Objective: To create two segregation index (dissimilarity and interaction) by race in Texas 2019
library(tidycensus)
Getting data from acs
race <- get_acs(geography = "tract",
year=2019,
geometry = F,
output="wide",
table = "DP05",
cache_table = T,
state = "TX")
## Getting data from the 2015-2019 5-year ACS
## Loading ACS5/PROFILE variables for 2019 from table DP05 and caching the dataset for faster future access.
## Using the ACS Data Profile
## Using the ACS Data Profile
## Using the ACS Data Profile
## Using the ACS Data Profile
## Using the ACS Data Profile
## Using the ACS Data Profile
## Using the ACS Data Profile
## Using the ACS Data Profile
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
tract<-race%>%
mutate(nhwhite=DP05_0037E,
nhblack=DP05_0038E,
hisp=DP05_0070E,
total=DP05_0033E,
year=2019,
cofips=substr(GEOID, 1,5))%>%
select(GEOID,nhwhite, nhblack , hisp, total, year, cofips )%>%
arrange(cofips, GEOID)
#look at the first few cases
head(tract)
## # A tibble: 6 x 7
## GEOID nhwhite nhblack hisp total year cofips
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 48001950100 4341 284 4844 4844 2019 48001
## 2 48001950401 2872 1890 4838 4838 2019 48001
## 3 48001950402 4400 3063 7511 7511 2019 48001
## 4 48001950500 2982 1012 4465 4465 2019 48001
## 5 48001950600 3549 1545 5148 5148 2019 48001
## 6 48001950700 1314 1059 2783 2783 2019 48001
The number of non-Hispanic black and non-Hispanic white at tract and county level have been selected to understand the segregation.
county<-tract%>%
group_by(cofips)%>%
summarise(co_total=sum(total),
co_wht=sum(nhwhite),
co_blk=sum(nhblack),
cohisp=sum(hisp))
#we merge the county data back to the tract data by the county FIPS code
merged<-left_join(x=tract,
y=county,
by="cofips")
head(merged)
Merged the dataset with tract and county total population by race and ethnicity.
Dissimilarity index
d<-merged%>%
mutate(d.wb=abs(nhwhite/co_wht - nhblack/co_blk))%>%
group_by(cofips)%>%
summarise(dissim= .5*sum(d.wb, na.rm=T))
i<-merged%>%
mutate(int.bw=(nhblack/co_blk * nhwhite/total))%>%
group_by(cofips)%>%
summarise(int= sum(int.bw, na.rm=T))
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.2 v stringr 1.4.0
## v tidyr 1.1.3 v forcats 0.5.1
## v readr 1.4.0
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
tx_seg<-list(d, i)%>% reduce (left_join, by="cofips")
library(tigris)
## To enable
## caching of data, set `options(tigris_use_cache = TRUE)` in your R script or .Rprofile.
options(tigris_class = "sf")
tx_counties<- counties(state="TX", cb=T, year=2010)
tx_counties$cofips<-substr(tx_counties$GEO_ID, 10,15)
twoseg<- geo_join(tx_counties, tx_seg, by_sp="cofips", by_df="cofips")
## Warning: We recommend using the dplyr::*_join() family of functions instead.
## Warning: `group_by_()` was deprecated in dplyr 0.7.0.
## Please use `group_by()` instead.
## See vignette('programming') for more help
Map for dissimilarity index of nhblack and nhwhite in Texas 2019
library(ggplot2)
twoseg%>%
ggplot()+geom_sf(aes(fill=dissim))+
scale_fill_viridis_c()+
scale_color_viridis_c()+
ggtitle("Black and white dissimilarity index", subtitle = "2019 ACS")
Description: Dissimilarity index indicates the distribution of a group into popoulaiton. In this case, on the map, 0 index indicates both non-Hispanic black and non-Hispanic white equally distributed on the proportion of total population of the counties. Higher index score indicates counties with either of them share highet proportion of the population.
Map for iteraction index of nhblack and nhwhite in Texas 2019
library(ggplot2)
twoseg%>%
ggplot()+geom_sf(aes(fill=int))+
scale_fill_viridis_c()+
scale_color_viridis_c()+
ggtitle("Black and white iteraction index", subtitle = "2019 ACS")
Description: Interaction index provides information about how two groups are evenly distributed and have equal number at the tract level. The probability of black people meets white people higher in western part of the Texas. Less chance in the eastern part.
Higher dissimilarity index score at the western part of Texas indicates lower interaction of non-Hispanic Black and non-Hispanic white in the map.