Many college courses conclude by giving students the opportunity to evaluate the course and the instructor anonymously. However, the use of these student evaluations as an indicator of course quality and teaching effectiveness is often criticized because these measures may reflect the influence of non-teaching related characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” by Hamermesh and Parker found that instructors who are viewed to be better looking receive higher instructional ratings.
Here, you will analyze the data from this study in order to learn what goes into a positive professor evaluation.
In this lab, you will explore and visualize the data using the tidyverse suite of packages. The data can be found in the companion package for OpenIntro resources, openintro.
Let’s load the packages.
library(tidyverse)
library(openintro)
library(GGally)This is the first time we’re using the GGally package. You will be using the ggpairs function from this package later in the lab.
The data were gathered from end of semester student evaluations for a large sample of professors from the University of Texas at Austin. In addition, six students rated the professors’ physical appearance. The result is a data frame where each row contains a different course and columns represent variables about the courses and professors. It’s called evals.
glimpse(evals)## Rows: 463
## Columns: 23
## $ course_id <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1…
## $ prof_id <int> 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5,…
## $ score <dbl> 4.7, 4.1, 3.9, 4.8, 4.6, 4.3, 2.8, 4.1, 3.4, 4.5, 3.8, 4…
## $ rank <fct> tenure track, tenure track, tenure track, tenure track, …
## $ ethnicity <fct> minority, minority, minority, minority, not minority, no…
## $ gender <fct> female, female, female, female, male, male, male, male, …
## $ language <fct> english, english, english, english, english, english, en…
## $ age <int> 36, 36, 36, 36, 59, 59, 59, 51, 51, 40, 40, 40, 40, 40, …
## $ cls_perc_eval <dbl> 55.81395, 68.80000, 60.80000, 62.60163, 85.00000, 87.500…
## $ cls_did_eval <int> 24, 86, 76, 77, 17, 35, 39, 55, 111, 40, 24, 24, 17, 14,…
## $ cls_students <int> 43, 125, 125, 123, 20, 40, 44, 55, 195, 46, 27, 25, 20, …
## $ cls_level <fct> upper, upper, upper, upper, upper, upper, upper, upper, …
## $ cls_profs <fct> single, single, single, single, multiple, multiple, mult…
## $ cls_credits <fct> multi credit, multi credit, multi credit, multi credit, …
## $ bty_f1lower <int> 5, 5, 5, 5, 4, 4, 4, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 7, 7,…
## $ bty_f1upper <int> 7, 7, 7, 7, 4, 4, 4, 2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 9, 9,…
## $ bty_f2upper <int> 6, 6, 6, 6, 2, 2, 2, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 9, 9,…
## $ bty_m1lower <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 7, 7,…
## $ bty_m1upper <int> 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6,…
## $ bty_m2upper <int> 6, 6, 6, 6, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6,…
## $ bty_avg <dbl> 5.000, 5.000, 5.000, 5.000, 3.000, 3.000, 3.000, 3.333, …
## $ pic_outfit <fct> not formal, not formal, not formal, not formal, not form…
## $ pic_color <fct> color, color, color, color, color, color, color, color, …
We have observations on 21 different variables, some categorical and some numerical. The meaning of each variable can be found by bringing up the help file:
?evalsThis is an observational study - There is no control group defined for this study
score. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?evals %>%
ggplot(aes(x=score)) +
geom_histogram(binwidth=0.1) +
labs (title = "Rate my Teacher" )evals %>%
ggplot() +
geom_boxplot(mapping = aes(x=score, color=gender)) +
labs (title = "Rate my Teacher (by gender)" )summary(evals$score)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.300 3.800 4.300 4.175 4.600 5.000
The score is normally distributed by skewed right with a mean of 4.18 and a median 4.3
score, select two other variables and describe their relationship with each other using an appropriate visualization.evals %>%
ggplot(aes(x=age, y=bty_avg, color=gender )) +
geom_point() +
geom_jitter() +
geom_smooth(method = lm) +
labs (title = "Beauty Average mapped Against Age (grouped by gender)" )There is a negative relationship between age and beauty. As the age of the professor goes up there is a tendency to rate the average beauty lower. Interestingly the age penalty for beauty is higher for male vs female lectures
The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more favorably. Let’s create a scatterplot to see if this appears to be the case:
ggplot(data = evals, aes(x = bty_avg, y = score)) +
geom_point()dim(evals)## [1] 463 23
glimpse(evals$bty_avg)## num [1:463] 5 5 5 5 3 ...
glimpse(evals$score)## num [1:463] 4.7 4.1 3.9 4.8 4.6 4.3 2.8 4.1 3.4 4.5 ...
