.0000000
## 90:2:2-90:1:1 -102464.9004  -998421.2  793491.4 1.0000000
## 30:3:2-90:1:1  191442.3984  -704513.9 1087398.7 1.0000000
## 60:3:2-90:1:1  218823.9584  -677132.3 1114780.2 0.9999999
## 90:3:2-90:1:1  366641.0726  -529315.2 1262597.3 0.9980881
## 30:1:3-90:1:1   10409.9383  -885546.3  906366.2 1.0000000
## 60:1:3-90:1:1   48598.2639  -847358.0  944554.5 1.0000000
## 90:1:3-90:1:1  103614.9963  -792341.3  999571.3 1.0000000
## 30:2:3-90:1:1   25858.6551  -870097.6  921814.9 1.0000000
## 60:2:3-90:1:1 -109963.3393 -1005919.6  785992.9 1.0000000
## 90:2:3-90:1:1  -70859.3924  -966815.7  825096.9 1.0000000
## 30:3:3-90:1:1   74510.8430  -821445.4  970467.1 1.0000000
## 60:3:3-90:1:1  100836.0072  -795120.3  996792.3 1.0000000
## 90:3:3-90:1:1  170784.5326  -725171.7 1066740.8 1.0000000
## 60:2:1-30:2:1   19058.7170  -876897.5  915015.0 1.0000000
## 90:2:1-30:2:1   32289.2829  -863667.0  928245.5 1.0000000
## 30:3:1-30:2:1   62553.2390  -833403.0  958509.5 1.0000000
## 60:3:1-30:2:1   73427.3907  -822528.9  969383.7 1.0000000
## 90:3:1-30:2:1   67120.4830  -828835.8  963076.7 1.0000000
## 30:1:2-30:2:1  126917.1643  -769039.1 1022873.4 1.0000000
## 60:1:2-30:2:1  171410.2638  -724546.0 1067366.5 1.0000000
## 90:1:2-30:2:1  301671.3958  -594284.9 1197627.7 0.9999213
## 30:2:2-30:2:1  179227.6531  -716728.6 1075183.9 1.0000000
## 60:2:2-30:2:1  204297.0223  -691659.2 1100253.3 1.0000000
## 90:2:2-30:2:1  -49159.0775  -945115.3  846797.2 1.0000000
## 30:3:2-30:2:1  244748.2213  -651208.0 1140704.5 0.9999985
## 60:3:2-30:2:1  272129.7813  -623826.5 1168086.0 0.9999882
## 90:3:2-30:2:1  419946.8955  -476009.4 1315903.2 0.9877046
## 30:1:3-30:2:1   63715.7612  -832240.5  959672.0 1.0000000
## 60:1:3-30:2:1  101904.0868  -794052.2  997860.3 1.0000000
## 90:1:3-30:2:1  156920.8192  -739035.4 1052877.1 1.0000000
## 30:2:3-30:2:1   79164.4781  -816791.8  975120.7 1.0000000
## 60:2:3-30:2:1  -56657.5164  -952613.8  839298.7 1.0000000
## 90:2:3-30:2:1  -17553.5695  -913509.8  878402.7 1.0000000
## 30:3:3-30:2:1  127816.6659  -768139.6 1023772.9 1.0000000
## 60:3:3-30:2:1  154141.8301  -741814.4 1050098.1 1.0000000
## 90:3:3-30:2:1  224090.3555  -671865.9 1120046.6 0.9999998
## 90:2:1-60:2:1   13230.5658  -882725.7  909186.8 1.0000000
## 30:3:1-60:2:1   43494.5220  -852461.7  939450.8 1.0000000
## 60:3:1-60:2:1   54368.6736  -841587.6  950324.9 1.0000000
## 90:3:1-60:2:1   48061.7659  -847894.5  944018.0 1.0000000
## 30:1:2-60:2:1  107858.4473  -788097.8 1003814.7 1.0000000
## 60:1:2-60:2:1  152351.5467  -743604.7 1048307.8 1.0000000
## 90:1:2-60:2:1  282612.6788  -613343.6 1178568.9 0.9999760
## 30:2:2-60:2:1  160168.9361  -735787.3 1056125.2 1.0000000
## 60:2:2-60:2:1  185238.3052  -710718.0 1081194.6 1.0000000
## 90:2:2-60:2:1  -68217.7946  -964174.1  827738.5 1.0000000
## 30:3:2-60:2:1  225689.5043  -670266.8 1121645.8 0.9999997
## 60:3:2-60:2:1  253071.0643  -642885.2 1149027.3 0.9999971
## 90:3:2-60:2:1  400888.1784  -495068.1 1296844.4 0.9932573
## 30:1:3-60:2:1   44657.0442  -851299.2  940613.3 1.0000000
## 60:1:3-60:2:1   82845.3698  -813110.9  978801.6 1.0000000
## 90:1:3-60:2:1  137862.1021  -758094.2 1033818.4 1.0000000
## 30:2:3-60:2:1   60105.7610  -835850.5  956062.0 1.0000000
## 60:2:3-60:2:1  -75716.2335  -971672.5  820240.0 1.0000000
## 90:2:3-60:2:1  -36612.2866  -932568.5  859344.0 1.0000000
## 30:3:3-60:2:1  108757.9488  -787198.3 1004714.2 1.0000000
## 60:3:3-60:2:1  135083.1131  -760873.1 1031039.4 1.0000000
## 90:3:3-60:2:1  205031.6385  -690924.6 1100987.9 1.0000000
## 30:3:1-90:2:1   30263.9561  -865692.3  926220.2 1.0000000
## 60:3:1-90:2:1   41138.1078  -854818.2  937094.4 1.0000000
## 90:3:1-90:2:1   34831.2001  -861125.1  930787.5 1.0000000
## 30:1:2-90:2:1   94627.8814  -801328.4  990584.1 1.0000000
## 60:1:2-90:2:1  139120.9809  -756835.3 1035077.2 1.0000000
## 90:1:2-90:2:1  269382.1129  -626574.1 1165338.4 0.9999903
## 30:2:2-90:2:1  146938.3702  -749017.9 1042894.6 1.0000000
## 60:2:2-90:2:1  172007.7394  -723948.5 1067964.0 1.0000000
## 90:2:2-90:2:1  -81448.3604  -977404.6  814507.9 1.0000000
## 30:3:2-90:2:1  212458.9384  -683497.3 1108415.2 0.9999999
## 60:3:2-90:2:1  239840.4984  -656115.8 1135796.8 0.9999990
## 90:3:2-90:2:1  387657.6126  -508298.6 1283613.9 0.9957338
## 30:1:3-90:2:1   31426.4783  -864529.8  927382.7 1.0000000
## 60:1:3-90:2:1   69614.8039  -826341.5  965571.1 1.0000000
## 90:1:3-90:2:1  