##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
## %+%, alpha
## Loading required package: Matrix
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
##
## Attaching package: 'plyr'
## The following object is masked from 'package:ggpubr':
##
## mutate
##
## Attaching package: 'tidyr'
## The following objects are masked from 'package:Matrix':
##
## expand, pack, unpack
## Registered S3 methods overwritten by 'parameters':
## method from
## as.double.parameters_kurtosis datawizard
## as.double.parameters_skewness datawizard
## as.double.parameters_smoothness datawizard
## as.numeric.parameters_kurtosis datawizard
## as.numeric.parameters_skewness datawizard
## as.numeric.parameters_smoothness datawizard
## print.parameters_distribution datawizard
## print.parameters_kurtosis datawizard
## print.parameters_skewness datawizard
## summary.parameters_kurtosis datawizard
## summary.parameters_skewness datawizard
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:psych':
##
## logit
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = d2[c("trustworthy", "moral", "ethical", "helpful",
## "honest", "sincere")])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.98 0.98 0.97 0.88 45 0.00024 3 0.45 0.88
##
## lower alpha upper 95% confidence boundaries
## 0.98 0.98 0.98
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## trustworthy 0.97 0.97 0.97 0.87 35 0.00032 0.00019 0.87
## moral 0.97 0.97 0.97 0.88 37 0.00030 0.00026 0.88
## ethical 0.97 0.97 0.97 0.88 38 0.00029 0.00029 0.88
## helpful 0.97 0.98 0.97 0.89 39 0.00028 0.00029 0.89
## honest 0.97 0.97 0.97 0.88 37 0.00030 0.00038 0.88
## sincere 0.97 0.97 0.97 0.89 39 0.00029 0.00021 0.88
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## trustworthy 18900 0.96 0.96 0.96 0.95 3.2 0.52
## moral 18900 0.95 0.95 0.94 0.93 3.0 0.43
## ethical 18900 0.94 0.95 0.93 0.92 3.0 0.43
## helpful 18900 0.94 0.94 0.92 0.91 2.9 0.48
## honest 18900 0.95 0.95 0.94 0.93 3.1 0.49
## sincere 18900 0.94 0.94 0.93 0.92 3.0 0.47
##
## When a personâ\200\231s attention is drawn to a new personâ\200\231s face, they are more likely to find that person trustworthy compared with someone their attention is not drawn to.
## 4025
## When a personâ\200\231s attention is drawn to an attractive personâ\200\231s face, the person will trust the attractive person more quickly than an unattractive person.
## 1425
## When making evaluations of trustworthiness about others, people are more likely to judge attractive individuals are more trustworthy than unattractive individuals.
## 2475
## When people are asked to evaluate trustworthiness of strangers, people are more likely to trust individuals with child-like facial traits (i.e., round face, large eyes).
## 1875
## [1] 0.4107143
1. cft ~ 1 + (1|pt)
m1 <- glmer(cuedFaceTrusted_1 ~ 1 +
(1 | participant), family = binomial(), data = d)
summary(m1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ 1 + (1 | participant)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 13584.3 13598.7 -6790.1 13580.3 9798
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.1064 -1.0044 0.9136 0.9850 1.0966
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0.0248 0.1575
## Number of obs: 9800, groups: participant, 392
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.02259 0.02177 1.038 0.299
beta <- exp(0.02259)
pTrust <-(beta/(1+beta))
beta
## [1] 1.022847
pTrust
## [1] 0.5056473
pNotTrust <- (1-pTrust)
g <- cbind(pTrust, pNotTrust)
barplot(g, ylim = c(.48,.52), col = "yellow")

#graphing
plot_new <- data.frame(
choice = c("trusted","not trusted"),
probFaceTrusted = c( pTrust, pNotTrust))
ggplot(data = plot_new, aes(x = choice, y = probFaceTrusted, fill = choice)) +
geom_bar(stat="identity", position = position_dodge()) +
geom_text(aes(label = round(probFaceTrusted, digits = 4)), vjust=1.6, color="black", position = position_dodge(0.9), size=3.5) +
theme_minimal() +
ylab("probability of cued face...") +
coord_cartesian(ylim = c(0.48, .52))

