data$ï..Ammonium <- as.fixed(data$ï..Ammonium)
data$StirRate<- as.fixed(data$StirRate)
data$Temperature <- as.fixed(data$Temperature)
model <- aov(data$Density~data$ï..Ammonium+data$StirRate+data$Temperature+data$ï..Ammonium*data$StirRate+data$ï..Ammonium*data$Temperature+data$StirRate*data$Temperature+data$ï..Ammonium*data$StirRate*data$Temperature,data=data)
GAD::gad(model)
## Analysis of Variance Table
##
## Response: data$Density
## Df Sum Sq Mean Sq F value
## data$ï..Ammonium 1 44.389 44.389 11.1803
## data$StirRate 1 70.686 70.686 17.8037
## data$Temperature 1 0.328 0.328 0.0826
## data$ï..Ammonium:data$StirRate 1 28.117 28.117 7.0817
## data$ï..Ammonium:data$Temperature 1 0.022 0.022 0.0055
## data$StirRate:data$Temperature 1 10.128 10.128 2.5510
## data$ï..Ammonium:data$StirRate:data$Temperature 1 1.519 1.519 0.3826
## Residual 8 31.762 3.970
## Pr(>F)
## data$ï..Ammonium 0.010175 *
## data$StirRate 0.002918 **
## data$Temperature 0.781170
## data$ï..Ammonium:data$StirRate 0.028754 *
## data$ï..Ammonium:data$Temperature 0.942808
## data$StirRate:data$Temperature 0.148890
## data$ï..Ammonium:data$StirRate:data$Temperature 0.553412
## Residual
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model2 <- aov(data$Density~data$ï..Ammonium+data$StirRate+data$Temperature+data$ï..Ammonium*data$StirRate+data$ï..Ammonium*data$Temperature+data$StirRate*data$Temperature,data=data)
GAD::gad(model2)
## Analysis of Variance Table
##
## Response: data$Density
## Df Sum Sq Mean Sq F value Pr(>F)
## data$ï..Ammonium 1 44.389 44.389 12.0037 0.007109 **
## data$StirRate 1 70.686 70.686 19.1150 0.001792 **
## data$Temperature 1 0.328 0.328 0.0886 0.772681
## data$ï..Ammonium:data$StirRate 1 28.117 28.117 7.6033 0.022206 *
## data$ï..Ammonium:data$Temperature 1 0.022 0.022 0.0059 0.940538
## data$StirRate:data$Temperature 1 10.128 10.128 2.7389 0.132317
## Residual 9 33.281 3.698
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Hence lets remove it from our model and now run for the next least significant two factor interaction.
model3 <- aov(data$Density~data$ï..Ammonium+data$StirRate+data$Temperature+data$ï..Ammonium*data$StirRate+data$StirRate*data$Temperature,data=data)
GAD::gad(model3)
## Analysis of Variance Table
##
## Response: data$Density
## Df Sum Sq Mean Sq F value Pr(>F)
## data$ï..Ammonium 1 44.389 44.389 13.3287 0.0044560 **
## data$StirRate 1 70.686 70.686 21.2250 0.0009696 ***
## data$Temperature 1 0.328 0.328 0.0984 0.7601850
## data$ï..Ammonium:data$StirRate 1 28.117 28.117 8.4426 0.0156821 *
## data$StirRate:data$Temperature 1 10.128 10.128 3.0412 0.1117751
## Residual 10 33.303 3.330
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model4 <- aov(data$Density~data$ï..Ammonium+data$StirRate+data$Temperature+data$ï..Ammonium*data$StirRate,data=data)
GAD::gad(model4)
## Analysis of Variance Table
##
## Response: data$Density
## Df Sum Sq Mean Sq F value Pr(>F)
## data$ï..Ammonium 1 44.389 44.389 11.2425 0.006443 **
## data$StirRate 1 70.686 70.686 17.9028 0.001410 **
## data$Temperature 1 0.328 0.328 0.0830 0.778613
## data$ï..Ammonium:data$StirRate 1 28.117 28.117 7.1211 0.021851 *
## Residual 11 43.431 3.948
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot(data$ï..Ammonium,data$StirRate,data$Density)
pos <- c(rep("1",9),rep("2",9))
temp <- c("800","825","850","800","825","850","800","825","850","800","825","850","800","825","850","800","825","850")
response <- c(570,1063,565,565,1080,510,583,1043,590,528,988,526,547,1026,538,521,1004,532)
dat2 <- data.frame(pos,temp,response)
dat2$pos <- as.fixed(dat2$pos)
dat2$temp <- as.fixed(dat2$temp)
mod1 <- aov(dat2$response~dat2$temp+dat2$pos+dat2$temp*dat2$pos)
GAD::gad(mod1)
## Analysis of Variance Table
##
## Response: dat2$response
## Df Sum Sq Mean Sq F value Pr(>F)
## dat2$temp 2 945342 472671 1056.117 3.25e-14 ***
## dat2$pos 1 7160 7160 15.998 0.001762 **
## dat2$temp:dat2$pos 2 818 409 0.914 0.427110
## Residual 12 5371 448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
dat2$pos <- as.random(dat2$pos)
dat2$temp <- as.random(dat2$temp)
mod2 <- aov(dat2$response~dat2$temp+dat2$pos+dat2$temp*dat2$pos)
GAD::gad(mod2)