124631.5363  -771324.7 1020587.8 1.0000000
## 30:2:3-90:2:1   46875.1952  -849081.1  942831.5 1.0000000
## 60:2:3-90:2:1  -88946.7993  -984903.1  807009.5 1.0000000
## 90:2:3-90:2:1  -49842.8524  -945799.1  846113.4 1.0000000
## 30:3:3-90:2:1   95527.3830  -800428.9  991483.6 1.0000000
## 60:3:3-90:2:1  121852.5472  -774103.7 1017808.8 1.0000000
## 90:3:3-90:2:1  191801.0726  -704155.2 1087757.3 1.0000000
## 60:3:1-30:3:1   10874.1517  -885082.1  906830.4 1.0000000
## 90:3:1-30:3:1    4567.2440  -891389.0  900523.5 1.0000000
## 30:1:2-30:3:1   64363.9253  -831592.3  960320.2 1.0000000
## 60:1:2-30:3:1  108857.0248  -787099.2 1004813.3 1.0000000
## 90:1:2-30:3:1  239118.1568  -656838.1 1135074.4 0.9999991
## 30:2:2-30:3:1  116674.4141  -779281.8 1012630.7 1.0000000
## 60:2:2-30:3:1  141743.7832  -754212.5 1037700.0 1.0000000
## 90:2:2-30:3:1 -111712.3165 -1007668.6  784243.9 1.0000000
## 30:3:2-30:3:1  182194.9823  -713761.3 1078151.2 1.0000000
## 60:3:2-30:3:1  209576.5423  -686379.7 1105532.8 0.9999999
## 90:3:2-30:3:1  357393.6565  -538562.6 1253349.9 0.9986989
## 30:1:3-30:3:1    1162.5222  -894793.7  897118.8 1.0000000
## 60:1:3-30:3:1   39350.8478  -856605.4  935307.1 1.0000000
## 90:1:3-30:3:1   94367.5802  -801588.7  990323.8 1.0000000
## 30:2:3-30:3:1   16611.2390  -879345.0  912567.5 1.0000000
## 60:2:3-30:3:1 -119210.7554 -1015167.0  776745.5 1.0000000
## 90:2:3-30:3:1  -80106.8086  -976063.1  815849.5 1.0000000
## 30:3:3-30:3:1   65263.4269  -830692.8  961219.7 1.0000000
## 60:3:3-30:3:1   91588.5911  -804367.7  987544.9 1.0000000
## 90:3:3-30:3:1  161537.1165  -734419.1 1057493.4 1.0000000
## 90:3:1-60:3:1   -6306.9077  -902263.2  889649.4 1.0000000
## 30:1:2-60:3:1   53489.7737  -842466.5  949446.0 1.0000000
## 60:1:2-60:3:1   97982.8731  -797973.4  993939.1 1.0000000
## 90:1:2-60:3:1  228244.0051  -667712.3 1124200.3 0.9999996
## 30:2:2-60:3:1  105800.2625  -790156.0 1001756.5 1.0000000
## 60:2:2-60:3:1  130869.6316  -765086.6 1026825.9 1.0000000
## 90:2:2-60:3:1 -122586.4682 -1018542.7  773369.8 1.0000000
## 30:3:2-60:3:1  171320.8306  -724635.4 1067277.1 1.0000000
## 60:3:2-60:3:1  198702.3906  -697253.9 1094658.7 1.0000000
## 90:3:2-60:3:1  346519.5048  -549436.8 1242475.8 0.9991945
## 30:1:3-60:3:1   -9711.6294  -905667.9  886244.6 1.0000000
## 60:1:3-60:3:1   28476.6962  -867479.6  924433.0 1.0000000
## 90:1:3-60:3:1   83493.4285  -812462.8  979449.7 1.0000000
## 30:2:3-60:3:1    5737.0874  -890219.2  901693.3 1.0000000
## 60:2:3-60:3:1 -130084.9071 -1026041.2  765871.4 1.0000000
## 90:2:3-60:3:1  -90980.9602  -986937.2  804975.3 1.0000000
## 30:3:3-60:3:1   54389.2752  -841567.0  950345.5 1.0000000
## 60:3:3-60:3:1   80714.4395  -815241.8  976670.7 1.0000000
## 90:3:3-60:3:1  150662.9649  -745293.3 1046619.2 1.0000000
## 30:1:2-90:3:1   59796.6814  -836159.6  955752.9 1.0000000
## 60:1:2-90:3:1  104289.7808  -791666.5 1000246.0 1.0000000
## 90:1:2-90:3:1  234550.9129  -661405.3 1130507.2 0.9999994
## 30:2:2-90:3:1  112107.1702  -783849.1 1008063.4 1.0000000
## 60:2:2-90:3:1  137176.5393  -758779.7 1033132.8 1.0000000
## 90:2:2-90:3:1 -116279.5605 -1012235.8  779676.7 1.0000000
## 30:3:2-90:3:1  177627.7383  -718328.5 1073584.0 1.0000000
## 60:3:2-90:3:1  205009.2983  -690947.0 1100965.6 1.0000000
## 90:3:2-90:3:1  352826.4125  -543129.8 1248782.7 0.9989324
## 30:1:3-90:3:1   -3404.7217  -899361.0  892551.5 1.0000000
## 60:1:3-90:3:1   34783.6039  -861172.7  930739.9 1.0000000
## 90:1:3-90:3:1   89800.3362  -806155.9  985756.6 1.0000000
## 30:2:3-90:3:1   12043.9951  -883912.3  908000.3 1.0000000
## 60:2:3-90:3:1 -123777.9994 -1019734.3  772178.3 1.0000000
## 90:2:3-90:3:1  -84674.0525  -980630.3  811282.2 1.0000000
## 30:3:3-90:3:1   60696.1829  -835260.1  956652.4 1.0000000
## 60:3:3-90:3:1   87021.3472  -808934.9  982977.6 1.0000000
## 90:3:3-90:3:1  156969.8726  -738986.4 1052926.1 1.0000000
## 60:1:2-30:1:2   44493.0994  -851463.2  940449.4 1.0000000
## 90:1:2-30:1:2  174754.2315  -721202.0 1070710.5 1.0000000
## 30:2:2-30:1:2   52310.4888  -843645.8  948266.7 1.0000000
## 60:2:2-30:1:2   77379.8579  -818576.4  973336.1 1.0000000
## 90:2:2-30:1:2 -176076.2419 -1072032.5  719880.0 1.0000000
## 30:3:2-30:1:2  117831.0570  -778125.2 1013787.3 1.0000000
## 60:3:2-30:1:2  145212.6170  -750743.6 1041168.9 1.0000000
## 90:3:2-30:1:2  293029.7311  -602926.5 1188986.0 0.9999533
## 30:1:3-30:1:2  -63201.4031  -959157.7  832754.9 1.0000000
## 60:1:3-30:1:2  -25013.0775  -920969.3  870943.2 1.0000000
## 90:1:3-30:1:2   30003.6548  -865952.6  925959.9 1.0000000
## 30:2:3-30:1:2  -47752.6863  -943708.9  848203.6 1.0000000
## 60:2:3-30:1:2 -183574.6808 -1079530.9  712381.6 1.0000000
## 90:2:3-30:1:2 -144470.7339 -1040427.0  751485.5 1.0000000
## 30:3:3-30:1:2     899.5015  -895056.8  896855.8 1.0000000
## 60:3:3-30:1:2   27224.6658  -868731.6  923180.9 1.0000000
## 90:3:3-30:1:2   97173.1912  -798783.1  993129.5 1.0000000
## 90:1:2-60:1:2  130261.1320  -765695.1 1026217.4 1.0000000
## 30:2:2-60:1:2    7817.3893  -888138.9  903773.6 1.0000000
## 60:2:2-60:1:2   32886.7585  -863069.5  928843.0 1.0000000
## 90:2:2-60:1:2 -220569.3413 -1116525.6  675386.9 0.9999998
## 30:3:2-60:1:2   73337.9575  -822618.3  969294.2 1.0000000
## 60:3:2-60:1:2  100719.5175  -795236.7  996675.8 1.0000000
## 90:3:2-60:1:2  248536.6317  -647419.6 1144492.9 0.9999980
## 30:1:3-60:1:2 -107694.5025 -1003650.8  788261.8 1.0000000
## 60:1:3-60:1:2  -69506.1770  -965462.4  826450.1 1.0000000
## 90:1:3-60:1:2  -14489.4446  -910445.7  881466.8 1.0000000
## 30:2:3-60:1:2  -92245.7857  -988202.0  803710.5 1.0000000
## 60:2:3-60:1:2 -228067.7802 -1124024.0  667888.5 0.9999997
## 90:2:3-60:1:2 -188963.8333 -1084920.1  706992.4 1.0000000
## 30:3:3-60:1:2  -43593.5979  -939549.9  852362.7 1.0000000
## 60:3:3-60:1:2  -17268.4337  -913224.7  878687.8 1.0000000
## 90:3:3-60:1:2   52680.0918  -843276.2  948636.4 1.0000000
## 30:2:2-90:1:2 -122443.7427 -1018400.0  773512.5 1.0000000
## 60:2:2-90:1:2  -97374.3736  -993330.6  798581.9 1.0000000
## 90:2:2-90:1:2 -350830.4733 -1246786.7  545125.8 0.9990224
## 30:3:2-90:1:2  -56923.1745  -952879.4  839033.1 1.0000000
## 60:3:2-90:1:2  -29541.6145  -925497.9  866414.6 1.0000000
## 90:3:2-90:1:2  118275.4996  -777680.8 1014231.8 1.0000000
## 30:1:3-90:1:2 -237955.6346 -1133911.9  658000.6 0.9999992
## 60:1:3-90:1:2 -199767.3090 -1095723.6  696189.0 1.0000000
## 90:1:3-90:1:2 -144750.5767 -1040706.8  751205.7 1.0000000
## 30:2:3-90:1:2 -222506.9178 -1118463.2  673449.3 0.9999998
## 60:2:3-90:1:2 -358328.9123 -1254285.2  537627.3 0.9986460
## 90:2:3-90:1:2 -319224.9654 -1215181.2  576731.3 0.9997899
## 30:3:3-90:1:2 -173854.7299 -1069811.0  722101.5 1.0000000
## 60:3:3-90:1:2 -147529.5657 -1043485.8  748426.7 1.0000000
## 90:3:3-90:1:2  -77581.0403  -973537.3  818375.2 1.0000000
## 60:2:2-30:2:2   25069.3691  -870886.9  921025.6 1.0000000
## 90:2:2-30:2:2 -228386.7307 -1124343.0  667569.5 0.9999996
## 30:3:2-30:2:2   65520.5682  -830435.7  961476.8 1.0000000
## 60:3:2-30:2:2   92902.1282  -803054.1  988858.4 1.0000000
## 90:3:2-30:2:2  240719.2423  -655237.0 1136675.5 0.9999989
## 30:1:3-30:2:2 -115511.8919 -1011468.2  780444.4 1.0000000
## 60:1:3-30:2:2  -77323.5663  -973279.8  818632.7 1.0000000
## 90:1:3-30:2:2  -22306.8340  -918263.1  873649.4 1.0000000
## 30:2:3-30:2:2 -100063.1751  -996019.4  795893.1 1.0000000
## 60:2:3-30:2:2 -235885.1696 -1131841.4  660071.1 0.9999993
## 90:2:3-30:2:2 -196781.2227 -1092737.5  699175.0 1.0000000
## 30:3:3-30:2:2  -51410.9873  -947367.2  844545.3 1.0000000
## 60:3:3-30:2:2  -25085.8230  -921042.1  870870.4 1.0000000
## 90:3:3-30:2:2   44862.7024  -851093.6  940819.0 1.0000000
## 90:2:2-60:2:2 -253456.0998 -1149412.4  642500.2 0.9999970
## 30:3:2-60:2:2   40451.1991  -855505.1  936407.5 1.0000000
## 60:3:2-60:2:2   67832.7590  -828123.5  963789.0 1.0000000
## 90:3:2-60:2:2  215649.8732  -680306.4 1111606.1 0.9999999
## 30:1:3-60:2:2 -140581.2610 -1036537.5  755375.0 1.0000000
## 60:1:3-60:2:2 -102392.9354  -998349.2  793563.3 1.0000000
## 90:1:3-60:2:2  -47376.2031  -943332.5  848580.1 1.0000000
## 30:2:3-60:2:2 -125132.5442 -1021088.8  770823.7 1.0000000
## 60:2:3-60:2:2 -260954.5387 -1156910.8  635001.7 0.9999947
## 90:2:3-60:2:2 -221850.5918 -1117806.9  674105.7 0.9999998
## 30:3:3-60:2:2  -76480.3564  -972436.6  819475.9 1.0000000
## 60:3:3-60:2:2  -50155.1921  -946111.5  845801.1 1.0000000
## 90:3:3-60:2:2   19793.3333  -876162.9  915749.6 1.0000000
## 30:3:2-90:2:2  293907.2988  -602049.0 1189863.6 0.9999507
## 60:3:2-90:2:2  321288.8588  -574667.4 1217245.1 0.9997656
## 90:3:2-90:2:2  469105.9730  -426850.3 1365062.2 0.9561104
## 30:1:3-90:2:2  112874.8388  -783081.4 1008831.1 1.0000000
## 60:1:3-90:2:2  151063.1644  -744893.1 1047019.4 1.0000000
## 90:1:3-90:2:2  206079.8967  -689876.4 1102036.2 