Before you draw conclusions about the trend, compare the number of observations in the data frame with the approximate number of points on the scatterplot. Is anything awry?
There are far fewer visual data points than the 463 that should be graphed
geom_jitter as your layer. What was misleading about the initial scatterplot?ggplot(data = evals, aes(x = bty_avg, y = score)) +
geom_jitter()given the limited real estate for plotting it was difficult to get sense of density because points were being plotted directly over each other
m_bty to predict average professor score by average beauty rating. Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor?Add the line of the best fit model to your plot using the following:
ggplot(data = evals, aes(x = bty_avg, y = score)) +
geom_jitter() +
geom_smooth(method = "lm")\(y = b_{1}x + b_{0}\)
m_bty <- lm(data=evals, score ~ bty_avg)
summary(m_bty)##
## Call:
## lm(formula = score ~ bty_avg, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9246 -0.3690 0.1420 0.3977 0.9309
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.88034 0.07614 50.96 < 2e-16 ***
## bty_avg 0.06664 0.01629 4.09 5.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared: 0.03502, Adjusted R-squared: 0.03293
## F-statistic: 16.73 on 1 and 461 DF, p-value: 5.083e-05
\(y = 0.067x + 3.880\)
intercept: at an average beauty score of zero the teachers score will be 3.880 slope: for each additional 1 unit increase in beauty score the teachers score will increase by 0.0.67 the p-value is less then 0.05 so we would reject the H0 in favor of the alternative hypothesis at the 0.05 confidence
The blue line is the model. The shaded gray area around the line tells you about the variability you might expect in your predictions. To turn that off, use se = FALSE.
ggplot(data = evals, aes(x = bty_avg, y = score)) +
geom_jitter() +
geom_smooth(method = "lm", se = TRUE)par(mfrow = c(1,1))
plot(m_bty)linearity: from the scatter plot we can see a linear positive relationship between beauty score and teacher evaluation near normal residual: from the histogram plot we can see a near normal distribution constant variability: from the scatter plot of the residuals you can see a constant variability across the prediction range independence: the data was gathered from a large number of professors at the university of texas we can assume the observations are independent
The data set contains several variables on the beauty score of the professor: individual ratings from each of the six students who were asked to score the physical appearance of the professors and the average of these six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.
ggplot(data = evals, aes(x = bty_f1lower, y = bty_avg)) +
geom_point()evals %>%
summarise(cor(bty_avg, bty_f1lower))## # A tibble: 1 × 1
## `cor(bty_avg, bty_f1lower)`
## <dbl>
## 1 0.844
As expected, the relationship is quite strong—after all, the average score is calculated using the individual scores. You can actually look at the relationships between all beauty variables (columns 13 through 19) using the following command:
evals %>%
select(contains("bty")) %>%
ggpairs()These variables are collinear (correlated), and adding more than one of these variables to the model would not add much value to the model. In this application and with these highly-correlated predictors, it is reasonable to use the average beauty score as the single representative of these variables.
