Data Manipulations

# Get other  US county Hispanic/Ethnicity Race variables from the 5 year (2015-2019) ASC data source.

us <- unique(fips_codes$state)[1:51]


Racetable <- map_df(us, function(x) {get_acs(geography = "tract",
                         year=2019,
                         geometry = F,
                         output="wide",
                         table = "B03002",
                         cache_table =T,
                         state = x)
})

#Merge the socioeconomic variables from the Area resource file 2019-2020 with the other socioeconomic variables from the 5 year (2015-2019) ACS estimates.

tractdata<-Racetable%>%
  mutate(nhwhite=B03002_003E,
         nhblack=B03002_004E,
         nhother= B03002_005E+B03002_006E+B03002_007E+B03002_008E+B03002_009E+B03002_010E,
         hisp=B03002_012E, 
         total=B03002_001E,
         year=2019,
         cofips=substr(GEOID, 1,5))%>%
  select(GEOID,nhwhite, nhblack ,  nhother, hisp, total, year, cofips )%>%
  arrange(cofips, GEOID) 
#We need the county-level totals for the total population and each race group
countydata<-tractdata%>%
  group_by(cofips)%>%
  summarise(co_total=sum(total),
            co_wht=sum(nhwhite),
            co_blk=sum(nhblack),
            co_oth=sum(nhother),
            cohisp=sum(hisp))

#we merge the county data back to the tract data by the county FIPS code
ctytrtdata<-left_join(x=tractdata,
                  y=countydata,
                  by="cofips")

Two groups segregation measures in US counties

I calculated the tract-specific contribution to the county dissimilarity index. Also, calculated the tract-specific contributions within counties. This then used to calculate the dissimilarity index for Non-Hispanic blacks and Non-Hispanic whites is:

Dissimilarity Index

The following codes calculate the dissimilarity index for Non-Hispanic blacks and Non-Hispanic whites.

co.dis<-ctytrtdata%>%
  mutate(d.wb=abs(nhwhite/co_wht - nhblack/co_blk))%>%
  group_by(cofips)%>%
  summarise(dissim=round( .5*sum(d.wb, na.rm=T),1))

Interaction Index

The following codes calculate the interaction index for Non-Hispanic blacks and Non-Hispanic whites. In the calculation, first population is the minority population, the second is a non-minority population.

co.int<-ctytrtdata%>%
  mutate(int.bw=(nhblack/co_blk * nhwhite/total))%>%
  group_by(cofips)%>%
  summarise(inter_bw=round(sum(int.bw, na.rm=T),1))

Isolation Index

The following codes calculate the isolation index Using only the Non-Hispanic blacks population group

co.isob<-ctytrtdata%>%
  mutate(isob=(nhblack/co_blk * nhblack/total))%>%
  group_by(cofips)%>%
  summarise(iso_b= round(sum(isob, na.rm=T),1))

US Segregation Indices Maps

Discriptive summary

This maps show the likelihood of population subgroups(in this case, Non-Hispanic Black and Non-Hispanic White Population groups) interacting with one another using the index of Interaction. On the other hand, the index of Isolation, measures how likely it is that one group (Non-Hispanic Black population group) is isolated, or only surrounded by other members of the same group.

This index ranges between 0 and 1. Higher values (closer to 1), indicate more contact between the two groups, while values near 0 indicate more isolation.