1.0000000
## 30:2:3-90:2:2  128323.5556  -767632.7 1024279.8 1.0000000
## 60:2:3-90:2:2   -7498.4389  -903454.7  888457.8 1.0000000
## 90:2:3-90:2:2   31605.5080  -864350.8  927561.8 1.0000000
## 30:3:3-90:2:2  176975.7434  -718980.5 1072932.0 1.0000000
## 60:3:3-90:2:2  203300.9077  -692655.4 1099257.2 1.0000000
## 90:3:3-90:2:2  273249.4331  -622706.8 1169205.7 0.9999872
## 60:3:2-30:3:2   27381.5600  -868574.7  923337.8 1.0000000
## 90:3:2-30:3:2  175198.6742  -720757.6 1071154.9 1.0000000
## 30:1:3-30:3:2 -181032.4601 -1076988.7  714923.8 1.0000000
## 60:1:3-30:3:2 -142844.1345 -1038800.4  753112.1 1.0000000
## 90:1:3-30:3:2  -87827.4021  -983783.7  808128.9 1.0000000
## 30:2:3-30:3:2 -165583.7433 -1061540.0  730372.5 1.0000000
## 60:2:3-30:3:2 -301405.7377 -1197362.0  594550.5 0.9999225
## 90:2:3-30:3:2 -262301.7908 -1158258.1  633654.5 0.9999942
## 30:3:3-30:3:2 -116931.5554 -1012887.8  779024.7 1.0000000
## 60:3:3-30:3:2  -90606.3912  -986562.7  805349.9 1.0000000
## 90:3:3-30:3:2  -20657.8658  -916614.1  875298.4 1.0000000
## 90:3:2-60:3:2  147817.1142  -748139.1 1043773.4 1.0000000
## 30:1:3-60:3:2 -208414.0201 -1104370.3  687542.2 0.9999999
## 60:1:3-60:3:2 -170225.6945 -1066182.0  725730.6 1.0000000
## 90:1:3-60:3:2 -115208.9621 -1011165.2  780747.3 1.0000000
## 30:2:3-60:3:2 -192965.3032 -1088921.6  702991.0 1.0000000
## 60:2:3-60:3:2 -328787.2977 -1224743.6  567169.0 0.9996553
## 90:2:3-60:3:2 -289683.3508 -1185639.6  606272.9 0.9999621
## 30:3:3-60:3:2 -144313.1154 -1040269.4  751643.1 1.0000000
## 60:3:3-60:3:2 -117987.9512 -1013944.2  777968.3 1.0000000
## 90:3:3-60:3:2  -48039.4258  -943995.7  847916.8 1.0000000
## 30:1:3-90:3:2 -356231.1342 -1252187.4  539725.1 0.9987622
## 60:1:3-90:3:2 -318042.8086 -1213999.1  577913.5 0.9998027
## 90:1:3-90:3:2 -263026.0763 -1158982.3  632930.2 0.9999939
## 30:2:3-90:3:2 -340782.4174 -1236738.7  555173.8 0.9993822
## 60:2:3-90:3:2 -476604.4119 -1372560.7  419351.8 0.9483218
## 90:2:3-90:3:2 -437500.4650 -1333456.7  458455.8 0.9797832
## 30:3:3-90:3:2 -292130.2296 -1188086.5  603826.0 0.9999558
## 60:3:3-90:3:2 -265805.0653 -1161761.3  630151.2 0.9999925
## 90:3:3-90:3:2 -195856.5399 -1091812.8  700099.7 1.0000000
## 60:1:3-30:1:3   38188.3256  -857767.9  934144.6 1.0000000
## 90:1:3-30:1:3   93205.0579  -802751.2  989161.3 1.0000000
## 30:2:3-30:1:3   15448.7168  -880507.5  911405.0 1.0000000
## 60:2:3-30:1:3 -120373.2777 -1016329.5  775583.0 1.0000000
## 90:2:3-30:1:3  -81269.3308  -977225.6  814686.9 1.0000000
## 30:3:3-30:1:3   64100.9046  -831855.4  960057.2 1.0000000
## 60:3:3-30:1:3   90426.0689  -805530.2  986382.3 1.0000000
## 90:3:3-30:1:3  160374.5943  -735581.7 1056330.9 1.0000000
## 90:1:3-60:1:3   55016.7323  -840939.5  950973.0 1.0000000
## 30:2:3-60:1:3  -22739.6088  -918695.9  873216.7 1.0000000
## 60:2:3-60:1:3 -158561.6033 -1054517.9  737394.7 1.0000000
## 90:2:3-60:1:3 -119457.6564 -1015413.9  776498.6 1.0000000
## 30:3:3-60:1:3   25912.5790  -870043.7  921868.8 1.0000000
## 60:3:3-60:1:3   52237.7433  -843718.5  948194.0 1.0000000
## 90:3:3-60:1:3  122186.2687  -773770.0 1018142.5 1.0000000
## 30:2:3-90:1:3  -77756.3411  -973712.6  818199.9 1.0000000
## 60:2:3-90:1:3 -213578.3356 -1109534.6  682377.9 0.9999999
## 90:2:3-90:1:3 -174474.3887 -1070430.6  721481.9 1.0000000
## 30:3:3-90:1:3  -29104.1533  -925060.4  866852.1 1.0000000
## 60:3:3-90:1:3   -2778.9890  -898735.2  893177.3 1.0000000
## 90:3:3-90:1:3   67169.5364  -828786.7  963125.8 1.0000000
## 60:2:3-30:2:3 -135821.9945 -1031778.3  760134.3 1.0000000
## 90:2:3-30:2:3  -96718.0476  -992674.3  799238.2 1.0000000
## 30:3:3-30:2:3   48652.1878  -847304.1  944608.4 1.0000000
## 60:3:3-30:2:3   74977.3521  -820978.9  970933.6 1.0000000
## 90:3:3-30:2:3  144925.8775  -751030.4 1040882.1 1.0000000
## 90:2:3-60:2:3   39103.9469  -856852.3  935060.2 1.0000000
## 30:3:3-60:2:3  184474.1823  -711482.1 1080430.4 1.0000000
## 60:3:3-60:2:3  210799.3466  -685156.9 1106755.6 0.9999999
## 90:3:3-60:2:3  280747.8720  -615208.4 1176704.1 0.9999788
## 30:3:3-90:2:3  145370.2354  -750586.0 1041326.5 1.0000000
## 60:3:3-90:2:3  171695.3997  -724260.9 1067651.7 1.0000000
## 90:3:3-90:2:3  241643.9251  -654312.3 1137600.2 0.9999989
## 60:3:3-30:3:3   26325.1643  -869631.1  922281.4 1.0000000
## 90:3:3-30:3:3   96273.6897  -799682.6  992229.9 1.0000000
## 90:3:3-60:3:3   69948.5254  -826007.7  965904.8 1.0000000
plot(tk)

SUPUESTOS

Prueba de normalidad mediante el estadístico de Shapiro-Wilk

Hipótesis

Ho: Los residuos siguen la distribución normal

Ha: Los residuos no siguen la distribución normal

shapiro.test(anova$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  anova$residuals
## W = 0.75512, p-value = 3.924e-12

Prueba de Normalidad

qqnorm(anova$residuals)
qqline(anova$residuals)

Prueba de Homogeneidad de Varianzas

library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following object is masked from 'package:purrr':
## 
##     some
library(carData)
leveneTest(df$score~df$T)
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value Pr(>F)
## group   2   0.066 0.9361
##       105

Prueba de comparaciones múltiples LSD

LSD<-LSD.test(anova,"score",group=T,console=T)
## 
## Study: anova ~ "score"
## 
## LSD t Test for score 
## 
## Mean Square Error:  109437914178 
## 
## score,  means and individual ( 95 %) CI
## 
##              score std r        LCL       UCL        Min        Max
## 12.65        12.65  NA 1 -658203.48  658228.8      12.65      12.65
## 14.75        14.75  NA 1 -658201.38  658230.9      14.75      14.75
## 15.05        15.05  NA 1 -658201.08  658231.2      15.05      15.05
## 15.2         15.20   0 2 -465413.89  465444.3      15.20      15.20
## 15.85        15.85  NA 1 -658200.28  658232.0      15.85      15.85
## 17.1         17.10  NA 1 -658199.03  658233.2      17.10      17.10
## 18.5         18.50  NA 1 -658197.63  658234.6      18.50      18.50
## 18.6         18.60  NA 1 -658197.53  658234.7      18.60      18.60
## 19.05        19.05  NA 1 -658197.08  658235.2      19.05      19.05
## 19.65        19.65  NA 1 -658196.48  658235.8      19.65      19.65
## 22.25        22.25  NA 1 -658193.88  658238.4      22.25      22.25
## 24.2         24.20  NA 1 -658191.93  658240.3      24.20      24.20
## 24.61        24.61  NA 1 -658191.52  658240.7      24.61      24.61
## 25.19        25.19  NA 1 -658190.94  658241.3      25.19      25.19
## 25.39        25.39  NA 1 -658190.74  658241.5      25.39      25.39
## 25.75        25.75  NA 1 -658190.38  658241.9      25.75      25.75
## 26.53        26.53  NA 1 -658189.60  658242.7      26.53      26.53
## 27.6         27.60  NA 1 -658188.53  658243.7      27.60      27.60
## 27.72        27.72  NA 1 -658188.41  658243.8      27.72      27.72
## 27.9         27.90  NA 1 -658188.23  658244.0      27.90      27.90
## 29.05        29.05  NA 1 -658187.08  658245.2      29.05      29.05
## 34.58        34.58  NA 1 -658181.55  658250.7      34.58      34.58
## 35.05        35.05  NA 1 -658181.08  658251.2      35.05      35.05
## 35.35        35.35  NA 1 -658180.78  658251.5      35.35      35.35
## 35.85        35.85  NA 1 -658180.28  658252.0      35.85      35.85
## 37.1         37.10  NA 1 -658179.03  658253.2      37.10      37.10
## 37.2         37.20  NA 1 -658178.93  658253.3      37.20      37.20
## 37.95        37.95  NA 1 -658178.18  658254.1      37.95      37.95
## 38.75        38.75  NA 1 -658177.38  658254.9      38.75      38.75
## 38.8         38.80  NA 1 -658177.33  658254.9      38.80      38.80
## 39.65        39.65  NA 1 -658176.48  658255.8      39.65      39.65
## 40.45        40.45  NA 1 -658175.68  658256.6      40.45      40.45
## 40.9         40.90   0 2 -465388.19  465470.0      40.90      40.90
## 42.3         42.30  NA 1 -658173.83  658258.4      42.30      42.30
## 42.85        42.85  NA 1 -658173.28  658259.0      42.85      42.85
## 45.43        45.43  NA 1 -658170.70  658261.6      45.43      45.43
## 46.35        46.35  NA 1 -658169.78  658262.5      46.35      46.35
## 47.3         47.30  NA 1 -658168.83  658263.4      47.30      47.30
## 47.55        47.55  NA 1 -658168.58  658263.7      47.55      47.55
## 48.8         48.80  NA 1 -658167.33  658264.9      48.80      48.80
## 50.05        50.05  NA 1 -658166.08  658266.2      50.05      50.05
## 51.47        51.47  NA 1 -658164.66  658267.6      51.47      51.47
## 54.09        54.09  NA 1 -658162.04  658270.2      54.09      54.09
## 57.19        57.19  NA 1 -658158.94  658273.3      57.19      57.19
## 57.2         57.20  NA 1 -658158.93  658273.3      57.20      57.20
## 59.25        59.25  NA 1 -658156.88  658275.4      59.25      59.25
## 61.3         61.30  NA 1 -658154.83  658277.4      61.30      61.30
## 67.25        67.25  NA 1 -658148.88  658283.4      67.25      67.25
## 69           69.00  NA 1 -658147.13  658285.1      69.00      69.00
## 94.85        94.85  NA 1 -658121.28  658311.0      94.85      94.85
## 116.2       116.20  NA 1 -658099.93  658332.3     116.20     116.20
## 137.35      137.35  NA 1 -658078.78  658353.5     137.35     137.35
## 2260       2260.00  NA 1 -655956.13  660476.1    2260.00    2260.00
## 7430       7430.00  NA 1 -650786.13  665646.1    7430.00    7430.00
## 8030       8030.00  NA 1 -650186.13  666246.1    8030.00    8030.00
## 8950       8950.00  NA 1 -649266.13  667166.1    8950.00    8950.00
## 13500     13500.00  NA 1 -644716.13  671716.1   13500.00   13500.00
## 55800     55800.00  NA 1 -602416.13  714016.1   55800.00   55800.00
## 69300     69300.00  NA 1 -588916.13  727516.1   69300.00   69300.00
## 80800     80800.00  NA 1 -577416.13  739016.1   80800.00   80800.00
## 95100     95100.00  NA 1 -563116.13  753316.1   95100.00   95100.00
## 95200     95200.00  NA 1 -563016.13  753416.1   95200.00   95200.00
## 96600     96600.00  NA 1 -561616.13  754816.1   96600.00   96600.00
## 96700     96700.00  NA 1 -561516.13  754916.1   96700.00   96700.00
## 99800     99800.00  NA 1 -558416.13  758016.1   99800.00   99800.00
## 118000   118000.00  NA 1 -540216.13  776216.1  118000.00  118000.00
## 129000   129000.00  NA 1 -529216.13  787216.1  129000.00  129000.00
## 131000   131000.00   0 2 -334429.09  596429.1  131000.00  131000.00
## 134000   134000.00   0 2 -331429.09  599429.1  134000.00  134000.00
## 137000   137000.00  NA 1 -521216.13  795216.1  137000.00  137000.00
## 141000   141000.00  NA 1 -517216.13  799216.1  141000.00  141000.00
## 144000   144000.00  NA 1 -514216.13  802216.1  144000.00  144000.00
## 146000   146000.00  NA 1 -512216.13  804216.1  146000.00  146000.00
## 150000   150000.00  NA 1 -508216.13  808216.1  150000.00  150000.00
## 155000   155000.00  NA 1 -503216.13  813216.1  155000.00  155000.00
## 157000   157000.00  NA 1 -501216.13  815216.1  157000.00  157000.00
## 159000   159000.00  NA 1 -499216.13  817216.1  159000.00  159000.00
## 162000   162000.00  NA 1 -496216.13  820216.1  162000.00  162000.00
## 166000   166000.00  NA 1 -492216.13  824216.1  166000.00  166000.00
## 185000   185000.00  NA 1 -473216.13  843216.1  185000.00  185000.00
## 198000   198000.00  NA 1 -460216.13  856216.1  198000.00  198000.00
## 206000   206000.00  NA 1 -452216.13  864216.1  206000.00  206000.00
## 207000   207000.00  NA 1 -451216.13  865216.1  207000.00  207000.00
## 214000   214000.00  NA 1 -444216.13  872216.1  214000.00  214000.00
## 245000   245000.00  NA 1 -413216.13  903216.1  245000.00  245000.00
## 273000   273000.00  NA 1 -385216.13  931216.1  273000.00  273000.00
## 287000   287000.00  NA 1 -371216.13  945216.1  287000.00  287000.00
## 316000   316000.00   0 2 -149429.09  781429.1  316000.00  316000.00
## 319000   319000.00  NA 1 -339216.13  977216.1  319000.00  319000.00
## 330000   330000.00  NA 1 -328216.13  988216.1  330000.00  330000.00
## 378000   378000.00  NA 1 -280216.13 1036216.1  378000.00  378000.00
## 447000   447000.00   0 2  -18429.09  912429.1  447000.00  447000.00
## 453000   453000.00  NA 1 -205216.13 1111216.1  453000.00  453000.00
## 509000   509000.00  NA 1 -149216.13 1167216.1  509000.00  509000.00
## 536000   536000.00  NA 1 -122216.13 1194216.1  536000.00  536000.00
## 568000   568000.00  NA 1  -90216.13 1226216.1  568000.00  568000.00
## 6e+05    600000.00  NA 1  -58216.13 1258216.1  600000.00  600000.00
## 637000   637000.00  NA 1  -21216.13 1295216.1  637000.00  637000.00
## 673000   673000.00  NA 1   14783.87 1331216.1  673000.00  673000.00
## 1740000 1740000.00  NA 1 1081783.87 2398216.1 1740000.00 1740000.00
## 1780000 1780000.00  NA 1 1121783.87 2438216.1 1780000.00 1780000.00
## 2050000 2050000.00  NA 1 1391783.87 2708216.1 2050000.00 2050000.00
## 
## Alpha: 0.05 ; DF Error: 81
## Critical Value of t: 1.989686 
## 
## Groups according to probability of means differences and alpha level( 0.05 )
## 
## Treatments with the same letter are not significantly different.
## 
##              score groups
## 2050000 2050000.00      a
## 1780000 1780000.00      a
## 1740000 1740000.00      a
## 673000   673000.00      b
## 637000   637000.00      b
## 6e+05    600000.00      b
## 568000   568000.00      b
## 536000   536000.00      b
## 509000   509000.00      b
## 453000   453000.00      b
## 447000   447000.00      b
## 378000   378000.00      b
## 330000   330000.00      b
## 319000   319000.00      b
## 316000   316000.00      b
## 287000   287000.00      b
## 273000   273000.00      b
## 245000   245000.00      b
## 214000   214000.00      b
## 207000   207000.00      b
## 206000   206000.00      b
## 198000   198000.00      b
## 185000   185000.00      b
## 166000   166000.00      b
## 162000   162000.00      b
## 159000   159000.00      b
## 157000   157000.00      b
## 155000   155000.00      b
## 150000   150000.00      b
## 146000   146000.00      b
## 144000   144000.00      b
## 141000   141000.00      b
## 137000   137000.00      b
## 134000   134000.00      b
## 131000   131000.00      b
## 129000   129000.00      b
## 118000   118000.00      b
## 99800     99800.00      b
## 96700     96700.00      b
## 96600     96600.00      b
## 95200     95200.00      b
## 95100     95100.00      b
## 80800     80800.00      b
## 69300     69300.00      b
## 55800     55800.00      b
## 13500     13500.00      b
## 8950       8950.00      b
## 8030       8030.00      b
## 7430       7430.00      b
## 2260       2260.00      b
## 137.35      137.35      b
## 116.2       116.20      b
## 94.85        94.85      b
## 69           69.00      b
## 67.25        67.25      b
## 61.3         61.30      b
## 59.25        59.25      b
## 57.2         57.20      b
## 57.19        57.19      b
## 54.09        54.09      b
## 51.47        51.47      b
## 50.05        50.05      b
## 48.8         48.80      b
## 47.55        47.55      b
## 47.3         47.30      b
## 46.35        46.35      b
## 45.43        45.43      b
## 42.85        42.85      b
## 42.3         42.30      b
## 40.9         40.90      b
## 40.45        40.45      b
## 39.65        39.65      b
## 38.8         38.80      b
## 38.75        38.75      b
## 37.95        37.95      b
## 37.2         37.20      b
## 37.1         37.10      b
## 35.85        35.85      b
## 35.35        35.35      b
## 35.05        35.05      b
## 34.58        34.58      b
## 29.05        29.05      b
## 27.9         27.90      b
## 27.72        27.72      b
## 27.6         27.60      b
## 26.53        26.53      b
## 25.75        25.75      b
## 25.39        25.39      b
## 25.19        25.19      b
## 24.61        24.61      b
## 24.2         24.20      b
## 22.25        22.25      b
## 19.65        19.65      b
## 19.05        19.05      b
## 18.6         18.60      b
## 18.5         18.50      b
## 17.1         17.10      b
## 15.85        15.85      b
## 15.2         15.20      b
## 15.05        15.05      b
## 14.75        14.75      b
## 12.65        12.65      b
bar.group(x=LSD$groups,horiz=T,col="red",
          xlab="micotoxinas",ylab="tiempos (T)",main="Micotoxinas vs Tiempos")