Interpretation: \(\beta_0\): collapsing across conditions, there is no difference between trusting cued and uncued face, p_trust = .506, p_nottrust = .494, p = .299 ***
m2 <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1 | participant), family = binomial("logit"), data = d)
summary(m2)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | participant)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 13585.7 13607.2 -6789.8 13579.7 9797
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.1133 -1.0074 0.9079 0.9822 1.0924
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0.02452 0.1566
## Number of obs: 9800, groups: participant, 392
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.02181 0.02178 1.002 0.317
## trust_.5 0.03416 0.04356 0.784 0.433
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.046
m2t <- glmer(cuedFaceTrusted_1 ~ trustYes_0 +
(1 | participant), family = binomial("logit"), data = d)
summary(m2t)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + (1 | participant)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 13585.7 13607.2 -6789.8 13579.7 9797
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.1133 -1.0074 0.9079 0.9822 1.0924
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0.02452 0.1566
## Number of obs: 9800, groups: participant, 392
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.03889 0.03009 1.293 0.196
## trustYes_0 -0.03416 0.04356 -0.784 0.433
##
## Correlation of Fixed Effects:
## (Intr)
## trustYes_0 -0.691
m2nt <- glmer(cuedFaceTrusted_1 ~ trustNo_0 +
(1 | participant), family = binomial("logit"), data = d)
summary(m2nt)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + (1 | participant)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 13585.7 13607.2 -6789.8 13579.7 9797
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.1133 -1.0074 0.9079 0.9822 1.0924
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0.02452 0.1566
## Number of obs: 9800, groups: participant, 392
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.004731 0.031494 0.150 0.881
## trustNo_0 0.034159 0.043557 0.784 0.433
##
## Correlation of Fixed Effects:
## (Intr)
## trustNo_0 -0.723
#trust condition
beta <- exp(0.03889)
pTtrust <-(beta/(1+beta))
beta
## [1] 1.039656
pTtrust
## [1] 0.5097213
pTnottrust <- (1-pTtrust)
#not trust condition
beta <- exp(0.004731)
pNTtrust <-(beta/(1+beta))
beta
## [1] 1.004742
pNTtrust
## [1] 0.5011827
pNTnottrust <- (1-pNTtrust)
#graphing
plot_new2 <- data.frame(
condition = c("trust", "trust", "not trust", "not trust"),
probFaceTrusted = c( pTtrust, pTnottrust, pNTtrust, pNTnottrust),
attention = c("cued", "uncued", "cued", "uncued"))
ggplot(data = plot_new2, aes(x = condition, y = probFaceTrusted, fill = attention)) +
geom_bar(stat="identity", position = position_dodge()) +
geom_text(aes(label = round(probFaceTrusted, digits = 4)), vjust=1.6, color="black", position = position_dodge(0.9), size=3.5) +
theme_minimal() +
ylab("probability of face trusted") +
coord_cartesian(ylim = c(0.48, .52))

3. cft ~ trust_condition + stim_gender + side_cued + (1|pt)
m3 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + sideCuedRight_.5 + stim_female_.5 +
(1 | participant), family = binomial, data = d)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + sideCuedRight_.5 + stim_female_.5 +
## (1 | participant)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 13587.3 13623.3 -6788.7 13577.3 9795
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.1304 -1.0041 0.9025 0.9856 1.1088
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0.02441 0.1562
## Number of obs: 9800, groups: participant, 392
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.020895 0.022365 0.934 0.350
## trust_.5 0.034151 0.043549 0.784 0.433
## sideCuedRight_.5 0.061711 0.040634 1.519 0.129
## stim_female_.5 0.006156 0.041871 0.147 0.883
##
## Correlation of Fixed Effects:
## (Intr) trs_.5 sCR_.5
## trust_.5 -0.045
## sdCdRght_.5 -0.005 0.000
## stim_fml_.5 -0.228 0.003 0.001
tab_model(m3)
|
|
cuedFaceTrusted_1
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
|
(Intercept)
|
1.02
|
0.98 – 1.07
|
0.350
|
|
trust_.5
|
1.03
|
0.95 – 1.13
|
0.433
|
|
sideCuedRight_.5
|
1.06
|
0.98 – 1.15
|
0.129
|
|
stim_female_.5
|
1.01
|
0.93 – 1.09
|
0.883
|
|
Random Effects
|
|
σ2
|
3.29
|
|
τ00 participant
|
0.02
|
|
ICC
|
0.01
|
|
N participant
|
392
|
|
Observations
|
9800
|
|
Marginal R2 / Conditional R2
|
0.000 / 0.008
|
plot(ggpredict(m3, "trust_.5"))

beta<-exp(0.034151)
beta/(1+beta) #[1] 0.5085369
## [1] 0.5085369
4. cft ~ trust + sim_gender + side cued + (side cued | pt) | & || singular
m4 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + stim_female_.5 + sideCuedRight_.5 +
(sideCuedRight_.5 | participant), family=binomial, data=d)
## boundary (singular) fit: see ?isSingular
summary(m4)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + stim_female_.5 + sideCuedRight_.5 +
## (sideCuedRight_.5 | participant)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 13590.7 13641.0 -6788.3 13576.7 9793
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.1599 -1.0014 0.8886 0.9865 1.1106
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participant (Intercept) 0.02553 0.15979
## sideCuedRight_.5 0.00374 0.06115 1.00
## Number of obs: 9800, groups: participant, 392
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.020915 0.022435 0.932 0.351
## trust_.5 0.034121 0.043677 0.781 0.435
## stim_female_.5 0.006377 0.041885 0.152 0.879
## sideCuedRight_.5 0.061903 0.040763 1.519 0.129
##
## Correlation of Fixed Effects:
## (Intr) trs_.5 st__.5
## trust_.5 -0.045
## stim_fml_.5 -0.228 0.004
## sdCdRght_.5 0.025 0.000 0.001
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
plot(ggpredict(m3, "trust_.5"))

