library(GAD)
## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.
dat<-read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/PowderProduction.csv")

dat$Ammonium<-as.fixed(dat$Ammonium)
dat$StirRate<-as.fixed(dat$StirRate)
dat$Temperature<-as.fixed(dat$Temperature)
str(dat)
## 'data.frame':    16 obs. of  4 variables:
##  $ Ammonium   : Factor w/ 2 levels "2","30": 1 1 2 2 1 1 2 2 1 1 ...
##  $ StirRate   : Factor w/ 2 levels "100","150": 1 1 1 1 2 2 2 2 1 1 ...
##  $ Temperature: Factor w/ 2 levels "8","40": 1 1 1 1 1 1 1 1 2 2 ...
##  $ Density    : num  14.68 15.18 15.12 17.48 7.54 ...

Ho: \(\alpha \beta_{ij} = 0\) - Null Hypothesis

Ha: \(\alpha \beta_{ij} \ne 0\) - Alternative Hypothesis

Ho: \(\alpha_{i} = 0\) - Null Hypothesis

Ha: \(\alpha_{i} \ne 0\) - Alternative Hypothesis

Ho: \(\gamma_{j} = 0\) - Null Hypothesis

Ha: \(\gamma_{j} \ne 0\) - Alternative Hypothesis

Ho: \(\alpha \beta_{ij} = 0\) - Null Hypothesis

Ha: \(\alpha \beta_{ij} \ne 0\) - Alternative Hypothesis

Ho: \(\alpha \gamma_{ik}} = 0\) - Null Hypothesis

Ha: \(\alpha \gamma_{ik} \ne 0\) - Alternative Hypothesis

Ho: \(\beta \gamma_{jk} = 0\) - Null Hypothesis

Ha: \(\beta \gamma_{jk}} \ne 0\) - Alternative Hypothesis

Ho: \(\alpha \beta \gamma_{ijk} = 0\) - Null Hypothesis

Ha: \(\alpha \beta \gamma_{ijk} \ne 0\) - Alternative Hypothesis

\(\alpha\) = 0.05

Model Equation

\(y_{ijkl} = \mu + \alpha_{i} + \beta_j + \gamma_k + \alpha \beta_{ij} +\alpha \gamma_{ik} +\beta \gamma_{jk} +\alpha \beta \gamma_{ijk} + \epsilon_{ijkl}\)

model<-aov(Density~Ammonium+StirRate+Temperature+Ammonium*StirRate+Ammonium*Temperature+StirRate*Temperature
           +Ammonium*StirRate*Temperature, data = dat)
gad(model)
## Analysis of Variance Table
## 
## Response: Density
##                               Df Sum Sq Mean Sq F value   Pr(>F)   
## Ammonium                       1 44.389  44.389 11.1803 0.010175 * 
## StirRate                       1 70.686  70.686 17.8037 0.002918 **
## Temperature                    1  0.328   0.328  0.0826 0.781170   
## Ammonium:StirRate              1 28.117  28.117  7.0817 0.028754 * 
## Ammonium:Temperature           1  0.022   0.022  0.0055 0.942808   
## StirRate:Temperature           1 10.128  10.128  2.5510 0.148890   
## Ammonium:StirRate:Temperature  1  1.519   1.519  0.3826 0.553412   
## Residual                       8 31.762   3.970                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Testing 3 factor Interaction hypothesis

Ho: \(\alpha \beta \gamma_{ijk} = 0\) - Null Hypothesis

Ha: \(\alpha \beta \gamma_{ijk} \ne 0\) - Alternative Hypothesis

From the result /fo/ is 0.3826 with a correspondingp-value of 0.553412 > \(\alpha\) = 0.05. Hence we fail to reject Ho hypothesis

Model Equation

\(y_{ijkl} = \mu + \alpha_{i} + \beta_j + \gamma_k + \alpha \beta_{ij} +\alpha \gamma_{ik} +\beta \gamma_{jk} + \epsilon_{ijkl}\)

model2<-aov(Density~Ammonium+StirRate+Temperature+Ammonium*StirRate+Ammonium*Temperature+StirRate*Temperature, data = dat)
gad(model2)
## Analysis of Variance Table
## 
## Response: Density
##                      Df Sum Sq Mean Sq F value   Pr(>F)   
## Ammonium              1 44.389  44.389 12.0037 0.007109 **
## StirRate              1 70.686  70.686 19.1150 0.001792 **
## Temperature           1  0.328   0.328  0.0886 0.772681   
## Ammonium:StirRate     1 28.117  28.117  7.6033 0.022206 * 
## Ammonium:Temperature  1  0.022   0.022  0.0059 0.940538   
## StirRate:Temperature  1 10.128  10.128  2.7389 0.132317   
## Residual              9 33.281   3.698                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We dropped the non significant factors

Ammonium:Temperature StirRate:Temperature

\(y_{ijkl} = \mu + \alpha_{i} + \beta_j + \gamma_k + \alpha \beta_{ij} + \epsilon_{ijkl}\)

model3<-aov(Density~Ammonium+StirRate+Temperature+Ammonium*StirRate, data = dat)
gad(model3)
## Analysis of Variance Table
## 
## Response: Density
##                   Df Sum Sq Mean Sq F value   Pr(>F)   
## Ammonium           1 44.389  44.389 11.2425 0.006443 **
## StirRate           1 70.686  70.686 17.9028 0.001410 **
## Temperature        1  0.328   0.328  0.0830 0.778613   
## Ammonium:StirRate  1 28.117  28.117  7.1211 0.021851 * 
## Residual          11 43.431   3.948                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the result /fo/ is 7.1211 with a correspondingp-value of 0.021851 < \(\alpha\) = 0.05. Hence we reject Ho hypothesis