## Analysis of Variance Table
##
## Response: dat2$response
## Df Sum Sq Mean Sq F value Pr(>F)
## dat2$temp 2 945342 472671 1155.518 0.0008647 ***
## dat2$pos 1 7160 7160 17.504 0.0526583 .
## dat2$temp:dat2$pos 2 818 409 0.914 0.4271101
## Residual 12 5371 448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
dat2$pos <- as.fixed(dat2$pos)
dat2$temp <- as.random(dat2$temp)
mod3 <- aov(dat2$response~dat2$temp+dat2$pos+dat2$temp*dat2$pos)
GAD::gad(mod3)
## Analysis of Variance Table
##
## Response: dat2$response
## Df Sum Sq Mean Sq F value Pr(>F)
## dat2$temp 2 945342 472671 1056.117 3.25e-14 ***
## dat2$pos 1 7160 7160 17.504 0.05266 .
## dat2$temp:dat2$pos 2 818 409 0.914 0.42711
## Residual 12 5371 448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
knitr::opts_chunk$set(echo = TRUE)
library(GAD)
data <- read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/PowderProduction.csv")
data$ï..Ammonium <- as.fixed(data$ï..Ammonium)
data$StirRate<- as.fixed(data$StirRate)
data$Temperature <- as.fixed(data$Temperature)
model <- aov(data$Density~data$ï..Ammonium+data$StirRate+data$Temperature+data$ï..Ammonium*data$StirRate+data$ï..Ammonium*data$Temperature+data$StirRate*data$Temperature+data$ï..Ammonium*data$StirRate*data$Temperature,data=data)
GAD::gad(model)
model2 <- aov(data$Density~data$ï..Ammonium+data$StirRate+data$Temperature+data$ï..Ammonium*data$StirRate+data$ï..Ammonium*data$Temperature+data$StirRate*data$Temperature,data=data)
GAD::gad(model2)
model3 <- aov(data$Density~data$ï..Ammonium+data$StirRate+data$Temperature+data$ï..Ammonium*data$StirRate+data$StirRate*data$Temperature,data=data)
GAD::gad(model3)
model4 <- aov(data$Density~data$ï..Ammonium+data$StirRate+data$Temperature+data$ï..Ammonium*data$StirRate,data=data)
GAD::gad(model4)
interaction.plot(data$ï..Ammonium,data$StirRate,data$Density)
pos <- c(rep("1",9),rep("2",9))
temp <- c("800","825","850","800","825","850","800","825","850","800","825","850","800","825","850","800","825","850")
response <- c(570,1063,565,565,1080,510,583,1043,590,528,988,526,547,1026,538,521,1004,532)
dat2 <- data.frame(pos,temp,response)
dat2$pos <- as.fixed(dat2$pos)
dat2$temp <- as.fixed(dat2$temp)
mod1 <- aov(dat2$response~dat2$temp+dat2$pos+dat2$temp*dat2$pos)
GAD::gad(mod1)
dat2$pos <- as.random(dat2$pos)
dat2$temp <- as.random(dat2$temp)
mod2 <- aov(dat2$response~dat2$temp+dat2$pos+dat2$temp*dat2$pos)
GAD::gad(mod2)
dat2$pos <- as.fixed(dat2$pos)
dat2$temp <- as.random(dat2$temp)
mod3 <- aov(dat2$response~dat2$temp+dat2$pos+dat2$temp*dat2$pos)
GAD::gad(mod3)