5. cft ~ trust + side cued + stim gender + (1|pt) + (1 | faceLeft) + (1 | face Right) | & || singular
m5 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + sideCuedRight_.5 + stim_female_.5 +
(1 | participant) + (1 | faceRight) + (1 | faceLeft), family = binomial, data = d)
## boundary (singular) fit: see ?isSingular
summary(m5)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + sideCuedRight_.5 + stim_female_.5 +
## (1 | participant) + (1 | faceRight) + (1 | faceLeft)
## Data: d
##
## AIC BIC logLik deviance df.resid
## 13591.3 13641.7 -6788.7 13577.3 9793
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.1301 -1.0041 0.9020 0.9851 1.1089
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0.0243943 0.15619
## faceRight (Intercept) 0.0005001 0.02236
## faceLeft (Intercept) 0.0000000 0.00000
## Number of obs: 9800, groups: participant, 392; faceRight, 93; faceLeft, 93
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.020909 0.022504 0.929 0.353
## trust_.5 0.034173 0.043551 0.785 0.433
## sideCuedRight_.5 0.061709 0.040637 1.519 0.129
## stim_female_.5 0.006167 0.042171 0.146 0.884
##
## Correlation of Fixed Effects:
## (Intr) trs_.5 sCR_.5
## trust_.5 -0.045
## sdCdRght_.5 -0.005 0.000
## stim_fml_.5 -0.230 0.003 0.001
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
cft ~ trust + (1|pt) + (1|face)
m7 <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1|pt) +
(1 | face), family = binomial("logit"), data = d2)
summary(m7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (1 | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 26985.2 27016.8 -13488.6 26977.2 19596
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.5280 -0.9811 0.6905 0.9726 1.5812
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 0.1133255 0.33664
## face (Intercept) 0.0006741 0.02596
## Number of obs: 19600, groups: pt, 392; face, 93
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.02263 0.02253 1.005 0.315
## trust_.5 0.03591 0.04472 0.803 0.422
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.044
tab_model(m7)
|
|
cuedFaceTrusted_1
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
|
(Intercept)
|
1.02
|
0.98 – 1.07
|
0.315
|
|
trust_.5
|
1.04
|
0.95 – 1.13
|
0.422
|
|
Random Effects
|
|
σ2
|
3.29
|
|
τ00 pt
|
0.11
|
|
τ00 face
|
0.00
|
|
ICC
|
0.03
|
|
N pt
|
392
|
|
N face
|
93
|
|
Observations
|
19600
|
|
Marginal R2 / Conditional R2
|
0.000 / 0.034
|
ggpredict(m7, "trust_.5")
cft ~ trust + (1|pt) + (trustworthy | face) | & || isSingular
trustworthy.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1|pt) +
(trustworthy | face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(trustworthy.m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (trustworthy | face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 26031.5 26078.6 -13009.7 26019.5 18894
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.5633 -0.9816 0.6936 0.9770 1.6063
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## pt (Intercept) 0.111673 0.33417
## face (Intercept) 0.008707 0.09331
## trustworthy 0.001754 0.04188 -1.00
## Number of obs: 18900, groups: pt, 392; face, 90
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.01963 0.02298 0.854 0.393
## trust_.5 0.04727 0.04488 1.053 0.292
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.044
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
ggpredict(trustworthy.m, "trust_.5")
cft ~ trust + (1|pt) + ( overallTrust | face) | & || Singular
overall.m <- glmer(cuedFaceTrusted_1 ~ trust_.5 +
(1|pt) +
(overallTrust || face), family = binomial("logit"), data = d2)
## boundary (singular) fit: see ?isSingular
summary(overall.m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + (1 | pt) + (overallTrust || face)
## Data: d2
##
## AIC BIC logLik deviance df.resid
## 26029.8 26069.0 -13009.9 26019.8 18895
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.5635 -0.9810 0.6945 0.9756 1.5829
##
## Random effects:
## Groups Name Variance Std.Dev.
## pt (Intercept) 1.117e-01 3.342e-01
## face (Intercept) 1.277e-09 3.573e-05
## face.1 overallTrust 2.046e-04 1.430e-02
## Number of obs: 18900, groups: pt, 392; face, 90
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.02020 0.02294 0.881 0.379
## trust_.5 0.04719 0.04489 1.051 0.293
##
## Correlation of Fixed Effects:
## (Intr)
## trust_.5 -0.043
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
tab_model(overall.m)
|
|
cuedFaceTrusted_1
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
|
(Intercept)
|
1.02
|
0.98 – 1.07
|
0.379
|
|
trust_.5
|
1.05
|
0.96 – 1.14
|
0.293
|
|
Random Effects
|
|
σ2
|
3.29
|
|
τ00 pt
|
0.11
|
|
τ00 face
|
0.00
|
|
τ11 face.overallTrust
|
0.00
|
|
ρ01
|
|
|
ρ01
|
|
|
ICC
|
0.03
|
|
N pt
|
392
|
|
N face
|
90
|
|
Observations
|
18900
|
|
Marginal R2 / Conditional R2
|
0.000 / 0.033
|
ggpredict(overall.m, "trust_.5")