These factors are significant Ammonium - 0.006443 < 0.05 Stirrate - 0.001410 < 0.05 Ammonium:StirRate - 0.021851 < 0.05

interaction.plot(dat$Ammonium, dat$StirRate, dat$Density, type = "l",col = 1:4 ,main ="Interraction Plot")

Question 2a

library(GAD)
temp<-rep(seq(1,3),6)
pos<-c(rep(1,9),rep(2,9))
response<-c(570,1063,565,565,1080,510,583,1043,590,528,988,526,547,1026,538,521,1004,532)
data.frame(temp,pos,response)
##    temp pos response
## 1     1   1      570
## 2     2   1     1063
## 3     3   1      565
## 4     1   1      565
## 5     2   1     1080
## 6     3   1      510
## 7     1   1      583
## 8     2   1     1043
## 9     3   1      590
## 10    1   2      528
## 11    2   2      988
## 12    3   2      526
## 13    1   2      547
## 14    2   2     1026
## 15    3   2      538
## 16    1   2      521
## 17    2   2     1004
## 18    3   2      532
temp<-as.fixed(temp)
pos<-as.fixed(pos)
model4<-aov(response~temp+pos+temp*pos)
#GAD::gad(model4) 
gad(model4)
## Analysis of Variance Table
## 
## Response: response
##          Df Sum Sq Mean Sq  F value   Pr(>F)    
## temp      2 945342  472671 1056.117 3.25e-14 ***
## pos       1   7160    7160   15.998 0.001762 ** 
## temp:pos  2    818     409    0.914 0.427110    
## Residual 12   5371     448                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

temp p-value of 3.25e-14 pos p-value of 0.001762 temp:pos p-value of 0.427110

Question 2b

temp<-as.random(temp)
pos<-as.random(pos)
model5<-aov(response~temp+pos+temp:pos)
#GAD::gad(model5)
gad(model5)
## Analysis of Variance Table
## 
## Response: response
##          Df Sum Sq Mean Sq  F value    Pr(>F)    
## temp      2 945342  472671 1155.518 0.0008647 ***
## pos       1   7160    7160   17.504 0.0526583 .  
## temp:pos  2    818     409    0.914 0.4271101    
## Residual 12   5371     448                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

temp p-value of 0.0008647 pos p-value of 0.0526583 temp:pos p-value of 0.4271101

Question 2c

temp<-as.random(temp)
pos<-as.fixed(pos)
model6<-aov(response~temp+pos+pos*temp)
#GAD::gad(model6)
gad(model6)
## Analysis of Variance Table
## 
## Response: response
##          Df Sum Sq Mean Sq  F value   Pr(>F)    
## temp      2 945342  472671 1056.117 3.25e-14 ***
## pos       1   7160    7160   17.504  0.05266 .  
## temp:pos  2    818     409    0.914  0.42711    
## Residual 12   5371     448                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

temp p-value of 3.25e-14 pos p-value of 0.05266 temp:pos p-value of 0.42711

Question 2d

From the results of P-values the temp:pos interaction does not change with random or fixed effects. The P-value of temperature is lower if both the factors are fixed. The P-value of pos is lower if both the factors are fixed but its higher when the factors are random effects However when effects model is mixed pos is remains the same and interaction remains same in all situations

library(GAD)
dat<-read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/PowderProduction.csv")

dat$Ammonium<-as.fixed(dat$Ammonium)
dat$StirRate<-as.fixed(dat$StirRate)
dat$Temperature<-as.fixed(dat$Temperature)
str(dat)

model<-aov(Density~Ammonium+StirRate+Temperature+Ammonium*StirRate+Ammonium*Temperature+StirRate*Temperature
           +Ammonium*StirRate*Temperature, data = dat)
gad(model)

model2<-aov(Density~Ammonium+StirRate+Temperature+Ammonium*StirRate+Ammonium*Temperature+StirRate*Temperature, data = dat)
gad(model2)


model3<-aov(Density~Ammonium+StirRate+Temperature+Ammonium*StirRate, data = dat)
gad(model3)


interaction.plot(dat$Ammonium, dat$StirRate, dat$Temperature, dat$Density, type = "l",col = 1:4, trace.label = , ylab = ,xlab = ,main ="Interraction Plot")


library(GAD)
temp<-rep(seq(1,3),6)
pos<-c(rep(1,9),rep(2,9))
response<-c(570,1063,565,565,1080,510,583,1043,590,528,988,526,547,1026,538,521,1004,532)
data.frame(temp,pos,response)
temp<-as.fixed(temp)
pos<-as.fixed(pos)
model4<-aov(response~temp+pos+temp*pos)
#GAD::gad(model4) 
gad(model4)

temp<-as.random(temp)
pos<-as.random(pos)
model5<-aov(response~temp+pos+temp:pos)
#GAD::gad(model5)
gad(model5)

temp<-as.random(temp)
pos<-as.fixed(pos)
model6<-aov(response~temp+pos+pos*temp)
#GAD::gad(model6)
gad(model6)