#Prueba de comparaciones múltiples Duncan

Duncan<-duncan.test(anova,"score",group=T,console=T,alpha=0.01)
## 
## Study: anova ~ "score"
## 
## Duncan's new multiple range test
## for score 
## 
## Mean Square Error:  109437914178 
## 
## score,  means
## 
##              score std r        Min        Max
## 12.65        12.65  NA 1      12.65      12.65
## 14.75        14.75  NA 1      14.75      14.75
## 15.05        15.05  NA 1      15.05      15.05
## 15.2         15.20   0 2      15.20      15.20
## 15.85        15.85  NA 1      15.85      15.85
## 17.1         17.10  NA 1      17.10      17.10
## 18.5         18.50  NA 1      18.50      18.50
## 18.6         18.60  NA 1      18.60      18.60
## 19.05        19.05  NA 1      19.05      19.05
## 19.65        19.65  NA 1      19.65      19.65
## 22.25        22.25  NA 1      22.25      22.25
## 24.2         24.20  NA 1      24.20      24.20
## 24.61        24.61  NA 1      24.61      24.61
## 25.19        25.19  NA 1      25.19      25.19
## 25.39        25.39  NA 1      25.39      25.39
## 25.75        25.75  NA 1      25.75      25.75
## 26.53        26.53  NA 1      26.53      26.53
## 27.6         27.60  NA 1      27.60      27.60
## 27.72        27.72  NA 1      27.72      27.72
## 27.9         27.90  NA 1      27.90      27.90
## 29.05        29.05  NA 1      29.05      29.05
## 34.58        34.58  NA 1      34.58      34.58
## 35.05        35.05  NA 1      35.05      35.05
## 35.35        35.35  NA 1      35.35      35.35
## 35.85        35.85  NA 1      35.85      35.85
## 37.1         37.10  NA 1      37.10      37.10
## 37.2         37.20  NA 1      37.20      37.20
## 37.95        37.95  NA 1      37.95      37.95
## 38.75        38.75  NA 1      38.75      38.75
## 38.8         38.80  NA 1      38.80      38.80
## 39.65        39.65  NA 1      39.65      39.65
## 40.45        40.45  NA 1      40.45      40.45
## 40.9         40.90   0 2      40.90      40.90
## 42.3         42.30  NA 1      42.30      42.30
## 42.85        42.85  NA 1      42.85      42.85
## 45.43        45.43  NA 1      45.43      45.43
## 46.35        46.35  NA 1      46.35      46.35
## 47.3         47.30  NA 1      47.30      47.30
## 47.55        47.55  NA 1      47.55      47.55
## 48.8         48.80  NA 1      48.80      48.80
## 50.05        50.05  NA 1      50.05      50.05
## 51.47        51.47  NA 1      51.47      51.47
## 54.09        54.09  NA 1      54.09      54.09
## 57.19        57.19  NA 1      57.19      57.19
## 57.2         57.20  NA 1      57.20      57.20
## 59.25        59.25  NA 1      59.25      59.25
## 61.3         61.30  NA 1      61.30      61.30
## 67.25        67.25  NA 1      67.25      67.25
## 69           69.00  NA 1      69.00      69.00
## 94.85        94.85  NA 1      94.85      94.85
## 116.2       116.20  NA 1     116.20     116.20
## 137.35      137.35  NA 1     137.35     137.35
## 2260       2260.00  NA 1    2260.00    2260.00
## 7430       7430.00  NA 1    7430.00    7430.00
## 8030       8030.00  NA 1    8030.00    8030.00
## 8950       8950.00  NA 1    8950.00    8950.00
## 13500     13500.00  NA 1   13500.00   13500.00
## 55800     55800.00  NA 1   55800.00   55800.00
## 69300     69300.00  NA 1   69300.00   69300.00
## 80800     80800.00  NA 1   80800.00   80800.00
## 95100     95100.00  NA 1   95100.00   95100.00
## 95200     95200.00  NA 1   95200.00   95200.00
## 96600     96600.00  NA 1   96600.00   96600.00
## 96700     96700.00  NA 1   96700.00   96700.00
## 99800     99800.00  NA 1   99800.00   99800.00
## 118000   118000.00  NA 1  118000.00  118000.00
## 129000   129000.00  NA 1  129000.00  129000.00
## 131000   131000.00   0 2  131000.00  131000.00
## 134000   134000.00   0 2  134000.00  134000.00
## 137000   137000.00  NA 1  137000.00  137000.00
## 141000   141000.00  NA 1  141000.00  141000.00
## 144000   144000.00  NA 1  144000.00  144000.00
## 146000   146000.00  NA 1  146000.00  146000.00
## 150000   150000.00  NA 1  150000.00  150000.00
## 155000   155000.00  NA 1  155000.00  155000.00
## 157000   157000.00  NA 1  157000.00  157000.00
## 159000   159000.00  NA 1  159000.00  159000.00
## 162000   162000.00  NA 1  162000.00  162000.00
## 166000   166000.00  NA 1  166000.00  166000.00
## 185000   185000.00  NA 1  185000.00  185000.00
## 198000   198000.00  NA 1  198000.00  198000.00
## 206000   206000.00  NA 1  206000.00  206000.00
## 207000   207000.00  NA 1  207000.00  207000.00
## 214000   214000.00  NA 1  214000.00  214000.00
## 245000   245000.00  NA 1  245000.00  245000.00
## 273000   273000.00  NA 1  273000.00  273000.00
## 287000   287000.00  NA 1  287000.00  287000.00
## 316000   316000.00   0 2  316000.00  316000.00
## 319000   319000.00  NA 1  319000.00  319000.00
## 