library(gapminder)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v tibble 3.1.4 v purrr 0.3.4
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 2.0.1 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(psych)
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
#top and bottom 5 MLE for 1952
rawdata = filter(gapminder, year==1952)
sortdata = arrange(rawdata, lifeExp)
top5 = sortdata$lifeExp[138:142]
bot5 = sortdata$lifeExp[1:5]
df <- data.frame(c(top5,bot5))
#summary of top 5 countries
sumtop <- describe(top5, fast = TRUE )
sumtop
## vars n mean sd min max range se
## X1 1 5 71.99 0.74 70.78 72.67 1.89 0.33
#summary of bottom 5 countries
sumbot <- describe(bot5, fast = TRUE)
sumbot
## vars n mean sd min max range se
## X1 1 5 30.09 0.89 28.8 31.29 2.49 0.4
barplot(t(as.matrix(df)),
main = 'Top 5 and Bottom 5 countries for MLE 1952',
names.arg = c('Denmark', "Sweden", "Netherlands",'Iceland','Norway','Afghanistan','Gambia','Angola','Sierra Leone','Mozambique'),
xlab= 'Countries',
ylab = 'MLE',
cex.names = 0.40,
cex.axis = 0.7,
beside = TRUE)

#2007 MLE
rawdata2 = filter(gapminder, year==2007)
sortdata2 = arrange(rawdata2, lifeExp)
top52 = sortdata2$lifeExp[138:142]
bot52 = sortdata2$lifeExp[1:5]
dff <- data.frame(c(top52,bot52))
#summary of top 5 countries
sumtopp <- describe(top52, fast = TRUE )
sumtopp
## vars n mean sd min max range se
## X1 1 5 81.9 0.52 81.24 82.6 1.37 0.23
#summary of bottom 5 countries
sumbott <- describe(bot52, fast = TRUE)
sumbott
## vars n mean sd min max range se
## X1 1 5 41.85 1.27 39.61 42.59 2.98 0.57
barplot(t(as.matrix(dff)),
main = 'Top 5 and Bottom 5 countries for MLE 2007',
names.arg = c('Australia', "Switzerland", "Iceland",'Hong Kong','Japan','Swaziland','Mozambique','Zambia','Sierra Leone','Lesotho'),
xlab= 'Countries',
ylab = 'MLE',
cex.names = 0.40,
cex.axis = 0.7,
beside = TRUE)

rawdata3 = filter(gapminder, year==2007)
sortdata3 = arrange(rawdata3, pop)
top53 = c(sortdata3$pop[138:142])
df4 <- data.frame(c(gapminder))
df4%>%
group_by(year, continent) %>%
mutate(meanMLE = mean(lifeExp)) %>%
select(year, continent, meanMLE)
## # A tibble: 1,704 x 3
## # Groups: year, continent [60]
## year continent meanMLE
## <int> <fct> <dbl>
## 1 1952 Asia 46.3
## 2 1957 Asia 49.3
## 3 1962 Asia 51.6
## 4 1967 Asia 54.7
## 5 1972 Asia 57.3
## 6 1977 Asia 59.6
## 7 1982 Asia 62.6
## 8 1987 Asia 64.9
## 9 1992 Asia 66.5
## 10 1997 Asia 68.0
## # ... with 1,694 more rows