LS0tDQp0aXRsZTogIiBIb21ld2sgNSAtIENhbGN1bGF0aW5nIEluZGljZXMgb2YgUmVzaWRlbnRpYWwgU2VncmVnYXRpb24iDQphdXRob3I6ICJTYW1zb24gQS4gT2xvd29sYWp1LCBNUEgiDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy50aW1lKCksICclZCAlQiwgJVknKWAiDQpvdXRwdXQ6DQogICBodG1sX2RvY3VtZW50Og0KICAgIGRmX3ByaW50OiBwYWdlZA0KICAgIGZpZ19oZWlnaHQ6IDcNCiAgICBmaWdfd2lkdGg6IDcNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDogeWVzDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KLS0tDQoNCg0KYGBge3IgbG9hZGxpYnMsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2U9RkFMU0UsZWNobz1GQUxTRX0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeSh0aWR5Y2Vuc3VzKQ0KbGlicmFyeShzZikNCmxpYnJhcnkodGlncmlzKQ0KbGlicmFyeShwdXJycikNCmxpYnJhcnkoZ3JpZEV4dHJhKQ0KYGBgDQoNCiMjIyBEYXRhIE1hbmlwdWxhdGlvbnMNCmBgYHtyLHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2U9RkFMU0V9DQoNCg0KIyBHZXQgb3RoZXIgIFVTIGNvdW50eSBIaXNwYW5pYy9FdGhuaWNpdHkgUmFjZSB2YXJpYWJsZXMgZnJvbSB0aGUgNSB5ZWFyICgyMDE1LTIwMTkpIEFTQyBkYXRhIHNvdXJjZS4NCg0KdXMgPC0gdW5pcXVlKGZpcHNfY29kZXMkc3RhdGUpWzE6NTFdDQoNCg0KUmFjZXRhYmxlIDwtIG1hcF9kZih1cywgZnVuY3Rpb24oeCkge2dldF9hY3MoZ2VvZ3JhcGh5ID0gInRyYWN0IiwNCiAgICAgICAgICAgICAgICAgICAgICAgICB5ZWFyPTIwMTksDQogICAgICAgICAgICAgICAgICAgICAgICAgZ2VvbWV0cnkgPSBGLA0KICAgICAgICAgICAgICAgICAgICAgICAgIG91dHB1dD0id2lkZSIsDQogICAgICAgICAgICAgICAgICAgICAgICAgdGFibGUgPSAiQjAzMDAyIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICBjYWNoZV90YWJsZSA9VCwNCiAgICAgICAgICAgICAgICAgICAgICAgICBzdGF0ZSA9IHgpDQp9KQ0KDQojTWVyZ2UgdGhlIHNvY2lvZWNvbm9taWMgdmFyaWFibGVzIGZyb20gdGhlIEFyZWEgcmVzb3VyY2UgZmlsZSAyMDE5LTIwMjAgd2l0aCB0aGUgb3RoZXIgc29jaW9lY29ub21pYyB2YXJpYWJsZXMgZnJvbSB0aGUgNSB5ZWFyICgyMDE1LTIwMTkpIEFDUyBlc3RpbWF0ZXMuDQoNCnRyYWN0ZGF0YTwtUmFjZXRhYmxlJT4lDQogIG11dGF0ZShuaHdoaXRlPUIwMzAwMl8wMDNFLA0KICAgICAgICAgbmhibGFjaz1CMDMwMDJfMDA0RSwNCiAgICAgICAgIG5ob3RoZXI9IEIwMzAwMl8wMDVFK0IwMzAwMl8wMDZFK0IwMzAwMl8wMDdFK0IwMzAwMl8wMDhFK0IwMzAwMl8wMDlFK0IwMzAwMl8wMTBFLA0KICAgICAgICAgaGlzcD1CMDMwMDJfMDEyRSwgDQogICAgICAgICB0b3RhbD1CMDMwMDJfMDAxRSwNCiAgICAgICAgIHllYXI9MjAxOSwNCiAgICAgICAgIGNvZmlwcz1zdWJzdHIoR0VPSUQsIDEsNSkpJT4lDQogIHNlbGVjdChHRU9JRCxuaHdoaXRlLCBuaGJsYWNrICwgIG5ob3RoZXIsIGhpc3AsIHRvdGFsLCB5ZWFyLCBjb2ZpcHMgKSU+JQ0KICBhcnJhbmdlKGNvZmlwcywgR0VPSUQpIA0KYGBgDQoNCg0KYGBge3IsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQoNCiNXZSBuZWVkIHRoZSBjb3VudHktbGV2ZWwgdG90YWxzIGZvciB0aGUgdG90YWwgcG9wdWxhdGlvbiBhbmQgZWFjaCByYWNlIGdyb3VwDQpjb3VudHlkYXRhPC10cmFjdGRhdGElPiUNCiAgZ3JvdXBfYnkoY29maXBzKSU+JQ0KICBzdW1tYXJpc2UoY29fdG90YWw9c3VtKHRvdGFsKSwNCiAgICAgICAgICAgIGNvX3dodD1zdW0obmh3aGl0ZSksDQogICAgICAgICAgICBjb19ibGs9c3VtKG5oYmxhY2spLA0KICAgICAgICAgICAgY29fb3RoPXN1bShuaG90aGVyKSwNCiAgICAgICAgICAgIGNvaGlzcD1zdW0oaGlzcCkpDQoNCiN3ZSBtZXJnZSB0aGUgY291bnR5IGRhdGEgYmFjayB0byB0aGUgdHJhY3QgZGF0YSBieSB0aGUgY291bnR5IEZJUFMgY29kZQ0KY3R5dHJ0ZGF0YTwtbGVmdF9qb2luKHg9dHJhY3RkYXRhLA0KICAgICAgICAgICAgICAgICAgeT1jb3VudHlkYXRhLA0KICAgICAgICAgICAgICAgICAgYnk9ImNvZmlwcyIpDQoNCmBgYA0KDQojIyMgVHdvIGdyb3VwcyBzZWdyZWdhdGlvbiBtZWFzdXJlcyBpbiBVUyBjb3VudGllcw0KDQpJIGNhbGN1bGF0ZWQgdGhlIHRyYWN0LXNwZWNpZmljIGNvbnRyaWJ1dGlvbiB0byB0aGUgY291bnR5IGRpc3NpbWlsYXJpdHkgaW5kZXguIEFsc28sIGNhbGN1bGF0ZWQgdGhlIHRyYWN0LXNwZWNpZmljIGNvbnRyaWJ1dGlvbnMgd2l0aGluIGNvdW50aWVzLiBUaGlzIHRoZW4gdXNlZCB0byBjYWxjdWxhdGUgdGhlICBkaXNzaW1pbGFyaXR5IGluZGV4IGZvciBOb24tSGlzcGFuaWMgYmxhY2tzIGFuZCBOb24tSGlzcGFuaWMgd2hpdGVzIGlzOg0KDQojIyMgRGlzc2ltaWxhcml0eSBJbmRleA0KDQpUaGUgZm9sbG93aW5nIGNvZGVzIGNhbGN1bGF0ZSB0aGUgZGlzc2ltaWxhcml0eSAgaW5kZXggZm9yIE5vbi1IaXNwYW5pYyBibGFja3MgYW5kIE5vbi1IaXNwYW5pYyB3aGl0ZXMuIA0KDQpgYGB7cix9DQpjby5kaXM8LWN0eXRydGRhdGElPiUNCiAgbXV0YXRlKGQud2I9YWJzKG5od2hpdGUvY29fd2h0IC0gbmhibGFjay9jb19ibGspKSU+JQ0KICBncm91cF9ieShjb2ZpcHMpJT4lDQogIHN1bW1hcmlzZShkaXNzaW09cm91bmQoIC41KnN1bShkLndiLCBuYS5ybT1UKSwxKSkNCmBgYA0KDQojIyMgSW50ZXJhY3Rpb24gSW5kZXgNCg0KVGhlIGZvbGxvd2luZyBjb2RlcyBjYWxjdWxhdGUgdGhlIGludGVyYWN0aW9uIGluZGV4IGZvciBOb24tSGlzcGFuaWMgYmxhY2tzIGFuZCBOb24tSGlzcGFuaWMgd2hpdGVzLiBJbiB0aGUgY2FsY3VsYXRpb24sIGZpcnN0IHBvcHVsYXRpb24gaXMgdGhlIG1pbm9yaXR5IHBvcHVsYXRpb24sIHRoZSBzZWNvbmQgaXMgYSBub24tbWlub3JpdHkgcG9wdWxhdGlvbi4NCg0KYGBge3Isd2FybmluZz1GQUxTRSwgbWVzc2FnZT1GQUxTRX0NCmNvLmludDwtY3R5dHJ0ZGF0YSU+JQ0KICBtdXRhdGUoaW50LmJ3PShuaGJsYWNrL2NvX2JsayAqIG5od2hpdGUvdG90YWwpKSU+JQ0KICBncm91cF9ieShjb2ZpcHMpJT4lDQogIHN1bW1hcmlzZShpbnRlcl9idz1yb3VuZChzdW0oaW50LmJ3LCBuYS5ybT1UKSwxKSkNCmBgYA0KDQojIyMgSXNvbGF0aW9uIEluZGV4DQoNClRoZSBmb2xsb3dpbmcgY29kZXMgY2FsY3VsYXRlIHRoZSBpc29sYXRpb24gaW5kZXggVXNpbmcgb25seSB0aGUgIE5vbi1IaXNwYW5pYyBibGFja3MgcG9wdWxhdGlvbiBncm91cA0KDQpgYGB7cix3YXJuaW5nPUZBTFNFLCBtZXNzYWdlPUZBTFNFfQ0KY28uaXNvYjwtY3R5dHJ0ZGF0YSU+JQ0KICBtdXRhdGUoaXNvYj0obmhibGFjay9jb19ibGsgKiBuaGJsYWNrL3RvdGFsKSklPiUNCiAgZ3JvdXBfYnkoY29maXBzKSU+JQ0KICBzdW1tYXJpc2UoaXNvX2I9IHJvdW5kKHN1bShpc29iLCBuYS5ybT1UKSwxKSkNCmBgYA0KDQoNCiMjIyAgVVMgU2VncmVnYXRpb24gSW5kaWNlcyBNYXBzIA0KYGBge3IsIGVjaG89RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQoNClVTX3NlZzwtbGlzdChjby5kaXMsIGNvLmludCwgY28uaXNvYiklPiUgcmVkdWNlIChsZWZ0X2pvaW4sIGJ5PSJjb2ZpcHMiKQ0KDQojIEdldCBVcyBib3VuZGFyaWVzIGZyb20gVGlncmlzIA0Kb3B0aW9ucyh0aWdyaXNfY2xhc3MgPSAic2YiKQ0KVVNfY291bnRpZXM8LSBjb3VudGllcyh5ZWFyPTIwMTksIHJlZnJlc2g9VCwgY2IgPSBULCBwcm9ncmVzc19iYXI9RkFMU0UsKSAlPiUNCiAgcmVuYW1lKGNvZmlwcz1HRU9JRCkgJT4lIA0KICBzaGlmdF9nZW9tZXRyeSgpDQoNCiMgSm9pbiB0aGUgYm91bmRhcnkgZGF0YSB3aXRoIHRoZSBzZWdyZWdhdGlvbiBpbmRpY2VzIGRhdGEgDQpVU19zZWdfZGF0YTwtIGdlb19qb2luKFVTX2NvdW50aWVzLCBVU19zZWcsIGJ5X3NwPSJjb2ZpcHMiLCBieV9kZj0iY29maXBzIikNCg0KVVNfc2VnX2RhdGE8LSBzdF90cmFuc2Zvcm0oVVNfc2VnX2RhdGEsIDMwODMpDQoNCiMgTWFwIFVTIENvdW50aWVzIElzb2xhdGlvbiAgaW5kaWNlcyANCmlzb2xhdGlvbiA8LSBVU19zZWdfZGF0YSU+JQ0KICBmaWx0ZXIoIWlzLm5hKGlzb19iKSkgJT4lIA0KICBnZ3Bsb3QoKStnZW9tX3NmKGFlcyhmaWxsPWlzb19iKSkrDQogIHNjYWxlX2ZpbGxfdmlyaWRpc19jKCkrDQogIHNjYWxlX2NvbG9yX3ZpcmlkaXNfYygpKw0KICB0aGVtZV92b2lkKCkrDQogIGdndGl0bGUoIk5vbi1IaXNwYW5pYyBCbGFjayBJc29sYXRpb24gSW5kZXgiLCBzdWJ0aXRsZSA9ICIyMDE5IEFDUyIpK2xhYnMoZmlsbD0iSXNvbGF0aW9uIEluZGV4IiwgY29sb3I9Iklzb2xhdGlvbiBJbmRleCIpKw0KICB0aGVtZShwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KHNpemU9MTUsIGhqdXN0ID0gMC4wKSkgKw0KICB0aGVtZSgNCiAgICAgICAgbGVnZW5kLmtleS53aWR0aCA9IHVuaXQoMC4yNSwgImluIiksDQogICAgICAgIGxlZ2VuZC5rZXkuaGVpZ2h0ID0gdW5pdCgwLjIsICJpbiIpLA0KICAgICAgICBsZWdlbmQudGV4dCA9IGVsZW1lbnRfdGV4dChzaXplPTgpKQ0KDQoNCmludGVyYWN0aW9uIDwtIFVTX3NlZ19kYXRhJT4lDQogIGZpbHRlcighaXMubmEoaW50ZXJfYncpKSAlPiUgDQogIGdncGxvdCgpK2dlb21fc2YoYWVzKGZpbGw9aW50ZXJfYncpKSsNCiAgc2NhbGVfZmlsbF92aXJpZGlzX2MoKSsNCiAgc2NhbGVfY29sb3JfdmlyaWRpc19jKCkrDQogIHRoZW1lX3ZvaWQoKSsNCiAgZ2d0aXRsZSgiTm9uLUhpc3BhbmljIEJsYWNrICYgV2hpdGUgSW50ZXJhY3Rpb24gSW5kZXgiLCBzdWJ0aXRsZSA9ICIyMDE5IEFDUyIpK2xhYnMoZmlsbD0iSW50ZXJhY3Rpb24gSW5kZXgiLCBjb2xvcj0iSW50ZXJhY3Rpb24gSW5kZXgiKSsNCiAgdGhlbWUocGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChzaXplPTE1LCBoanVzdCA9IDAuMCkpICsNCiAgdGhlbWUoDQogICAgICAgIGxlZ2VuZC5rZXkud2lkdGggPSB1bml0KDAuMjUsICJpbiIpLA0KICAgICAgICBsZWdlbmQua2V5LmhlaWdodCA9IHVuaXQoMC4yLCAiaW4iKSwNCiAgICAgICAgbGVnZW5kLnRleHQgPSBlbGVtZW50X3RleHQoc2l6ZT04KSkNCg0KYGBgDQoNCmBgYHtyLCBlY2hvPUZBTFNFfQ0KZ3JpZC5hcnJhbmdlKGlzb2xhdGlvbixpbnRlcmFjdGlvbiwgbnJvdyA9IDIpDQpgYGANCg0KIyMjIERpc2NyaXB0aXZlIHN1bW1hcnkNCg0KVGhpcyBtYXBzIHNob3cgIHRoZSBsaWtlbGlob29kIG9mIHBvcHVsYXRpb24gc3ViZ3JvdXBzKGluIHRoaXMgY2FzZSwgTm9uLUhpc3BhbmljIEJsYWNrIGFuZCBOb24tSGlzcGFuaWMgV2hpdGUgUG9wdWxhdGlvbiBncm91cHMpIGludGVyYWN0aW5nIHdpdGggb25lIGFub3RoZXIgdXNpbmcgdGhlIGluZGV4IG9mIEludGVyYWN0aW9uLiBPbiB0aGUgb3RoZXIgaGFuZCwgdGhlIGluZGV4IG9mIElzb2xhdGlvbiwgbWVhc3VyZXMgaG93IGxpa2VseSBpdCBpcyB0aGF0IG9uZSBncm91cCAoTm9uLUhpc3BhbmljIEJsYWNrIHBvcHVsYXRpb24gZ3JvdXApIGlzIGlzb2xhdGVkLCBvciBvbmx5IHN1cnJvdW5kZWQgYnkgb3RoZXIgbWVtYmVycyBvZiB0aGUgc2FtZSBncm91cC4NCg0KVGhpcyBpbmRleCAgcmFuZ2VzIGJldHdlZW4gMCBhbmQgMS4gSGlnaGVyIHZhbHVlcyAoY2xvc2VyIHRvIDEpLCBpbmRpY2F0ZSBtb3JlIGNvbnRhY3QgYmV0d2VlbiB0aGUgdHdvIGdyb3Vwcywgd2hpbGUgdmFsdWVzIG5lYXIgMCBpbmRpY2F0ZSBtb3JlIGlzb2xhdGlvbi4gDQo=