In order to see if beauty is still a significant predictor of professor score after you’ve accounted for the professor’s gender, you can add the gender term into the model.
m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)
summary(m_bty_gen)##
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8305 -0.3625 0.1055 0.4213 0.9314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.74734 0.08466 44.266 < 2e-16 ***
## bty_avg 0.07416 0.01625 4.563 6.48e-06 ***
## gendermale 0.17239 0.05022 3.433 0.000652 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared: 0.05912, Adjusted R-squared: 0.05503
## F-statistic: 14.45 on 2 and 460 DF, p-value: 8.177e-07
par(mfrow = c(1,1))
plot(m_bty_gen)linearity: from the scatter plot we can see a linear positive relationship between beauty score and teacher evaluation near normal residual: from the q-q plot we can see a near normal distribution for both male and female standard errors constant variability: the volatility is is consistent with some variation at the ends of the prediction range independence: the data was gathered from a large number of professors at the university of texas we can assume the observations are independent
bty_avg still a significant predictor of score? Has the addition of gender to the model changed the parameter estimate for bty_avg?summary(m_bty_gen)##
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8305 -0.3625 0.1055 0.4213 0.9314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.74734 0.08466 44.266 < 2e-16 ***
## bty_avg 0.07416 0.01625 4.563 6.48e-06 ***
## gendermale 0.17239 0.05022 3.433 0.000652 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared: 0.05912, Adjusted R-squared: 0.05503
## F-statistic: 14.45 on 2 and 460 DF, p-value: 8.177e-07
summary(m_bty)##
## Call:
## lm(formula = score ~ bty_avg, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9246 -0.3690 0.1420 0.3977 0.9309
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.88034 0.07614 50.96 < 2e-16 ***
## bty_avg 0.06664 0.01629 4.09 5.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared: 0.03502, Adjusted R-squared: 0.03293
## F-statistic: 16.73 on 1 and 461 DF, p-value: 5.083e-05
yes - the addition of gender slightly improved the parameter estimate for bty_avg
Note that the estimate for gender is now called gendermale. You’ll see this name change whenever you introduce a categorical variable. The reason is that R recodes gender from having the values of male and female to being an indicator variable called gendermale that takes a value of \(0\) for female professors and a value of \(1\) for male professors. (Such variables are often referred to as “dummy” variables.)
As a result, for female professors, the parameter estimate is multiplied by zero, leaving the intercept and slope form familiar from simple regression.
\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times (0) \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]
ggplot(data = evals, aes(x = bty_avg, y = score, color = pic_color)) +
geom_smooth(method = "lm", formula = y ~ x, se = FALSE)m_bty_pic <- lm(score ~ bty_avg + pic_color, data = evals)
summary(m_bty_pic)##
## Call:
## lm(formula = score ~ bty_avg + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8892 -0.3690 0.1293 0.4023 0.9125
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.06318 0.10908 37.249 < 2e-16 ***
## bty_avg 0.05548 0.01691 3.282 0.00111 **
## pic_colorcolor -0.16059 0.06892 -2.330 0.02022 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5323 on 460 degrees of freedom
## Multiple R-squared: 0.04628, Adjusted R-squared: 0.04213
## F-statistic: 11.16 on 2 and 460 DF, p-value: 1.848e-05
$ = b_{0} + b_{1} bty_avg + b_{2} pic_colorcolor $
$ = 4.063 + 0.055 bty_avg - 0.161 pic_colorcolor $ $ = 4.063 + 0.055 bty_avg - 0.161 $ \(\widehat{score} = 4.063 + 0.055 \times bty\_avg\)
The decision to call the indicator variable gendermale instead of genderfemale has no deeper meaning. R simply codes the category that comes first alphabetically as a \(0\). (You can change the reference level of a categorical variable, which is the level that is coded as a 0, using therelevel() function. Use ?relevel to learn more.)
m_bty_rank with gender removed and rank added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching, tenure track, tenured.m_bty_rank <- lm(score ~ bty_avg + rank, data = evals)
summary(m_bty_rank)##
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8713 -0.3642 0.1489 0.4103 0.9525
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.98155 0.09078 43.860 < 2e-16 ***
## bty_avg 0.06783 0.01655 4.098 4.92e-05 ***
## ranktenure track -0.16070 0.07395 -2.173 0.0303 *
## ranktenured -0.12623 0.06266 -2.014 0.0445 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared: 0.04652, Adjusted R-squared: 0.04029
## F-statistic: 7.465 on 3 and 459 DF, p-value: 6.88e-05
The interpretation of the coefficients in multiple regression is slightly different from that of simple regression. The estimate for bty_avg reflects how much higher a group of professors is expected to score if they have a beauty rating that is one point higher while holding all other variables constant. In this case, that translates into considering only professors of the same rank with bty_avg scores that are one point apart.