330000   330000.00  NA 1  330000.00  330000.00
## 378000   378000.00  NA 1  378000.00  378000.00
## 447000   447000.00   0 2  447000.00  447000.00
## 453000   453000.00  NA 1  453000.00  453000.00
## 509000   509000.00  NA 1  509000.00  509000.00
## 536000   536000.00  NA 1  536000.00  536000.00
## 568000   568000.00  NA 1  568000.00  568000.00
## 6e+05    600000.00  NA 1  600000.00  600000.00
## 637000   637000.00  NA 1  637000.00  637000.00
## 673000   673000.00  NA 1  673000.00  673000.00
## 1740000 1740000.00  NA 1 1740000.00 1740000.00
## 1780000 1780000.00  NA 1 1780000.00 1780000.00
## 2050000 2050000.00  NA 1 2050000.00 2050000.00
## 
## Groups according to probability of means differences and alpha level( 0.01 )
## 
## Means with the same letter are not significantly different.
## 
##              score groups
## 2050000 2050000.00      a
## 1780000 1780000.00     ab
## 1740000 1740000.00    abc
## 673000   673000.00    bcd
## 637000   637000.00    bcd
## 6e+05    600000.00    bcd
## 568000   568000.00    bcd
## 536000   536000.00    bcd
## 509000   509000.00    bcd
## 453000   453000.00    bcd
## 447000   447000.00    bcd
## 378000   378000.00    bcd
## 330000   330000.00     cd
## 319000   319000.00      d
## 316000   316000.00      d
## 287000   287000.00      d
## 273000   273000.00      d
## 245000   245000.00      d
## 214000   214000.00      d
## 207000   207000.00      d
## 206000   206000.00      d
## 198000   198000.00      d
## 185000   185000.00      d
## 166000   166000.00      d
## 162000   162000.00      d
## 159000   159000.00      d
## 157000   157000.00      d
## 155000   155000.00      d
## 150000   150000.00      d
## 146000   146000.00      d
## 144000   144000.00      d
## 141000   141000.00      d
## 137000   137000.00      d
## 134000   134000.00      d
## 131000   131000.00      d
## 129000   129000.00      d
## 118000   118000.00      d
## 99800     99800.00      d
## 96700     96700.00      d
## 96600     96600.00      d
## 95200     95200.00      d
## 95100     95100.00      d
## 80800     80800.00      d
## 69300     69300.00      d
## 55800     55800.00      d
## 13500     13500.00      d
## 8950       8950.00      d
## 8030       8030.00      d
## 7430       7430.00      d
## 2260       2260.00      d
## 137.35      137.35      d
## 116.2       116.20      d
## 94.85        94.85      d
## 69           69.00      d
## 67.25        67.25      d
## 61.3         61.30      d
## 59.25        59.25      d
## 57.2         57.20      d
## 57.19        57.19      d
## 54.09        54.09      d
## 51.47        51.47      d
## 50.05        50.05      d
## 48.8         48.80      d
## 47.55        47.55      d
## 47.3         47.30      d
## 46.35        46.35      d
## 45.43        45.43      d
## 42.85        42.85      d
## 42.3         42.30      d
## 40.9         40.90      d
## 40.45        40.45      d
## 39.65        39.65      d
## 38.8         38.80      d
## 38.75        38.75      d
## 37.95        37.95      d
## 37.2         37.20      d
## 37.1         37.10      d
## 35.85        35.85      d
## 35.35        35.35      d
## 35.05        35.05      d
## 34.58        34.58      d
## 29.05        29.05      d
## 27.9         27.90      d
## 27.72        27.72      d
## 27.6         27.60      d
## 26.53        26.53      d
## 25.75        25.75      d
## 25.39        25.39      d
## 25.19        25.19      d
## 24.61        24.61      d
## 24.2         24.20      d
## 22.25        22.25      d
## 19.65        19.65      d
## 19.05        19.05      d
## 18.6         18.60      d
## 18.5         18.50      d
## 17.1         17.10      d
## 15.85        15.85      d
## 15.2         15.20      d
## 15.05        15.05      d
## 14.75        14.75      d
## 12.65        12.65      d
bar.group(x=Duncan$groups,horiz=T,col="blue",
          xlab="micotoxinas",ylab="T",main="Micotoxinas vs Tiempos")

CONCLUSION

En las pruebas no se encontró diferencia significativa para Arpergillus y Aflatoxinas

Los resultados fueron consistentes con los obtenidos por los investigaodres, presentaron homocedasticidad de las varianzas para la ubicación en el silo para los niveles de Aspergillus y aflatoxinas (Test de Levene P<0.05) también se observó una distribución normal (Prueba de Shapiro) mientras que ellos usaron la prueba de Kolmogorov y se obtuvo igual resultados estadístico por lo tanto se puede inferir que los datos son confiables y permiten un análisis razonable. En cuanto a los valores de Aspergillus y aflatoxinas no se encontró diferencia estadística (P<0.05) frente al tiempo de monitoreo (30, 60 y 90 días) sin embargo en relación a la ubicación en el silo (lateral oeste, media y lateral este) donde se tomó la muestra, si existió significancia.