We will start with a full model that predicts professor score based on rank, gender, ethnicity, language of the university where they got their degree, age, proportion of students that filled out evaluations, class size, course level, number of professors, number of credits, average beauty rating, outfit, and picture color.
cls_credits - I am not sure if the credits would impact the teachers evaluation score
Let’s run the model…
m_full <- lm(score ~ rank + gender + ethnicity + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full)##
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age +
## cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.77397 -0.32432 0.09067 0.35183 0.95036
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0952141 0.2905277 14.096 < 2e-16 ***
## ranktenure track -0.1475932 0.0820671 -1.798 0.07278 .
## ranktenured -0.0973378 0.0663296 -1.467 0.14295
## gendermale 0.2109481 0.0518230 4.071 5.54e-05 ***
## ethnicitynot minority 0.1234929 0.0786273 1.571 0.11698
## languagenon-english -0.2298112 0.1113754 -2.063 0.03965 *
## age -0.0090072 0.0031359 -2.872 0.00427 **
## cls_perc_eval 0.0053272 0.0015393 3.461 0.00059 ***
## cls_students 0.0004546 0.0003774 1.205 0.22896
## cls_levelupper 0.0605140 0.0575617 1.051 0.29369
## cls_profssingle -0.0146619 0.0519885 -0.282 0.77806
## cls_creditsone credit 0.5020432 0.1159388 4.330 1.84e-05 ***
## bty_avg 0.0400333 0.0175064 2.287 0.02267 *
## pic_outfitnot formal -0.1126817 0.0738800 -1.525 0.12792
## pic_colorcolor -0.2172630 0.0715021 -3.039 0.00252 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared: 0.1871, Adjusted R-squared: 0.1617
## F-statistic: 7.366 on 14 and 448 DF, p-value: 6.552e-14
i was wrong it looks like the number of professors teaching a course in the sample has the highest p-value of 0.778
all other variables being equal if the professor is a minority the associated score will increase by 0.123 units
m_partial <- lm(score ~ rank + gender + ethnicity + language + age + cls_perc_eval
+ cls_students + cls_level + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_partial)##
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age +
## cls_perc_eval + cls_students + cls_level + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7836 -0.3257 0.0859 0.3513 0.9551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0872523 0.2888562 14.150 < 2e-16 ***
## ranktenure track -0.1476746 0.0819824 -1.801 0.072327 .
## ranktenured -0.0973829 0.0662614 -1.470 0.142349
## gendermale 0.2101231 0.0516873 4.065 5.66e-05 ***
## ethnicitynot minority 0.1274458 0.0772887 1.649 0.099856 .
## languagenon-english -0.2282894 0.1111305 -2.054 0.040530 *
## age -0.0089992 0.0031326 -2.873 0.004262 **
## cls_perc_eval 0.0052888 0.0015317 3.453 0.000607 ***
## cls_students 0.0004687 0.0003737 1.254 0.210384
## cls_levelupper 0.0606374 0.0575010 1.055 0.292200
## cls_creditsone credit 0.5061196 0.1149163 4.404 1.33e-05 ***
## bty_avg 0.0398629 0.0174780 2.281 0.023032 *
## pic_outfitnot formal -0.1083227 0.0721711 -1.501 0.134080
## pic_colorcolor -0.2190527 0.0711469 -3.079 0.002205 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared: 0.187, Adjusted R-squared: 0.1634
## F-statistic: 7.943 on 13 and 449 DF, p-value: 2.336e-14
yes - the coefficients and teh singnficance measures changed the dropped variable are not collinear because they are correlated and cannot be used to independently predict the dependent variable
m1 <- lm(score ~ gender + + ethnicity + language + age + cls_perc_eval
+ cls_credits + bty_avg
+ pic_color, data = evals)
summary(m1)##
## Call:
## lm(formula = score ~ gender + +ethnicity + language + age + cls_perc_eval +
## cls_credits + bty_avg + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.85320 -0.32394 0.09984 0.37930 0.93610
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.771922 0.232053 16.255 < 2e-16 ***
## gendermale 0.207112 0.050135 4.131 4.30e-05 ***
## ethnicitynot minority 0.167872 0.075275 2.230 0.02623 *
## languagenon-english -0.206178 0.103639 -1.989 0.04726 *
## age -0.006046 0.002612 -2.315 0.02108 *
## cls_perc_eval 0.004656 0.001435 3.244 0.00127 **
## cls_creditsone credit 0.505306 0.104119 4.853 1.67e-06 ***
## bty_avg 0.051069 0.016934 3.016 0.00271 **
## pic_colorcolor -0.190579 0.067351 -2.830 0.00487 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4992 on 454 degrees of freedom
## Multiple R-squared: 0.1722, Adjusted R-squared: 0.1576
## F-statistic: 11.8 on 8 and 454 DF, p-value: 2.58e-15
m1 <- lm(score ~ gender + + ethnicity + age + cls_perc_eval
+ cls_credits + bty_avg
+ pic_color, data = evals)
summary(m1)##
## Call:
## lm(formula = score ~ gender + +ethnicity + age + cls_perc_eval +
## cls_credits + bty_avg + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.85434 -0.33568 0.09247 0.38288 0.93903
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.690771 0.229181 16.104 < 2e-16 ***
## gendermale 0.201574 0.050220 4.014 6.99e-05 ***
## ethnicitynot minority 0.216955 0.071348 3.041 0.00250 **
## age -0.006034 0.002621 -2.302 0.02176 *
## cls_perc_eval 0.004719 0.001439 3.278 0.00113 **
## cls_creditsone credit 0.527806 0.103839 5.083 5.44e-07 ***
## bty_avg 0.052431 0.016975 3.089 0.00213 **
## pic_colorcolor -0.170149 0.066780 -2.548 0.01116 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5008 on 455 degrees of freedom
## Multiple R-squared: 0.1649, Adjusted R-squared: 0.1521
## F-statistic: 12.84 on 7 and 455 DF, p-value: 4.344e-15
m_final <- lm(score ~ gender + + ethnicity + language + age + cls_perc_eval
+ cls_credits + bty_avg
+ pic_color, data = evals)
summary(m_final)##
## Call:
## lm(formula = score ~ gender + +ethnicity + language + age + cls_perc_eval +
## cls_credits + bty_avg + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.85320 -0.32394 0.09984 0.37930 0.93610
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.771922 0.232053 16.255 < 2e-16 ***
## gendermale 0.207112 0.050135 4.131 4.30e-05 ***
## ethnicitynot minority 0.167872 0.075275 2.230 0.02623 *
## languagenon-english -0.206178 0.103639 -1.989 0.04726 *
## age -0.006046 0.002612 -2.315 0.02108 *
## cls_perc_eval 0.004656 0.001435 3.244 0.00127 **
## cls_creditsone credit 0.505306 0.104119 4.853 1.67e-06 ***
## bty_avg 0.051069 0.016934 3.016 0.00271 **
## pic_colorcolor -0.190579 0.067351 -2.830 0.00487 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4992 on 454 degrees of freedom
## Multiple R-squared: 0.1722, Adjusted R-squared: 0.1576
## F-statistic: 11.8 on 8 and 454 DF, p-value: 2.58e-15
\[ $\widehat{score} = 3.77 + 0.207 \times gendermale + 0.168 \times ethnicitynot\_minority - 0.206 \times languagenon\_english - 0.006 \times age + 0.005 \times cls\_perc\_eval + 0.505 \times cls\_creditsone\_credit + 0.051 \times bty\_avg - 0.190 \times pic\_colorcolor \]
par(c(1,1))## NULL
plot(m_final)no there are outlines in the residual plot that do not conform to normal distribution or near constant residuals
yes the variables would not be independent because the same teacher would be graded on multiple observations.
** - male - ethnic minority - non English speaker - younger - with a higher percentage of students fill out the evaluation - teacher of multi credit courses - attractive - with a black and white picture **
no - with an r squared of only 0.158 this model has limited predicting power